Merge "Optimize wedge partition selection." into nextgenv2
This commit is contained in:
		@@ -185,6 +185,7 @@ ifeq ($(CONFIG_EXT_INTER),yes)
 | 
			
		||||
LIBVPX_TEST_SRCS-$(HAVE_SSSE3) += masked_variance_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(HAVE_SSSE3) += masked_sad_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10_ENCODER) += blend_mask6_test.cc
 | 
			
		||||
LIBVPX_TEST_SRCS-$(CONFIG_VP10_ENCODER) += vp10_wedge_utils_test.cc
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										399
									
								
								test/vp10_wedge_utils_test.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										399
									
								
								test/vp10_wedge_utils_test.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,399 @@
 | 
			
		||||
/*
 | 
			
		||||
 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
 | 
			
		||||
 *
 | 
			
		||||
 *  Use of this source code is governed by a BSD-style license
 | 
			
		||||
 *  that can be found in the LICENSE file in the root of the source
 | 
			
		||||
 *  tree. An additional intellectual property rights grant can be found
 | 
			
		||||
 *  in the file PATENTS.  All contributing project authors may
 | 
			
		||||
 *  be found in the AUTHORS file in the root of the source tree.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "third_party/googletest/src/include/gtest/gtest.h"
 | 
			
		||||
 | 
			
		||||
#include "./vpx_config.h"
 | 
			
		||||
#include "vpx_ports/mem.h"
 | 
			
		||||
 | 
			
		||||
#include "./vpx_dsp_rtcd.h"
 | 
			
		||||
#include "./vp10_rtcd.h"
 | 
			
		||||
 | 
			
		||||
#include "vpx_dsp/vpx_dsp_common.h"
 | 
			
		||||
 | 
			
		||||
#include "vp10/common/enums.h"
 | 
			
		||||
 | 
			
		||||
#include "test/array_utils.h"
 | 
			
		||||
#include "test/assertion_helpers.h"
 | 
			
		||||
#include "test/function_equivalence_test.h"
 | 
			
		||||
#include "test/randomise.h"
 | 
			
		||||
#include "test/register_state_check.h"
 | 
			
		||||
#include "test/snapshot.h"
 | 
			
		||||
 | 
			
		||||
#define WEDGE_WEIGHT_BITS 6
 | 
			
		||||
#define MAX_MASK_VALUE  (1 << (WEDGE_WEIGHT_BITS))
 | 
			
		||||
 | 
			
		||||
using std::tr1::make_tuple;
 | 
			
		||||
using libvpx_test::FunctionEquivalenceTest;
 | 
			
		||||
using libvpx_test::Snapshot;
 | 
			
		||||
using libvpx_test::Randomise;
 | 
			
		||||
using libvpx_test::array_utils::arraySet;
 | 
			
		||||
using libvpx_test::assertion_helpers::ArraysEq;
 | 
			
		||||
using libvpx_test::assertion_helpers::ArraysEqWithin;
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
static const int16_t int13_max = (1<<12) - 1;
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// vp10_wedge_sse_from_residuals - functionality
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
class WedgeUtilsSSEFuncTest : public testing::Test {
 | 
			
		||||
 protected:
 | 
			
		||||
  Snapshot snapshot;
 | 
			
		||||
  Randomise randomise;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static void equiv_blend_residuals(int16_t *r,
 | 
			
		||||
                                  const int16_t *r0,
 | 
			
		||||
                                  const int16_t *r1,
 | 
			
		||||
                                  const uint8_t *m,
 | 
			
		||||
                                  int N) {
 | 
			
		||||
  for (int i = 0 ; i < N ; i++) {
 | 
			
		||||
    const int32_t m0 = m[i];
 | 
			
		||||
    const int32_t m1 = MAX_MASK_VALUE - m0;
 | 
			
		||||
    const int16_t R = m0 * r0[i] + m1 * r1[i];
 | 
			
		||||
    // Note that this rounding is designed to match the result
 | 
			
		||||
    // you would get when actually blending the 2 predictors and computing
 | 
			
		||||
    // the residuals.
 | 
			
		||||
    r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint64_t equiv_sse_from_residuals(const int16_t *r0,
 | 
			
		||||
                                         const int16_t *r1,
 | 
			
		||||
                                         const uint8_t *m,
 | 
			
		||||
                                         int N) {
 | 
			
		||||
  uint64_t acc = 0;
 | 
			
		||||
  for (int i = 0 ; i < N ; i++) {
 | 
			
		||||
    const int32_t m0 = m[i];
 | 
			
		||||
    const int32_t m1 = MAX_MASK_VALUE - m0;
 | 
			
		||||
    const int16_t R = m0 * r0[i] + m1 * r1[i];
 | 
			
		||||
    const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
 | 
			
		||||
    acc += r * r;
 | 
			
		||||
  }
 | 
			
		||||
  return acc;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) {
 | 
			
		||||
  for (int i = 0 ; i < 1000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    uint8_t s[MAX_SB_SQUARE];
 | 
			
		||||
    uint8_t p0[MAX_SB_SQUARE];
 | 
			
		||||
    uint8_t p1[MAX_SB_SQUARE];
 | 
			
		||||
    uint8_t p[MAX_SB_SQUARE];
 | 
			
		||||
 | 
			
		||||
    int16_t r0[MAX_SB_SQUARE];
 | 
			
		||||
    int16_t r1[MAX_SB_SQUARE];
 | 
			
		||||
    int16_t r_ref[MAX_SB_SQUARE];
 | 
			
		||||
    int16_t r_tst[MAX_SB_SQUARE];
 | 
			
		||||
    uint8_t m[MAX_SB_SQUARE];
 | 
			
		||||
 | 
			
		||||
    randomise(s);
 | 
			
		||||
    randomise(m, 0, MAX_MASK_VALUE + 1);
 | 
			
		||||
 | 
			
		||||
    const int w = 1 << randomise.uniform<uint32_t>(3, MAX_SB_SIZE_LOG2);
 | 
			
		||||
    const int h = 1 << randomise.uniform<uint32_t>(3, MAX_SB_SIZE_LOG2);
 | 
			
		||||
    const int N = w * h;
 | 
			
		||||
 | 
			
		||||
    for (int j = 0 ; j < N ; j++) {
 | 
			
		||||
      p0[j] = clamp(s[j] + randomise.uniform<int>(-16, 17), 0, UINT8_MAX);
 | 
			
