Cleaning up vp9_firstpass.c
Change-Id: Ie5723690f7c0bfa29a7ccef5da0c6c6326600ee6
This commit is contained in:
@@ -258,13 +258,14 @@ static void avg_stats(FIRSTPASS_STATS *section) {
|
||||
static double calculate_modified_err(const VP9_COMP *cpi,
|
||||
const FIRSTPASS_STATS *this_frame) {
|
||||
const struct twopass_rc *twopass = &cpi->twopass;
|
||||
const SVC *const svc = &cpi->svc;
|
||||
const FIRSTPASS_STATS *stats;
|
||||
double av_err;
|
||||
double modified_error;
|
||||
|
||||
if (cpi->svc.number_spatial_layers > 1 &&
|
||||
cpi->svc.number_temporal_layers == 1) {
|
||||
twopass = &cpi->svc.layer_context[cpi->svc.spatial_layer_id].twopass;
|
||||
if (svc->number_spatial_layers > 1 &&
|
||||
svc->number_temporal_layers == 1) {
|
||||
twopass = &svc->layer_context[svc->spatial_layer_id].twopass;
|
||||
}
|
||||
|
||||
stats = &twopass->total_stats;
|
||||
@@ -335,15 +336,13 @@ static double simple_weight(const YV12_BUFFER_CONFIG *buf) {
|
||||
}
|
||||
|
||||
// This function returns the maximum target rate per frame.
|
||||
static int frame_max_bits(const VP9_COMP *cpi) {
|
||||
int64_t max_bits =
|
||||
((int64_t)cpi->rc.av_per_frame_bandwidth *
|
||||
(int64_t)cpi->oxcf.two_pass_vbrmax_section) / 100;
|
||||
|
||||
static int frame_max_bits(const RATE_CONTROL *rc, const VP9_CONFIG *oxcf) {
|
||||
int64_t max_bits = ((int64_t)rc->av_per_frame_bandwidth *
|
||||
(int64_t)oxcf->two_pass_vbrmax_section) / 100;
|
||||
if (max_bits < 0)
|
||||
max_bits = 0;
|
||||
else if (max_bits > cpi->rc.max_frame_bandwidth)
|
||||
max_bits = cpi->rc.max_frame_bandwidth;
|
||||
else if (max_bits > rc->max_frame_bandwidth)
|
||||
max_bits = rc->max_frame_bandwidth;
|
||||
|
||||
return (int)max_bits;
|
||||
}
|
||||
@@ -1058,8 +1057,8 @@ static double get_prediction_decay_rate(const VP9_COMMON *cm,
|
||||
// Function to test for a condition where a complex transition is followed
|
||||
// by a static section. For example in slide shows where there is a fade
|
||||
// between slides. This is to help with more optimal kf and gf positioning.
|
||||
static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval,
|
||||
int still_interval,
|
||||
static int detect_transition_to_still(struct twopass_rc *twopass,
|
||||
int frame_interval, int still_interval,
|
||||
double loop_decay_rate,
|
||||
double last_decay_rate) {
|
||||
int trans_to_still = 0;
|
||||
@@ -1071,19 +1070,19 @@ static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval,
|
||||
loop_decay_rate >= 0.999 &&
|
||||
last_decay_rate < 0.9) {
|
||||
int j;
|
||||
const FIRSTPASS_STATS *position = cpi->twopass.stats_in;
|
||||
const FIRSTPASS_STATS *position = twopass->stats_in;
|
||||
FIRSTPASS_STATS tmp_next_frame;
|
||||
|
||||
// Look ahead a few frames to see if static condition persists...
|
||||
for (j = 0; j < still_interval; ++j) {
|
||||
if (EOF == input_stats(&cpi->twopass, &tmp_next_frame))
|
||||
if (EOF == input_stats(twopass, &tmp_next_frame))
|
||||
break;
|
||||
|
||||
if (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion < 0.999)
|
||||
break;
|
||||
}
|
||||
|
||||
reset_fpf_position(&cpi->twopass, position);
|
||||
reset_fpf_position(twopass, position);
|
||||
|
||||
// Only if it does do we signal a transition to still.
