Made AltRef filter adaptive & added motion compensation

Modified AltRef temporal filter to adapt filter length based
on macroblock coding modes selected during first-pass
encode.

Also added sub-pixel motion compensation to the AltRef
filter.
This commit is contained in:
Adrian Grange
2010-09-28 15:23:41 +01:00
parent 305be4e417
commit 1b2f8308e4
4 changed files with 610 additions and 221 deletions

View File

@@ -43,6 +43,9 @@
#define RTCD(x) NULL
#endif
#define ALT_REF_MC_ENABLED 1 // dis/enable MC in AltRef filtering
#define ALT_REF_SUBPEL_ENABLED 1 // dis/enable subpel in MC AltRef filtering
extern void vp8cx_init_mv_bits_sadcost();
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
@@ -1662,13 +1665,16 @@ void vp8_init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
#endif
#if VP8_TEMPORAL_ALT_REF
cpi->use_weighted_temporal_filter = 0;
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 255; i++)
cpi->fixed_divide[i] = 0x10000 / i;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
@@ -2042,7 +2048,8 @@ VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
cpi->active_map_enabled = 0;
// Create the first pass motion map structure and set to 0
CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(cpi->common.MBs, 1));
// Allocate space for maximum of 15 buffers
CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(15*cpi->common.MBs, 1));
#if 0
// Experimental code for lagged and one pass
@@ -3290,97 +3297,479 @@ static int modifier_lut[7][19] =
{16, 16, 16, 16, 15, 15, 14, 14, 13, 12, 11, 10, 9, 8, 7, 5, 4, 2, 1}
};
#endif
static void vp8cx_temp_blur1_c
static void build_predictors_mb
(
VP8_COMP *cpi,
unsigned char **frames,
int frame_count,
unsigned char *src,
unsigned char *dst,
int width,
MACROBLOCKD *x,
unsigned char *y_mb_ptr,
unsigned char *u_mb_ptr,
unsigned char *v_mb_ptr,
int stride,
int height,
int strength,
int *fixed_divide,
unsigned char *motion_map_ptr,
unsigned char block_size
int mv_row,
int mv_col,
unsigned char *pred
)
{
int offset;
unsigned char *yptr, *uptr, *vptr;
// Y
yptr = y_mb_ptr + (mv_row >> 3) * stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
// vp8_sixtap_predict16x16_c(yptr, stride,
// mv_col & 7, mv_row & 7, &pred[0], 16);
x->subpixel_predict16x16(yptr, stride,
mv_col & 7, mv_row & 7, &pred[0], 16);
}
else
{
//vp8_copy_mem16x16_c (yptr, stride, &pred[0], 16);
RECON_INVOKE(&x->rtcd->recon, copy16x16)(yptr, stride, &pred[0], 16);
}
// U & V
mv_row >>= 1;
mv_col >>= 1;
stride >>= 1;
offset = (mv_row >> 3) * stride + (mv_col >> 3);
uptr = u_mb_ptr + offset;
vptr = v_mb_ptr + offset;
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, stride,
mv_col & 7, mv_row & 7, &pred[256], 8);
x->subpixel_predict8x8(vptr, stride,
mv_col & 7, mv_row & 7, &pred[320], 8);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(uptr, stride, &pred[256], 8);
RECON_INVOKE(&x->rtcd->recon, copy8x8)(vptr, stride, &pred[320], 8);
}
}
static void apply_temporal_filter
(
unsigned char *frame1,
unsigned int stride,
unsigned char *frame2,
unsigned int block_size,
int strength,
int filter_weight,
int *accumulator,
int *count
)
{
int byte = 0; // Buffer offset for current pixel being filtered
int frame = 0;
int modifier = 0;
int i, j, k;
int block_ofset;
int cols;
unsigned char Shift = (block_size == 16) ? 4 : 3;
int modifier;
int byte = 0;
#if USE_FILTER_LUT
int *lut = modifier_lut[strength];
#endif
cols = cpi->common.mb_cols;
for (i = 0; i < height; i++)