		||||
      p1[j] = clamp(s[j] + randomise.uniform<int>(-16, 17), 0, UINT8_MAX);
 | 
			
		||||
    }
 | 
			
		||||
    vpx_blend_mask6(p, w, p0, w, p1, w, m, w, h, w, 0, 0);
 | 
			
		||||
 | 
			
		||||
    vpx_subtract_block(h, w, r0, w, s, w, p0, w);
 | 
			
		||||
    vpx_subtract_block(h, w, r1, w, s, w, p1, w);
 | 
			
		||||
 | 
			
		||||
    vpx_subtract_block(h, w, r_ref, w, s, w, p, w);
 | 
			
		||||
    equiv_blend_residuals(r_tst, r0, r1, m, N);
 | 
			
		||||
 | 
			
		||||
    ASSERT_TRUE(ArraysEqWithin(r_ref, r_tst, 0, N));
 | 
			
		||||
 | 
			
		||||
    uint64_t ref_sse = vpx_sum_squares_i16(r_ref, N);
 | 
			
		||||
    uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(ref_sse, tst_sse);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static uint64_t sse_from_residuals(const int16_t *r0,
 | 
			
		||||
                                   const int16_t *r1,
 | 
			
		||||
                                   const uint8_t *m,
 | 
			
		||||
                                   int N) {
 | 
			
		||||
  uint64_t acc = 0;
 | 
			
		||||
  for (int i = 0 ; i < N ; i++) {
 | 
			
		||||
    const int32_t m0 = m[i];
 | 
			
		||||
    const int32_t m1 = MAX_MASK_VALUE - m0;
 | 
			
		||||
    const int32_t r = m0 * r0[i] + m1 * r1[i];
 | 
			
		||||
    acc += r * r;
 | 
			
		||||
  }
 | 
			
		||||
  return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) {
 | 
			
		||||
  for (int i = 0 ; i < 1000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    int16_t r0[MAX_SB_SQUARE];
 | 
			
		||||
    int16_t r1[MAX_SB_SQUARE];
 | 
			
		||||
    int16_t d[MAX_SB_SQUARE];
 | 
			
		||||
    uint8_t m[MAX_SB_SQUARE];
 | 
			
		||||
 | 
			
		||||
    randomise(r1, 2 * INT8_MIN, 2 * INT8_MAX + 1);
 | 
			
		||||
    randomise(d, 2 * INT8_MIN, 2 * INT8_MAX + 1);
 | 
			
		||||
    randomise(m, 0, MAX_MASK_VALUE + 1);
 | 
			
		||||
 | 
			
		||||
    const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
 | 
			
		||||
 | 
			
		||||
    for (int j = 0 ; j < N ; j++)
 | 
			
		||||
      r0[j] = r1[j] + d[j];
 | 
			
		||||
 | 
			
		||||
    uint64_t ref_res, tst_res;
 | 
			
		||||
 | 
			
		||||
    ref_res = sse_from_residuals(r0, r1, m, N);
 | 
			
		||||
    tst_res = vp10_wedge_sse_from_residuals(r1, d, m, N);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(ref_res, tst_res);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// vp10_wedge_sse_from_residuals - optimizations
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
typedef uint64_t (*FSSE)(const int16_t *r1,
 | 
			
		||||
                         const int16_t *d,
 | 
			
		||||
                         const uint8_t *m,
 | 
			
		||||
                         int N);
 | 
			
		||||
 | 
			
		||||
class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> {
 | 
			
		||||
 protected:
 | 
			
		||||
  void Common() {
 | 
			
		||||
    const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
 | 
			
		||||
 | 
			
		||||
    snapshot(r1);
 | 
			
		||||
    snapshot(d);
 | 
			
		||||
    snapshot(m);
 | 
			
		||||
 | 
			
		||||
    uint64_t ref_res, tst_res;
 | 
			
		||||
 | 
			
		||||
    ref_res = ref_func_(r1, d, m, N);
 | 
			
		||||
    ASM_REGISTER_STATE_CHECK(tst_res = tst_func_(r1, d, m, N));
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(ref_res, tst_res);
 | 
			
		||||
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(r1), r1));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(d), d));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(m), m));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Snapshot snapshot;
 | 
			
		||||
  Randomise randomise;
 | 
			
		||||
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, r1[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, d[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, uint8_t, m[MAX_SB_SQUARE]);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_P(WedgeUtilsSSEOptTest, RandomValues) {
 | 
			
		||||
  for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    randomise(r1, -int13_max, int13_max + 1);
 | 
			
		||||
    randomise(d, -int13_max, int13_max + 1);
 | 
			
		||||
    randomise(m, 0, 65);
 | 
			
		||||
 | 
			
		||||
    Common();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) {
 | 
			
		||||
  for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    if (randomise.uniform<bool>())
 | 
			
		||||
      arraySet(r1, int13_max);
 | 
			
		||||
    else
 | 
			
		||||
      arraySet(r1, -int13_max);
 | 
			
		||||
 | 
			
		||||
    if (randomise.uniform<bool>())
 | 
			
		||||
      arraySet(d, int13_max);
 | 
			
		||||
    else
 | 
			
		||||
      arraySet(d, -int13_max);
 | 
			
		||||
 | 
			
		||||
    arraySet(m, MAX_MASK_VALUE);
 | 
			
		||||
 | 
			
		||||
    Common();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if HAVE_SSE2
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(
 | 
			
		||||
    SSE2, WedgeUtilsSSEOptTest,
 | 
			
		||||
    ::testing::Values(
 | 
			
		||||
        make_tuple(&vp10_wedge_sse_from_residuals_c,
 | 
			
		||||
                   &vp10_wedge_sse_from_residuals_sse2)
 | 
			
		||||
    )
 | 
			
		||||
);
 | 
			
		||||
#endif  // HAVE_SSE2
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// vp10_wedge_sign_from_residuals
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
typedef int (*FSign)(const int16_t *ds,
 | 
			
		||||
                     const uint8_t *m,
 | 
			
		||||
                     int N,
 | 
			
		||||
                     int64_t limit);
 | 
			
		||||
 | 
			
		||||
class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> {
 | 
			
		||||
 protected:
 | 
			
		||||
  static const int maxSize = 8196;  // Size limited by SIMD implementation.
 | 
			