|
||||
if (j == still_interval)
|
||||
@@ -1405,9 +1404,11 @@ void define_fixed_arf_period(VP9_COMP *cpi) {
|
||||
|
||||
// Analyse and define a gf/arf group.
|
||||
static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
VP9_CONFIG *const oxcf = &cpi->oxcf;
|
||||
struct twopass_rc *const twopass = &cpi->twopass;
|
||||
FIRSTPASS_STATS next_frame = { 0 };
|
||||
const FIRSTPASS_STATS *start_pos;
|
||||
struct twopass_rc *const twopass = &cpi->twopass;
|
||||
int i;
|
||||
double boost_score = 0.0;
|
||||
double old_boost_score = 0.0;
|
||||
@@ -1426,16 +1427,14 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
double mv_in_out_accumulator = 0.0;
|
||||
double abs_mv_in_out_accumulator = 0.0;
|
||||
double mv_ratio_accumulator_thresh;
|
||||
const int max_bits = frame_max_bits(cpi); // Max bits for a single frame.
|
||||
|
||||
unsigned int allow_alt_ref = cpi->oxcf.play_alternate &&
|
||||
cpi->oxcf.lag_in_frames;
|
||||
// Max bits for a single frame.
|
||||
const int max_bits = frame_max_bits(rc, oxcf);
|
||||
unsigned int allow_alt_ref = oxcf->play_alternate && oxcf->lag_in_frames;
|
||||
|
||||
int f_boost = 0;
|
||||
int b_boost = 0;
|
||||
int flash_detected;
|
||||
int active_max_gf_interval;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
|
||||
twopass->gf_group_bits = 0;
|
||||
|
||||
@@ -1507,7 +1506,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Break clause to detect very still sections after motion. For example,
|
||||
// a static image after a fade or other transition.
|
||||
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
|
||||
if (detect_transition_to_still(twopass, i, 5, loop_decay_rate,
|
||||
last_loop_decay_rate)) {
|
||||
allow_alt_ref = 0;
|
||||
break;
|
||||
@@ -1791,36 +1790,36 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
|
||||
static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
int target_frame_size;
|
||||
double modified_err;
|
||||
double err_fraction;
|
||||
const int max_bits = frame_max_bits(cpi); // Max for a single frame.
|
||||
|
||||
struct twopass_rc *twopass = &cpi->twopass;
|
||||
// For a single frame.
|
||||
const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
|
||||
// Calculate modified prediction error used in bit allocation.
|
||||
modified_err = calculate_modified_err(cpi, this_frame);
|
||||
const double modified_err = calculate_modified_err(cpi, this_frame);
|
||||
int target_frame_size;
|
||||
double err_fraction;
|
||||
|
||||
if (cpi->twopass.gf_group_error_left > 0)
|
||||
if (twopass->gf_group_error_left > 0)
|
||||
// What portion of the remaining GF group error is used by this frame.
|
||||
err_fraction = modified_err / cpi->twopass.gf_group_error_left;
|
||||
err_fraction = modified_err / twopass->gf_group_error_left;
|
||||
else
|
||||
err_fraction = 0.0;
|
||||
|
||||
// How many of those bits available for allocation should we give it?
|
||||
target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
|
||||
target_frame_size = (int)((double)twopass->gf_group_bits * err_fraction);
|
||||
|
||||
// Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at
|
||||
// the top end.
|
||||
target_frame_size = clamp(target_frame_size, 0,
|
||||
MIN(max_bits, (int)cpi->twopass.gf_group_bits));
|
||||
MIN(max_bits, (int)twopass->gf_group_bits));
|
||||
|
||||
// Adjust error and bits remaining.