for (i = 0,k = 0; i < block_size; i++)
{
block_ofset = (i >> Shift) * cols;
for (j = 0; j < cols; j ++)
for (j = 0; j < block_size; j++, k++)
{
if (motion_map_ptr[block_ofset] > 2)
{
vpx_memcpy(&dst[byte], &src[byte], block_size);
byte += block_size;
}
int src_byte = frame1[byte];
int pixel_value = *frame2++;
#if USE_FILTER_LUT
// LUT implementation --
// improves precision of filter
modifier = abs(src_byte-pixel_value);
modifier = modifier>18 ? 0 : lut[modifier];
#else
modifier = src_byte;
modifier -= pixel_value;
modifier *= modifier;
modifier >>= strength;
modifier *= 3;
if (modifier > 16)
modifier = 16;
modifier = 16 - modifier;
#endif
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_size;
}
}
#if ALT_REF_MC_ENABLED
static int dummy_cost[2*mv_max+1];
static int find_matching_mb
(
VP8_COMP *cpi,
YV12_BUFFER_CONFIG *arf_frame,
YV12_BUFFER_CONFIG *frame_ptr,
int mb_offset,
int error_thresh
)
{
MACROBLOCK *x = &cpi->mb;
int thissme;
int step_param;
int further_steps;
int n = 0;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
int num00 = 0;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MV best_ref_mv1 = {0,0};
int *mvcost[2] = { &dummy_cost[mv_max+1], &dummy_cost[mv_max+1] };
int *mvsadcost[2] = { &dummy_cost[mv_max+1], &dummy_cost[mv_max+1] };
// Save input state
unsigned char **base_src = b->base_src;
int src = b->src;
int src_stride = b->src_stride;
unsigned char **base_pre = d->base_pre;
int pre = d->pre;
int pre_stride = d->pre_stride;
// Setup frame pointers
b->base_src = &arf_frame->y_buffer;
b->src_stride = arf_frame->y_stride;
b->src = mb_offset;
d->base_pre = &frame_ptr->y_buffer;
d->pre_stride = frame_ptr->y_stride;
d->pre = mb_offset;
// Further step/diamond searches as necessary
if (cpi->Speed < 8)
{
step_param = cpi->sf.first_step +
((cpi->Speed > 5) ? 1 : 0);
further_steps =
(cpi->sf.max_step_search_steps - 1)-step_param;
}
else
{
step_param = cpi->sf.first_step + 2;
further_steps = 0;
}
if (1/*cpi->sf.search_method == HEX*/)
{
// TODO Check that the 16x16 vf & sdf are selected here
bestsme = vp8_hex_search(x, b, d,
&best_ref_mv1, &d->bmi.mv.as_mv,
step_param,
sadpb/*x->errorperbit*/,
&num00, cpi->fn_ptr.vf, cpi->fn_ptr.sdf,
mvsadcost, mvcost);
}
else
{
int mv_x, mv_y;
bestsme = cpi->diamond_search_sad(x, b, d,
&best_ref_mv1, &d->bmi.mv.as_mv,
step_param,
sadpb / 2/*x->errorperbit*/,
&num00, &cpi->fn_ptr,
mvsadcost, mvcost); //sadpb < 9
// Further step/diamond searches as necessary
n = 0;
//further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
for (k = 0; k < block_size; k++)
thissme = cpi->diamond_search_sad(x, b, d,
&best_ref_mv1, &d->bmi.mv.as_mv,
step_param + n,
sadpb / 4/*x->errorperbit*/,
&num00, &cpi->fn_ptr,
mvsadcost, mvcost); //sadpb = 9
if (thissme < bestsme)
{
int accumulator = 0;
int count = 0;
int src_byte = src[byte];
bestsme = thissme;
mv_y = d->bmi.mv.as_mv.row;
mv_x = d->bmi.mv.as_mv.col;
}
else
{
d->bmi.mv.as_mv.row = mv_y;
d->bmi.mv.as_mv.col = mv_x;
}
}
}
}
for (frame = 0; frame < frame_count; frame++)
{
// get current frame pixel value
int pixel_value = frames[frame][byte];
#if USE_FILTER_LUT
// LUT implementation --
// improves precision of filter
modifier = abs(src_byte-pixel_value);
modifier = modifier>18 ? 0 : lut[modifier];
#else
modifier = src_byte;
modifier -= pixel_value;
modifier *= modifier;
modifier >>= strength;
modifier *= 3;
if (modifier > 16)
modifier = 16;
modifier = 16 - modifier;
#if ALT_REF_SUBPEL_ENABLED
// Try sub-pixel MC?