		||||
 | 
			
		||||
  void Common() {
 | 
			
		||||
    const int maxN = VPXMIN(maxSize, MAX_SB_SQUARE);
 | 
			
		||||
    const int N = 64 * randomise.uniform<uint32_t>(1, maxN/64);
 | 
			
		||||
 | 
			
		||||
    int64_t limit;
 | 
			
		||||
    limit = (int64_t)vpx_sum_squares_i16(r0, N);
 | 
			
		||||
    limit -= (int64_t)vpx_sum_squares_i16(r1, N);
 | 
			
		||||
    limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
 | 
			
		||||
 | 
			
		||||
    for (int i = 0 ; i < N ; i++)
 | 
			
		||||
      ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX);
 | 
			
		||||
 | 
			
		||||
    snapshot(r0);
 | 
			
		||||
    snapshot(r1);
 | 
			
		||||
    snapshot(ds);
 | 
			
		||||
    snapshot(m);
 | 
			
		||||
 | 
			
		||||
    int ref_res, tst_res;
 | 
			
		||||
 | 
			
		||||
    ref_res = ref_func_(ds, m, N, limit);
 | 
			
		||||
    ASM_REGISTER_STATE_CHECK(tst_res = tst_func_(ds, m, N, limit));
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(ref_res, tst_res);
 | 
			
		||||
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(r0), r0));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(r1), r1));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(ds), ds));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(m), m));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Snapshot snapshot;
 | 
			
		||||
  Randomise randomise;
 | 
			
		||||
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, r0[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, r1[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, ds[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, uint8_t, m[MAX_SB_SQUARE]);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_P(WedgeUtilsSignOptTest, RandomValues) {
 | 
			
		||||
  for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    randomise(r0, -int13_max, int13_max+1);
 | 
			
		||||
    randomise(r1, -int13_max, int13_max+1);
 | 
			
		||||
    randomise(m, 0, MAX_MASK_VALUE + 1);
 | 
			
		||||
 | 
			
		||||
    Common();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_P(WedgeUtilsSignOptTest, ExtremeValues) {
 | 
			
		||||
  for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    switch (randomise.uniform<int>(4)) {
 | 
			
		||||
    case 0:
 | 
			
		||||
      arraySet(r0, 0);
 | 
			
		||||
      arraySet(r1, int13_max);
 | 
			
		||||
      break;
 | 
			
		||||
    case 1:
 | 
			
		||||
      arraySet(r0, int13_max);
 | 
			
		||||
      arraySet(r1, 0);
 | 
			
		||||
      break;
 | 
			
		||||
    case 2:
 | 
			
		||||
      arraySet(r0, 0);
 | 
			
		||||
      arraySet(r1, -int13_max);
 | 
			
		||||
      break;
 | 
			
		||||
    default:
 | 
			
		||||
      arraySet(r0, -int13_max);
 | 
			
		||||
      arraySet(r1, 0);
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    arraySet(m, MAX_MASK_VALUE);
 | 
			
		||||
 | 
			
		||||
    Common();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if HAVE_SSE2
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(
 | 
			
		||||
    SSE2, WedgeUtilsSignOptTest,
 | 
			
		||||
    ::testing::Values(
 | 
			
		||||
        make_tuple(&vp10_wedge_sign_from_residuals_c,
 | 
			
		||||
                   &vp10_wedge_sign_from_residuals_sse2)
 | 
			
		||||
    )
 | 
			
		||||
);
 | 
			
		||||
#endif  // HAVE_SSE2
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// vp10_wedge_compute_delta_squares
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
typedef void (*FDS)(int16_t *d,
 | 
			
		||||
                    const int16_t *a,
 | 
			
		||||
                    const int16_t *b,
 | 
			
		||||
                    int N);
 | 
			
		||||
 | 
			
		||||
class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> {
 | 
			
		||||
 protected:
 | 
			
		||||
  void Common() {
 | 
			
		||||
    const int N = 64 * randomise.uniform<uint32_t>(1, MAX_SB_SQUARE/64);
 | 
			
		||||
 | 
			
		||||
    randomise(d_ref);
 | 
			
		||||
    randomise(d_tst);
 | 
			
		||||
 | 
			
		||||
    snapshot(a);
 | 
			
		||||
    snapshot(b);
 | 
			
		||||
 | 
			
		||||
    ref_func_(d_ref, a, b, N);
 | 
			
		||||
    ASM_REGISTER_STATE_CHECK(tst_func_(d_tst, a, b, N));
 | 
			
		||||
 | 
			
		||||
    ASSERT_TRUE(ArraysEqWithin(d_ref, d_tst, 0, N));
 | 
			
		||||
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(a), a));
 | 
			
		||||
    ASSERT_TRUE(ArraysEq(snapshot.get(b), b));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Snapshot snapshot;
 | 
			
		||||
  Randomise randomise;
 | 
			
		||||
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, a[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, b[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, d_ref[MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, int16_t, d_tst[MAX_SB_SQUARE]);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) {
 | 
			
		||||
  for (int i = 0 ; i < 10000 && !HasFatalFailure(); i++) {
 | 
			
		||||
    randomise(a);
 | 
			
		||||
    randomise(b, -INT16_MAX, INT16_MAX + 1);
 | 
			
		||||
 | 
			
		||||
    Common();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if HAVE_SSE2
 | 
			
		||||
INSTANTIATE_TEST_CASE_P(
 | 
			
		||||
    SSE2, WedgeUtilsDeltaSquaresOptTest,
 | 
			
		||||
    ::testing::Values(
 | 
			
		||||
        make_tuple(&vp10_wedge_compute_delta_squares_c,
 | 
			
		||||
                   &vp10_wedge_compute_delta_squares_sse2)
 | 
			
		||||
    )
 | 
			
		||||
);
 | 
			
		||||
#endif  // HAVE_SSE2
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}  // namespace
 | 
			
		||||
@@ -2440,7 +2440,6 @@ static void build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, int plane,
 | 
			
		||||
                                                 int wedge_offset_x,
 | 
			
		||||
                                                 int wedge_offset_y,
 | 
			
		||||
#endif  // CONFIG_SUPERTX
 | 
			
		||||
                                                 int mi_x, int mi_y,
 | 
			
		||||
                                                 uint8_t *ext_dst0,
 | 
			
		||||
                                                 int ext_dst_stride0,
 | 
			
		||||
                                                 uint8_t *ext_dst1,
 | 
			
		||||
@@ -2454,8 +2453,6 @@ static void build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, int plane,
 | 
			