|
||||
cpi->twopass.gf_group_error_left -= (int64_t)modified_err;
|
||||
twopass->gf_group_error_left -= (int64_t)modified_err;
|
||||
|
||||
// Per frame bit target for this frame.
|
||||
vp9_rc_set_frame_target(cpi, target_frame_size);
|
||||
}
|
||||
|
||||
static int test_candidate_kf(VP9_COMP *cpi,
|
||||
static int test_candidate_kf(struct twopass_rc *twopass,
|
||||
const FIRSTPASS_STATS *last_frame,
|
||||
const FIRSTPASS_STATS *this_frame,
|
||||
const FIRSTPASS_STATS *next_frame) {
|
||||
@@ -1841,7 +1840,7 @@ static int test_candidate_kf(VP9_COMP *cpi,
|
||||
((next_frame->intra_error /
|
||||
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
|
||||
int i;
|
||||
const FIRSTPASS_STATS *start_pos = cpi->twopass.stats_in;
|
||||
const FIRSTPASS_STATS *start_pos = twopass->stats_in;
|
||||
FIRSTPASS_STATS local_next_frame = *next_frame;
|
||||
double boost_score = 0.0;
|
||||
double old_boost_score = 0.0;
|
||||
@@ -1878,7 +1877,7 @@ static int test_candidate_kf(VP9_COMP *cpi,
|
||||
old_boost_score = boost_score;
|
||||
|
||||
// Get the next frame details
|
||||
if (EOF == input_stats(&cpi->twopass, &local_next_frame))
|
||||
if (EOF == input_stats(twopass, &local_next_frame))
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -1888,7 +1887,7 @@ static int test_candidate_kf(VP9_COMP *cpi,
|
||||
is_viable_kf = 1;
|
||||
} else {
|
||||
// Reset the file position
|
||||
reset_fpf_position(&cpi->twopass, start_pos);
|
||||
reset_fpf_position(twopass, start_pos);
|
||||
|
||||
is_viable_kf = 0;
|
||||
}
|
||||
@@ -1901,16 +1900,13 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
int i, j;
|
||||
RATE_CONTROL *const rc = &cpi->rc;
|
||||
struct twopass_rc *const twopass = &cpi->twopass;
|
||||
FIRSTPASS_STATS last_frame;
|
||||
const FIRSTPASS_STATS first_frame = *this_frame;
|
||||
FIRSTPASS_STATS next_frame;
|
||||
const FIRSTPASS_STATS *start_position = twopass->stats_in;
|
||||
|
||||
FIRSTPASS_STATS next_frame;
|
||||
FIRSTPASS_STATS last_frame;
|
||||
double decay_accumulator = 1.0;
|
||||
double zero_motion_accumulator = 1.0;
|
||||
double boost_score = 0;
|
||||
double loop_decay_rate;
|
||||
|
||||
double boost_score = 0.0;
|
||||
double kf_mod_err = 0.0;
|
||||
double kf_group_err = 0.0;
|
||||
double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
@@ -1948,8 +1944,10 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// Provided that we are not at the end of the file...
|
||||
if (cpi->oxcf.auto_key &&
|
||||
lookup_next_frame_stats(twopass, &next_frame) != EOF) {
|
||||
double loop_decay_rate;
|
||||
|
||||
// Check for a scene cut.
|
||||
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
|
||||
if (test_candidate_kf(twopass, &last_frame, this_frame, &next_frame))
|
||||
break;
|
||||
|
||||
// How fast is the prediction quality decaying?
|
||||
@@ -1965,7 +1963,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Special check for transition or high motion followed by a
|
||||
// static scene.
|
||||
if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i,
|
||||
if (detect_transition_to_still(twopass, i, cpi->key_frame_frequency - i,
|
||||
loop_decay_rate, decay_accumulator))
|
||||
break;
|
||||
|
||||
@@ -2018,7 +2016,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// Calculate the number of bits that should be assigned to the kf group.