//if (bestsme > error_thresh && bestsme < INT_MAX)
{
bestsme = cpi->find_fractional_mv_step(x, b, d,
&d->bmi.mv.as_mv, &best_ref_mv1,
x->errorperbit, cpi->fn_ptr.svf,
cpi->fn_ptr.vf, cpi->mb.mvcost);
}
#endif
accumulator += modifier * pixel_value;
count += modifier;
// Save input state
b->base_src = base_src;
b->src = src;
b->src_stride = src_stride;
d->base_pre = base_pre;
d->pre = pre;
d->pre_stride = pre_stride;
return bestsme;
}
#endif
static void vp8cx_temp_blur1_c
(
VP8_COMP *cpi,
int frame_count,
int alt_ref_index,
int strength
)
{
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight[MAX_LAG_BUFFERS];
unsigned char *mm_ptr = cpi->fp_motion_map;
int cols = cpi->common.mb_cols;
int rows = cpi->common.mb_rows;
int MBs = cpi->common.MBs;
int mb_y_offset = 0;
int mb_uv_offset = 0;
unsigned int accumulator[384];
unsigned int count[384];
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
unsigned char *dst1, *dst2;
DECLARE_ALIGNED(16, unsigned char, predictor[384]);
// Save input state
unsigned char *y_buffer = mbd->pre.y_buffer;
unsigned char *u_buffer = mbd->pre.u_buffer;
unsigned char *v_buffer = mbd->pre.v_buffer;
if (!cpi->use_weighted_temporal_filter)
{
// Temporal filtering is unweighted
for (frame = 0; frame < frame_count; frame++)
filter_weight[frame] = 1;
}
for (mb_row = 0; mb_row < rows; mb_row++)
{
#if ALT_REF_MC_ENABLED
// Reduced search extent by 3 for 6-tap filter & smaller UMV border
cpi->mb.mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 19));
cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16)
+ (VP8BORDERINPIXELS - 19);
#endif
for (mb_col = 0; mb_col < cols; mb_col++)
{
int i, j, k, w;
int weight_cap;
int stride;
vpx_memset(accumulator, 0, 384*sizeof(unsigned int));
vpx_memset(count, 0, 384*sizeof(unsigned int));
#if ALT_REF_MC_ENABLED
// Reduced search extent by 3 for 6-tap filter & smaller UMV border
cpi->mb.mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 19));
cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16)
+ (VP8BORDERINPIXELS - 19);
#endif
// Read & process macroblock weights from motion map
if (cpi->use_weighted_temporal_filter)
{
weight_cap = 2;
for (frame = alt_ref_index-1; frame >= 0; frame--)
{
w = *(mm_ptr + (frame+1)*MBs);
filter_weight[frame] = w < weight_cap ? w : weight_cap;
weight_cap = w;
}
filter_weight[alt_ref_index] = 2;
weight_cap = 2;
for (frame = alt_ref_index+1; frame < frame_count; frame++)
{
w = *(mm_ptr + frame*MBs);
filter_weight[frame] = w < weight_cap ? w : weight_cap;
weight_cap = w;
}
}
for (frame = 0; frame < frame_count; frame++)
{
int err;
if (cpi->frames[frame] == NULL)
continue;
mbd->block[0].bmi.mv.as_mv.row = 0;
mbd->block[0].bmi.mv.as_mv.col = 0;
#if ALT_REF_MC_ENABLED
//if (filter_weight[frame] == 0)
{
#define THRESH_LOW 10000
#define THRESH_HIGH 20000
// Correlation has been lost try MC
err = find_matching_mb ( cpi,
cpi->frames[alt_ref_index],
cpi->frames[frame],
mb_y_offset,
THRESH_LOW );
if (filter_weight[frame] < 2)
{
// Set weight depending on error
filter_weight[frame] = err<THRESH_LOW