		||||
  (void) block;
 | 
			
		||||
  (void) bw;
 | 
			
		||||
  (void) bh;
 | 
			
		||||
  (void) mi_x;
 | 
			
		||||
  (void) mi_y;
 | 
			
		||||
 | 
			
		||||
  if (is_compound
 | 
			
		||||
      && is_interinter_wedge_used(mbmi->sb_type)
 | 
			
		||||
@@ -2519,12 +2516,9 @@ static void build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, int plane,
 | 
			
		||||
void vp10_build_wedge_inter_predictor_from_buf(
 | 
			
		||||
    MACROBLOCKD *xd, BLOCK_SIZE bsize,
 | 
			
		||||
    int plane_from, int plane_to,
 | 
			
		||||
    int mi_row, int mi_col,
 | 
			
		||||
    uint8_t *ext_dst0[3], int ext_dst_stride0[3],
 | 
			
		||||
    uint8_t *ext_dst1[3], int ext_dst_stride1[3]) {
 | 
			
		||||
  int plane;
 | 
			
		||||
  const int mi_x = mi_col * MI_SIZE;
 | 
			
		||||
  const int mi_y = mi_row * MI_SIZE;
 | 
			
		||||
  for (plane = plane_from; plane <= plane_to; ++plane) {
 | 
			
		||||
    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
 | 
			
		||||
                                                        &xd->plane[plane]);
 | 
			
		||||
@@ -2543,7 +2537,6 @@ void vp10_build_wedge_inter_predictor_from_buf(
 | 
			
		||||
#if CONFIG_SUPERTX
 | 
			
		||||
                                               0, 0,
 | 
			
		||||
#endif
 | 
			
		||||
                                               mi_x, mi_y,
 | 
			
		||||
                                               ext_dst0[plane],
 | 
			
		||||
                                               ext_dst_stride0[plane],
 | 
			
		||||
                                               ext_dst1[plane],
 | 
			
		||||
@@ -2554,7 +2547,6 @@ void vp10_build_wedge_inter_predictor_from_buf(
 | 
			
		||||
#if CONFIG_SUPERTX
 | 
			
		||||
                                           0, 0,
 | 
			
		||||
#endif
 | 
			
		||||
                                           mi_x, mi_y,
 | 
			
		||||
                                           ext_dst0[plane],
 | 
			
		||||
                                           ext_dst_stride0[plane],
 | 
			
		||||
                                           ext_dst1[plane],
 | 
			
		||||
 
 | 
			
		||||
@@ -646,7 +646,6 @@ void vp10_build_inter_predictors_for_planes_single_buf(
 | 
			
		||||
void vp10_build_wedge_inter_predictor_from_buf(
 | 
			
		||||
    MACROBLOCKD *xd, BLOCK_SIZE bsize,
 | 
			
		||||
    int plane_from, int plane_to,
 | 
			
		||||
    int mi_row, int mi_col,
 | 
			
		||||
    uint8_t *ext_dst0[3], int ext_dst_stride0[3],
 | 
			
		||||
    uint8_t *ext_dst1[3], int ext_dst_stride1[3]);
 | 
			
		||||
#endif  // CONFIG_EXT_INTER
 | 
			
		||||
 
 | 
			
		||||
@@ -690,6 +690,15 @@ if (vpx_config("CONFIG_VP9_HIGHBITDEPTH") eq "yes") {
 | 
			
		||||
}
 | 
			
		||||
# End vp10_high encoder functions
 | 
			
		||||
 | 
			
		||||
if (vpx_config("CONFIG_EXT_INTER") eq "yes") {
 | 
			
		||||
  add_proto qw/uint64_t vp10_wedge_sse_from_residuals/, "const int16_t *r1, const int16_t *d, const uint8_t *m, int N";
 | 
			
		||||
  specialize qw/vp10_wedge_sse_from_residuals sse2/;
 | 
			
		||||
  add_proto qw/int vp10_wedge_sign_from_residuals/, "const int16_t *ds, const uint8_t *m, int N, int64_t limit";
 | 
			
		||||
  specialize qw/vp10_wedge_sign_from_residuals sse2/;
 | 
			
		||||
  add_proto qw/void vp10_wedge_compute_delta_squares/, "int16_t *d, const int16_t *a, const int16_t *b, int N";
 | 
			
		||||
  specialize qw/vp10_wedge_compute_delta_squares sse2/;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
# end encoder functions
 | 
			
		||||
1;
 | 
			
		||||
 
 | 
			
		||||
@@ -6587,8 +6587,8 @@ static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
 | 
			
		||||
static int estimate_wedge_sign(const VP10_COMP *cpi,
 | 
			
		||||
                               const MACROBLOCK *x,
 | 
			
		||||
                               const BLOCK_SIZE bsize,
 | 
			
		||||
                               uint8_t *pred0, int stride0,
 | 
			
		||||
                               uint8_t *pred1, int stride1) {
 | 
			
		||||
                               const uint8_t *pred0, int stride0,
 | 
			
		||||
                               const uint8_t *pred1, int stride1) {
 | 
			
		||||
  const struct macroblock_plane *const p = &x->plane[0];
 | 
			
		||||
  const uint8_t *src = p->src.buf;
 | 
			
		||||
  int src_stride = p->src.stride;
 | 
			
		||||
@@ -6754,6 +6754,195 @@ static INTERP_FILTER predict_interp_filter(const VP10_COMP *cpi,
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if CONFIG_EXT_INTER
 | 
			
		||||
// Choose the best wedge index and sign
 | 
			
		||||
static int64_t pick_wedge(const VP10_COMP *const cpi,
 | 
			
		||||
                          const MACROBLOCK *const x,
 | 
			
		||||
                          const BLOCK_SIZE bsize,
 | 
			
		||||
                          const uint8_t *const p0,
 | 
			
		||||
                          const uint8_t *const p1,
 | 
			
		||||
                          int *const best_wedge_sign,
 | 
			
		||||
                          int *const best_wedge_index) {
 | 
			
		||||
  const MACROBLOCKD *const xd = &x->e_mbd;
 | 
			
		||||
  const struct buf_2d *const src = &x->plane[0].src;
 | 
			
		||||
  const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
 | 
			
		||||
  const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
 | 
			
		||||
  const int N = bw * bh;
 | 
			
		||||
  int rate;
 | 
			
		||||
  int64_t dist;
 | 
			
		||||
  int64_t rd, best_rd = INT64_MAX;
 | 
			
		||||
  int wedge_index;
 | 
			
		||||
  int wedge_sign;
 | 
			
		||||
  int wedge_types = (1 << get_wedge_bits_lookup(bsize));
 | 
			
		||||
  const uint8_t *mask;
 | 
			
		||||
  uint64_t sse;
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
 | 
			
		||||
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
 | 
			
		||||
#else
 | 
			
		||||
  const int bd_round = 0;
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
 | 
			