|
||||
if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
|
||||
// Maximum number of bits for a single normal frame (not key frame).
|
||||
const int max_bits = frame_max_bits(cpi);
|
||||
const int max_bits = frame_max_bits(rc, &cpi->oxcf);
|
||||
|
||||
// Maximum number of bits allocated to the key frame group.
|
||||
int64_t max_grp_bits;
|
||||
@@ -2070,10 +2068,10 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// How fast is prediction quality decaying.
|
||||
if (!detect_flash(twopass, 0)) {
|
||||
loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
|
||||
const double loop_decay_rate = get_prediction_decay_rate(&cpi->common,
|
||||
&next_frame);
|
||||
decay_accumulator *= loop_decay_rate;
|
||||
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
||||
? MIN_DECAY_FACTOR : decay_accumulator;
|
||||
decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
|
||||
}
|
||||
|
||||
boost_score += (decay_accumulator * r);
|
||||
@@ -2104,7 +2102,6 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
if (1) {
|
||||
int kf_boost = (int)boost_score;
|
||||
int allocation_chunks;
|
||||
int alt_kf_bits;
|
||||
|
||||
if (kf_boost < (rc->frames_to_key * 3))
|
||||
kf_boost = (rc->frames_to_key * 3);
|
||||
@@ -2138,14 +2135,12 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
|
||||
// Prevent overflow.
|
||||
if (kf_boost > 1028) {
|
||||
int divisor = kf_boost >> 10;
|
||||
const int divisor = kf_boost >> 10;
|
||||
kf_boost /= divisor;
|
||||
allocation_chunks /= divisor;
|
||||
}
|
||||
|
||||
twopass->kf_group_bits = (twopass->kf_group_bits < 0) ? 0
|
||||
: twopass->kf_group_bits;
|
||||
|
||||
twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
|
||||
// Calculate the number of bits to be spent on the key frame.
|
||||
twopass->kf_bits = (int)((double)kf_boost *
|
||||
((double)twopass->kf_group_bits / allocation_chunks));
|
||||
@@ -2155,11 +2150,11 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// then use an alternate calculation based on the kf error score
|
||||
// which should give a smaller key frame.
|
||||
if (kf_mod_err < kf_group_err / rc->frames_to_key) {
|
||||
double alt_kf_grp_bits = ((double)twopass->bits_left *
|
||||
double alt_kf_grp_bits = ((double)twopass->bits_left *
|
||||
(kf_mod_err * (double)rc->frames_to_key) /
|
||||
DOUBLE_DIVIDE_CHECK(twopass->modified_error_left));
|
||||
|
||||
alt_kf_bits = (int)((double)kf_boost *
|
||||
const int alt_kf_bits = (int)((double)kf_boost *
|
||||
(alt_kf_grp_bits / (double)allocation_chunks));
|
||||
|
||||
if (twopass->kf_bits > alt_kf_bits)
|
||||
@@ -2168,12 +2163,11 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
||||
// Else if it is much harder than other frames in the group make sure
|
||||
// it at least receives an allocation in keeping with its relative
|
||||
// error score.
|
||||
alt_kf_bits = (int)((double)twopass->bits_left * (kf_mod_err /
|
||||
const int alt_kf_bits = (int)((double)twopass->bits_left * (kf_mod_err /
|
||||
DOUBLE_DIVIDE_CHECK(twopass->modified_error_left)));
|
||||
|
||||
if (alt_kf_bits > twopass->kf_bits) {
|
||||
if (alt_kf_bits > twopass->kf_bits)
|
||||
twopass->kf_bits = alt_kf_bits;
|
||||
}
|
||||
}
|
||||
twopass->kf_group_bits -= twopass->kf_bits;
|
||||
// Per frame bit target for this frame.
|
||||
|
||||
Reference in New Issue
Block a user