? 2 : err<THRESH_HIGH ? 1 : 0;
}
}
#endif
if (filter_weight[frame] != 0)
{
// Construct the predictors
build_predictors_mb (
mbd,
cpi->frames[frame]->y_buffer + mb_y_offset,
cpi->frames[frame]->u_buffer + mb_uv_offset,
cpi->frames[frame]->v_buffer + mb_uv_offset,
cpi->frames[frame]->y_stride,
mbd->block[0].bmi.mv.as_mv.row,
mbd->block[0].bmi.mv.as_mv.col,
predictor );
accumulator += (count >> 1);
accumulator *= fixed_divide[count];
accumulator >>= 16;
// Apply the filter (YUV)
apply_temporal_filter ( f->y_buffer + mb_y_offset,
f->y_stride,
predictor,
16,
strength,
filter_weight[frame],
accumulator,
count );
dst[byte] = accumulator;
apply_temporal_filter ( f->u_buffer + mb_uv_offset,
f->uv_stride,
predictor + 256,
8,
strength,
filter_weight[frame],
accumulator + 256,
count + 256 );
apply_temporal_filter ( f->v_buffer + mb_uv_offset,
f->uv_stride,
predictor + 320,
8,
strength,
filter_weight[frame],
accumulator + 320,
count + 320 );
}
}
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.source_buffer.y_buffer;
stride = cpi->alt_ref_buffer.source_buffer.y_stride;
byte = mb_y_offset;
for (i = 0,k = 0; i < 16; i++)
{
for (j = 0; j < 16; j++, k++)
{
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
// move to next pixel
byte++;
}
byte += stride - 16;
}
block_ofset++;
dst1 = cpi->alt_ref_buffer.source_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.source_buffer.v_buffer;
stride = cpi->alt_ref_buffer.source_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0,k = 256; i < 8; i++)
{
for (j = 0; j < 8; j++, k++)
{
int m=k+64;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
pval *= cpi->fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (unsigned char)pval;
// move to next pixel
byte++;
}
byte += stride - 8;
}
mm_ptr++;
mb_y_offset += 16;
mb_uv_offset += 8;
}
// Step byte on over the UMV border to the start of the next line
byte += stride - width;
mb_y_offset += 16*f->y_stride-f->y_width;
mb_uv_offset += 8*f->uv_stride-f->uv_width;
}
// Restore input state
mbd->pre.y_buffer = y_buffer;
mbd->pre.u_buffer = u_buffer;
mbd->pre.v_buffer = v_buffer;
}
static void vp8cx_temp_filter_c
@@ -3388,11 +3777,7 @@ static void vp8cx_temp_filter_c
VP8_COMP *cpi
)
{
YV12_BUFFER_CONFIG *temp_source_buffer;
int *fixed_divide = cpi->fixed_divide;
int frame = 0;
int max_frames = 11;
int num_frames_backward = 0;
int num_frames_forward = 0;
@@ -3400,15 +3785,13 @@ static void vp8cx_temp_filter_c
int frames_to_blur_forward = 0;
int frames_to_blur = 0;
int start_frame = 0;
unsigned int filtered = 0;
int strength = cpi->oxcf.arnr_strength;
int blur_type = cpi->oxcf.arnr_type;
int new_max_frames = cpi->oxcf.arnr_max_frames;
if (new_max_frames > 0)
max_frames = new_max_frames;
int max_frames = cpi->active_arnr_frames;
num_frames_backward = cpi->last_alt_ref_sei - cpi->source_encode_index;
@@ -3455,8 +3838,9 @@ static void vp8cx_temp_filter_c
if (frames_to_blur_backward > frames_to_blur_forward)
frames_to_blur_backward = frames_to_blur_forward;
if (frames_to_blur_forward > (max_frames / 2))