		||||
  int16_t r0[MAX_SB_SQUARE];
 | 
			
		||||
  int16_t r1[MAX_SB_SQUARE];
 | 
			
		||||
  int16_t d10[MAX_SB_SQUARE];
 | 
			
		||||
  int16_t ds[MAX_SB_SQUARE];
 | 
			
		||||
 | 
			
		||||
  int64_t sign_limit;
 | 
			
		||||
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  if (hbd) {
 | 
			
		||||
    vpx_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
 | 
			
		||||
    vpx_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
 | 
			
		||||
    vpx_highbd_subtract_block(bh, bw, d10, bw,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p1), bw,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
 | 
			
		||||
  } else  // NOLINT
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  {
 | 
			
		||||
    vpx_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw);
 | 
			
		||||
    vpx_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
 | 
			
		||||
    vpx_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  sign_limit = ((int64_t)vpx_sum_squares_i16(r0, N)
 | 
			
		||||
                - (int64_t)vpx_sum_squares_i16(r1, N))
 | 
			
		||||
               * (1 << WEDGE_WEIGHT_BITS) / 2;
 | 
			
		||||
 | 
			
		||||
  vp10_wedge_compute_delta_squares(ds, r0, r1, N);
 | 
			
		||||
 | 
			
		||||
  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
 | 
			
		||||
    mask = vp10_get_soft_mask(wedge_index, 0, bsize, 0, 0);
 | 
			
		||||
    wedge_sign = vp10_wedge_sign_from_residuals(ds, mask, N, sign_limit);
 | 
			
		||||
 | 
			
		||||
    mask = vp10_get_soft_mask(wedge_index, wedge_sign, bsize, 0, 0);
 | 
			
		||||
    sse = vp10_wedge_sse_from_residuals(r1, d10, mask, N);
 | 
			
		||||
    sse = ROUNDZ_POWER_OF_TWO(sse, bd_round);
 | 
			
		||||
 | 
			
		||||
    model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
 | 
			
		||||
    rd =  RDCOST(x->rdmult, x->rddiv, rate, dist);
 | 
			
		||||
 | 
			
		||||
    if (rd < best_rd) {
 | 
			
		||||
      *best_wedge_index = wedge_index;
 | 
			
		||||
      *best_wedge_sign = wedge_sign;
 | 
			
		||||
      best_rd = rd;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return best_rd;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Choose the best wedge index the specified sign
 | 
			
		||||
static int64_t pick_wedge_fixed_sign(const VP10_COMP *const cpi,
 | 
			
		||||
                                     const MACROBLOCK *const x,
 | 
			
		||||
                                     const BLOCK_SIZE bsize,
 | 
			
		||||
                                     const uint8_t *const p0,
 | 
			
		||||
                                     const uint8_t *const p1,
 | 
			
		||||
                                     const int wedge_sign,
 | 
			
		||||
                                     int *const best_wedge_index) {
 | 
			
		||||
  const MACROBLOCKD *const xd = &x->e_mbd;
 | 
			
		||||
  const struct buf_2d *const src = &x->plane[0].src;
 | 
			
		||||
  const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
 | 
			
		||||
  const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
 | 
			
		||||
  const int N = bw * bh;
 | 
			
		||||
  int rate;
 | 
			
		||||
  int64_t dist;
 | 
			
		||||
  int64_t rd, best_rd = INT64_MAX;
 | 
			
		||||
  int wedge_index;
 | 
			
		||||
  int wedge_types = (1 << get_wedge_bits_lookup(bsize));
 | 
			
		||||
  const uint8_t *mask;
 | 
			
		||||
  uint64_t sse;
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
 | 
			
		||||
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
 | 
			
		||||
#else
 | 
			
		||||
  const int bd_round = 0;
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
 | 
			
		||||
  int16_t r1[MAX_SB_SQUARE];
 | 
			
		||||
  int16_t d10[MAX_SB_SQUARE];
 | 
			
		||||
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  if (hbd) {
 | 
			
		||||
    vpx_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
 | 
			
		||||
    vpx_highbd_subtract_block(bh, bw, d10, bw,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p1), bw,
 | 
			
		||||
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
 | 
			
		||||
  } else  // NOLINT
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  {
 | 
			
		||||
    vpx_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
 | 
			
		||||
    vpx_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
 | 
			
		||||
    mask = vp10_get_soft_mask(wedge_index, wedge_sign, bsize, 0, 0);
 | 
			
		||||
    sse = vp10_wedge_sse_from_residuals(r1, d10, mask, N);
 | 
			
		||||
    sse = ROUNDZ_POWER_OF_TWO(sse, bd_round);
 | 
			
		||||
 | 
			
		||||
    model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
 | 
			
		||||
    rd =  RDCOST(x->rdmult, x->rddiv, rate, dist);
 | 
			
		||||
 | 
			
		||||
    if (rd < best_rd) {
 | 
			
		||||
      *best_wedge_index = wedge_index;
 | 
			
		||||
      best_rd = rd;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return best_rd;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int64_t pick_interinter_wedge(const VP10_COMP *const cpi,
 | 
			
		||||
                                     const MACROBLOCK *const x,
 | 
			
		||||
                                     const BLOCK_SIZE bsize,
 | 
			
		||||
                                     const uint8_t *const p0,
 | 
			
		||||
                                     const uint8_t *const p1) {
 | 
			
		||||
  const MACROBLOCKD *const xd = &x->e_mbd;
 | 
			
		||||
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
 | 
			
		||||
  const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
 | 
			
		||||
 | 
			
		||||
  int64_t rd;
 | 
			
		||||
  int wedge_index = -1;
 | 
			
		||||
  int wedge_sign = 0;
 | 
			
		||||
 | 
			
		||||
  assert(is_interinter_wedge_used(bsize));
 | 
			
		||||
 | 
			
		||||
  if (cpi->sf.fast_wedge_sign_estimate) {
 | 
			
		||||
    wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
 | 
			
		||||
    rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index);
 | 
			
		||||
  } else {
 | 
			
		||||
    rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  mbmi->interinter_wedge_sign = wedge_sign;
 | 
			
		||||
  mbmi->interinter_wedge_index = wedge_index;
 | 
			
		||||
  return rd;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static int64_t pick_interintra_wedge(const VP10_COMP *const cpi,
 | 
			
		||||
                                     const MACROBLOCK *const x,
 | 
			
		||||
                                     const BLOCK_SIZE bsize,
 | 
			
		||||
                                     const uint8_t *const p0,
 | 
			
		||||
                                     const uint8_t *const p1) {
 | 
			
		||||
  const MACROBLOCKD *const xd = &x->e_mbd;
 | 
			
		||||
  MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
 | 
			
		||||
 | 
			
		||||
  int64_t rd;
 | 
			
		||||
  int wedge_index = -1;
 | 
			
		||||
 | 
			
		||||
  assert(is_interintra_wedge_used(bsize));
 | 
			
		||||
 | 
			
		||||
  rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index);
 | 
			
		||||
 | 
			
		||||
  mbmi->interintra_wedge_sign = 0;
 | 
			
		||||
  mbmi->interintra_wedge_index = wedge_index;
 | 
			
		||||
  return rd;
 | 
			
		||||
}
 | 
			
		||||
#endif  // CONFIG_EXT_INTER
 | 
			
		||||
 | 
			
		||||
static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
                                 BLOCK_SIZE bsize,
 | 
			
		||||
                                 int *rate2, int64_t *distortion,
 | 
			
		||||
@@ -6793,6 +6982,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
  int_mv cur_mv[2];
 | 
			
		||||
  int rate_mv = 0;
 | 
			
		||||
#if CONFIG_EXT_INTER
 | 
			
		||||
  const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
 | 
			
		||||
  int mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
 | 
			
		||||
  int_mv single_newmv[MAX_REF_FRAMES];
 | 
			
		||||
  const unsigned int *const interintra_mode_cost =
 | 
			
		||||
@@ -6803,11 +6993,11 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
#endif
 | 
			
		||||
#endif  // CONFIG_EXT_INTER
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
			
		||||
  uint8_t *tmp_buf;
 | 
			
		||||
  DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
			
		||||
#else
 | 
			
		||||
  DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
			
		||||
  DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  uint8_t *tmp_buf;
 | 
			
		||||
 | 
			
		||||
#if CONFIG_OBMC
 | 
			
		||||
  int allow_obmc =
 | 
			
		||||
@@ -6881,12 +7071,11 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
			
		||||
    tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
 | 
			
		||||
  } else {
 | 
			
		||||
    tmp_buf = (uint8_t *)tmp_buf16;
 | 
			
		||||
  }
 | 
			
		||||
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
 | 
			
		||||
    tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_);
 | 
			
		||||
  else
 | 
			
		||||
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
    tmp_buf = tmp_buf_;
 | 
			
		||||
 | 
			
		||||
  if (is_comp_pred) {
 | 
			
		||||
    if (frame_mv[refs[0]].as_int == INVALID_MV ||
 | 
			
		||||
@@ -7299,13 +7488,10 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
#endif  // CONFIG_OBMC
 | 
			
		||||
 | 
			
		||||
  if (is_comp_pred && is_interinter_wedge_used(bsize)) {
 | 
			
		||||
    int wedge_index, best_wedge_index = WEDGE_NONE;
 | 
			
		||||
    int wedge_sign, best_wedge_sign = 0;
 | 
			
		||||
    int rate_sum, rs;
 | 
			
		||||
    int64_t dist_sum;
 | 
			
		||||
    int64_t best_rd_nowedge = INT64_MAX;
 | 
			
		||||
    int64_t best_rd_wedge = INT64_MAX;
 | 
			
		||||
    int wedge_types;
 | 
			
		||||
    int tmp_skip_txfm_sb;
 | 
			
		||||
    int64_t tmp_skip_sse_sb;
 | 
			
		||||
 | 
			
		||||
@@ -7323,21 +7509,15 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
    // Disbale wedge search if source variance is small
 | 
			
		||||
    if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
 | 
			
		||||
        best_rd_nowedge / 3 < ref_best_rd) {
 | 
			
		||||
      uint8_t pred0[2 * MAX_SB_SQUARE * 3];
 | 
			
		||||
      uint8_t pred1[2 * MAX_SB_SQUARE * 3];
 | 
			
		||||
      uint8_t *preds0[3] = {pred0,
 | 
			
		||||
        pred0 + 2 * MAX_SB_SQUARE,
 | 
			
		||||
        pred0 + 4 * MAX_SB_SQUARE};
 | 
			
		||||
      uint8_t *preds1[3] = {pred1,
 | 
			
		||||
        pred1 + 2 * MAX_SB_SQUARE,
 | 
			
		||||
        pred1 + 4 * MAX_SB_SQUARE};
 | 
			
		||||
      int strides[3] = {MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE};
 | 
			
		||||
      int est_wedge_sign;
 | 
			
		||||
      uint8_t pred0[2 * MAX_SB_SQUARE];
 | 
			
		||||
      uint8_t pred1[2 * MAX_SB_SQUARE];
 | 
			
		||||
      uint8_t *preds0[1] = {pred0};
 | 
			
		||||
      uint8_t *preds1[1] = {pred1};
 | 
			
		||||
      int strides[1] = {bw};
 | 
			
		||||
 | 
			
		||||
      mbmi->use_wedge_interinter = 1;
 | 
			
		||||
      rs = vp10_cost_literal(get_interinter_wedge_bits(bsize)) +
 | 
			
		||||
          vp10_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1);
 | 
			
		||||
      wedge_types = (1 << get_wedge_bits_lookup(bsize));
 | 
			
		||||
 | 
			
		||||
      vp10_build_inter_predictors_for_planes_single_buf(
 | 
			
		||||
          xd, bsize, 0, 0,  mi_row, mi_col, 0, preds0, strides);
 | 
			
		||||
@@ -7345,49 +7525,8 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
          xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides);
 | 
			