frames_to_blur_forward = (max_frames / 2);
// When max_frames is even we have 1 more frame backward than forward
if (frames_to_blur_forward > (max_frames - 1) / 2)
frames_to_blur_forward = ((max_frames - 1) / 2);
if (frames_to_blur_backward > (max_frames / 2))
frames_to_blur_backward = (max_frames / 2);
@@ -3488,7 +3872,8 @@ static void vp8cx_temp_filter_c
break;
}
start_frame = (cpi->last_alt_ref_sei + frames_to_blur_forward) % cpi->oxcf.lag_in_frames;
start_frame = (cpi->last_alt_ref_sei
+ frames_to_blur_forward) % cpi->oxcf.lag_in_frames;
#ifdef DEBUGFWG
// DEBUG FWG
@@ -3504,6 +3889,8 @@ static void vp8cx_temp_filter_c
, start_frame);
#endif
// Setup frame pointers, NULL indicates frame not included in filter
vpx_memset(cpi->frames, 0, max_frames*sizeof(YV12_BUFFER_CONFIG *));
for (frame = 0; frame < frames_to_blur; frame++)
{
int which_buffer = start_frame - frame;
@@ -3511,80 +3898,26 @@ static void vp8cx_temp_filter_c
if (which_buffer < 0)
which_buffer += cpi->oxcf.lag_in_frames;
cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.y_buffer;
cpi->frames[frames_to_blur-1-frame]
= &cpi->src_buffer[which_buffer].source_buffer;
}
temp_source_buffer = &cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer;
// Blur Y
vp8cx_temp_blur1_c(
vp8cx_temp_blur1_c (
cpi,
cpi->frames,
frames_to_blur,
temp_source_buffer->y_buffer, // cpi->Source->y_buffer,
cpi->alt_ref_buffer.source_buffer.y_buffer, // cpi->Source->y_buffer,
temp_source_buffer->y_width,
temp_source_buffer->y_stride,
temp_source_buffer->y_height,
//temp_source_buffer->y_height * temp_source_buffer->y_stride,
strength,
fixed_divide,
cpi->fp_motion_map, 16);
for (frame = 0; frame < frames_to_blur; frame++)
{
int which_buffer = start_frame - frame;
if (which_buffer < 0)
which_buffer += cpi->oxcf.lag_in_frames;
cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.u_buffer;
}
// Blur U
vp8cx_temp_blur1_c(
cpi,
cpi->frames,
frames_to_blur,
temp_source_buffer->u_buffer,
cpi->alt_ref_buffer.source_buffer.u_buffer, // cpi->Source->u_buffer,
temp_source_buffer->uv_width,
temp_source_buffer->uv_stride,
temp_source_buffer->uv_height,
//temp_source_buffer->uv_height * temp_source_buffer->uv_stride,
strength,
fixed_divide,
cpi->fp_motion_map, 8);
for (frame = 0; frame < frames_to_blur; frame++)
{
int which_buffer = start_frame - frame;
if (which_buffer < 0)
which_buffer += cpi->oxcf.lag_in_frames;
cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.v_buffer;
}
// Blur V
vp8cx_temp_blur1_c(
cpi,
cpi->frames,
frames_to_blur,
temp_source_buffer->v_buffer,
cpi->alt_ref_buffer.source_buffer.v_buffer, // cpi->Source->v_buffer,
temp_source_buffer->uv_width,
temp_source_buffer->uv_stride,
//temp_source_buffer->uv_height * temp_source_buffer->uv_stride,
temp_source_buffer->uv_height,
strength,
fixed_divide,
cpi->fp_motion_map, 8);
frames_to_blur_backward,
strength );
}
#endif
static void encode_frame_to_data_rate(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags
)
{
int Q;
int frame_over_shoot_limit;