		||||
 | 
			
		||||
      // Choose the best wedge
 | 
			
		||||
      if (cpi->sf.fast_wedge_sign_estimate) {
 | 
			
		||||
        est_wedge_sign = estimate_wedge_sign(
 | 
			
		||||
            cpi, x, bsize, pred0, MAX_SB_SIZE, pred1, MAX_SB_SIZE);
 | 
			
		||||
        best_wedge_sign = mbmi->interinter_wedge_sign = est_wedge_sign;
 | 
			
		||||
        for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
 | 
			
		||||
          mbmi->interinter_wedge_index = wedge_index;
 | 
			
		||||
          vp10_build_wedge_inter_predictor_from_buf(xd, bsize,
 | 
			
		||||
                                                    0, 0, mi_row, mi_col,
 | 
			
		||||
                                                    preds0, strides,
 | 
			
		||||
                                                    preds1, strides);
 | 
			
		||||
          model_rd_for_sb(cpi, bsize, x, xd, 0, 0,
 | 
			
		||||
                          &rate_sum, &dist_sum,
 | 
			
		||||
                          &tmp_skip_txfm_sb, &tmp_skip_sse_sb);
 | 
			
		||||
          rd = RDCOST(x->rdmult, x->rddiv, rs + rate_mv + rate_sum, dist_sum);
 | 
			
		||||
          if (rd < best_rd_wedge) {
 | 
			
		||||
            best_wedge_index = wedge_index;
 | 
			
		||||
            best_rd_wedge = rd;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      } else {
 | 
			
		||||
        for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
 | 
			
		||||
          for (wedge_sign = 0; wedge_sign < 2; ++wedge_sign) {
 | 
			
		||||
            mbmi->interinter_wedge_index = wedge_index;
 | 
			
		||||
            mbmi->interinter_wedge_sign = wedge_sign;
 | 
			
		||||
            vp10_build_wedge_inter_predictor_from_buf(xd, bsize,
 | 
			
		||||
                                                      0, 0, mi_row, mi_col,
 | 
			
		||||
                                                      preds0, strides,
 | 
			
		||||
                                                      preds1, strides);
 | 
			
		||||
            model_rd_for_sb(cpi, bsize, x, xd, 0, 0,
 | 
			
		||||
                            &rate_sum, &dist_sum,
 | 
			
		||||
                            &tmp_skip_txfm_sb, &tmp_skip_sse_sb);
 | 
			
		||||
            rd = RDCOST(x->rdmult, x->rddiv,
 | 
			
		||||
                        rs + rate_mv + rate_sum, dist_sum);
 | 
			
		||||
            if (rd < best_rd_wedge) {
 | 
			
		||||
              best_wedge_index = wedge_index;
 | 
			
		||||
              best_wedge_sign = wedge_sign;
 | 
			
		||||
              best_rd_wedge = rd;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      mbmi->interinter_wedge_index = best_wedge_index;
 | 
			
		||||
      mbmi->interinter_wedge_sign = best_wedge_sign;
 | 
			
		||||
      best_rd_wedge = pick_interinter_wedge(cpi, x, bsize, pred0, pred1);
 | 
			
		||||
      best_rd_wedge += RDCOST(x->rdmult, x->rddiv, rs + rate_mv, 0);
 | 
			
		||||
 | 
			
		||||
      if (have_newmv_in_inter_mode(this_mode)) {
 | 
			
		||||
        int_mv tmp_mv[2];
 | 
			
		||||
@@ -7432,7 +7571,6 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
          mbmi->mv[1].as_int = cur_mv[1].as_int;
 | 
			
		||||
          tmp_rate_mv = rate_mv;
 | 
			
		||||
          vp10_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0,
 | 
			
		||||
                                                    mi_row, mi_col,
 | 
			
		||||
                                                    preds0, strides,
 | 
			
		||||
                                                    preds1, strides);
 | 
			
		||||
        }
 | 
			
		||||
@@ -7447,8 +7585,6 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
 | 
			
		||||
        if (best_rd_wedge < best_rd_nowedge) {
 | 
			
		||||
          mbmi->use_wedge_interinter = 1;
 | 
			
		||||
          mbmi->interinter_wedge_index = best_wedge_index;
 | 
			
		||||
          mbmi->interinter_wedge_sign = best_wedge_sign;
 | 
			
		||||
          xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
 | 
			
		||||
          xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
 | 
			
		||||
          *rate2 += tmp_rate_mv - rate_mv;
 | 
			
		||||
@@ -7462,7 +7598,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
        }
 | 
			
		||||
      } else {
 | 
			
		||||
        vp10_build_wedge_inter_predictor_from_buf(xd, bsize,
 | 
			
		||||
                                                  0, 0, mi_row, mi_col,
 | 
			
		||||
                                                  0, 0,
 | 
			
		||||
                                                  preds0, strides,
 | 
			
		||||
                                                  preds1, strides);
 | 
			
		||||
        vp10_subtract_plane(x, bsize, 0);
 | 
			
		||||
@@ -7474,8 +7610,6 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
          best_rd_wedge = rd;
 | 
			
		||||
        if (best_rd_wedge < best_rd_nowedge) {
 | 
			
		||||
          mbmi->use_wedge_interinter = 1;
 | 
			
		||||
          mbmi->interinter_wedge_index = best_wedge_index;
 | 
			
		||||
          mbmi->interinter_wedge_sign = best_wedge_sign;
 | 
			
		||||
        } else {
 | 
			
		||||
          mbmi->use_wedge_interinter = 0;
 | 
			
		||||
        }
 | 
			
		||||
@@ -7498,13 +7632,11 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if (is_comp_interintra_pred) {
 | 
			
		||||
    const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
 | 
			
		||||
    INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
 | 
			
		||||
    int64_t best_interintra_rd = INT64_MAX;
 | 
			
		||||
    int rmode, rate_sum;
 | 
			
		||||
    int64_t dist_sum;
 | 
			
		||||
    int j;
 | 
			
		||||
    int wedge_types, wedge_index, best_wedge_index = -1;
 | 
			
		||||
    int64_t best_interintra_rd_nowedge = INT64_MAX;
 | 
			
		||||
    int64_t best_interintra_rd_wedge = INT64_MAX;
 | 
			
		||||
    int rwedge;
 | 
			
		||||
@@ -7512,8 +7644,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
    int tmp_rate_mv = 0;
 | 
			
		||||
    int tmp_skip_txfm_sb;
 | 
			
		||||
    int64_t tmp_skip_sse_sb;
 | 
			
		||||
    DECLARE_ALIGNED(16, uint8_t,
 | 
			
		||||
                    intrapred_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
 | 
			
		||||
    DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]);
 | 
			
		||||
    uint8_t *intrapred;
 | 
			
		||||
 | 
			
		||||
#if CONFIG_VP9_HIGHBITDEPTH
 | 
			
		||||
@@ -7526,7 +7657,7 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
    mbmi->ref_frame[1] = NONE;
 | 
			
		||||
    for (j = 0; j < MAX_MB_PLANE; j++) {
 | 
			
		||||
      xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE;
 | 
			
		||||
      xd->plane[j].dst.stride = MAX_SB_SIZE;
 | 
			
		||||
      xd->plane[j].dst.stride = bw;
 | 
			
		||||
    }
 | 
			
		||||
    vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
 | 
			
		||||
    restore_dst_buf(xd, orig_dst, orig_dst_stride);
 | 
			
		||||
@@ -7537,9 +7668,9 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
      mbmi->interintra_mode = (INTERINTRA_MODE)j;
 | 
			
		||||
      rmode = interintra_mode_cost[mbmi->interintra_mode];
 | 
			
		||||
      vp10_build_intra_predictors_for_interintra(
 | 
			
		||||
          xd, bsize, 0, intrapred, MAX_SB_SIZE);
 | 
			
		||||
      vp10_combine_interintra(xd, bsize, 0, tmp_buf, MAX_SB_SIZE,
 | 
			
		||||
                              intrapred, MAX_SB_SIZE);
 | 
			
		||||
          xd, bsize, 0, intrapred, bw);
 | 
			
		||||
      vp10_combine_interintra(xd, bsize, 0, tmp_buf, bw,
 | 
			
		||||
                              intrapred, bw);
 | 
			
		||||
      model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
 | 
			
		||||
                      &tmp_skip_txfm_sb, &tmp_skip_sse_sb);
 | 
			
		||||
      rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum);
 | 
			
		||||
@@ -7551,9 +7682,9 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
    mbmi->interintra_mode = best_interintra_mode;
 | 
			
		||||
    rmode = interintra_mode_cost[mbmi->interintra_mode];
 | 
			
		||||
    vp10_build_intra_predictors_for_interintra(
 | 
			
		||||
        xd, bsize, 0, intrapred, MAX_SB_SIZE);
 | 
			
		||||
    vp10_combine_interintra(xd, bsize, 0, tmp_buf, MAX_SB_SIZE,
 | 
			
		||||
                            intrapred, MAX_SB_SIZE);
 | 
			
		||||
        xd, bsize, 0, intrapred, bw);
 | 
			
		||||
    vp10_combine_interintra(xd, bsize, 0, tmp_buf, bw,
 | 
			
		||||
                            intrapred, bw);
 | 
			
		||||
    vp10_subtract_plane(x, bsize, 0);
 | 
			
		||||
    rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
 | 
			
		||||
                             &tmp_skip_txfm_sb, &tmp_skip_sse_sb,
 | 
			
		||||
@@ -7576,32 +7707,20 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
      // Disbale wedge search if source variance is small
 | 
			
		||||
      if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
 | 
			
		||||
        mbmi->use_wedge_interintra = 1;
 | 
			
		||||
        wedge_types = (1 << get_wedge_bits_lookup(bsize));
 | 
			
		||||
 | 
			
		||||
        rwedge = vp10_cost_literal(get_interintra_wedge_bits(bsize)) +
 | 
			
		||||
            vp10_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1);
 | 
			
		||||
        for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
 | 
			
		||||
          mbmi->interintra_wedge_index = wedge_index;
 | 
			
		||||
          mbmi->interintra_wedge_sign = 0;
 | 
			
		||||
          vp10_combine_interintra(xd, bsize, 0,
 | 
			
		||||
                                  tmp_buf, MAX_SB_SIZE,
 | 
			
		||||
                                  intrapred, MAX_SB_SIZE);
 | 
			
		||||
          model_rd_for_sb(cpi, bsize, x, xd, 0, 0,
 | 
			
		||||
                          &rate_sum, &dist_sum,
 | 
			
		||||
                          &tmp_skip_txfm_sb, &tmp_skip_sse_sb);
 | 
			
		||||
          rd = RDCOST(x->rdmult, x->rddiv,
 | 
			
		||||
                      rmode + rate_mv + rwedge + rate_sum, dist_sum);
 | 
			
		||||
          if (rd < best_interintra_rd_wedge) {
 | 
			
		||||
            best_interintra_rd_wedge = rd;
 | 
			
		||||
            best_wedge_index = wedge_index;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        best_interintra_rd_wedge = pick_interintra_wedge(cpi, x, bsize,
 | 
			
		||||
                                                         intrapred_, tmp_buf_);
 | 
			
		||||
 | 
			
		||||
        best_interintra_rd_wedge += RDCOST(x->rdmult, x->rddiv,
 | 
			
		||||
                                           rmode + rate_mv + rwedge, 0);
 | 
			
		||||
        // Refine motion vector.
 | 
			
		||||
        if (have_newmv_in_inter_mode(this_mode) && best_wedge_index > -1) {
 | 
			
		||||
        if (have_newmv_in_inter_mode(this_mode)) {
 | 
			
		||||
          // get negative of mask
 | 
			
		||||
          const uint8_t* mask = vp10_get_soft_mask(
 | 
			
		||||
              best_wedge_index, 1, bsize, 0, 0);
 | 
			
		||||
          mbmi->interintra_wedge_index = best_wedge_index;
 | 
			
		||||
          mbmi->interintra_wedge_sign = 0;
 | 
			
		||||
              mbmi->interintra_wedge_index, 1, bsize, 0, 0);
 | 
			
		||||
          do_masked_motion_search(cpi, x, mask, bw, bsize,
 | 
			
		||||
                                  mi_row, mi_col, &tmp_mv, &tmp_rate_mv,
 | 
			
		||||
                                  0, mv_idx);
 | 
			
		||||
@@ -7618,13 +7737,11 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
            tmp_rate_mv = rate_mv;
 | 
			
		||||
          }
 | 
			
		||||
        } else {
 | 
			
		||||
          mbmi->interintra_wedge_index = best_wedge_index;
 | 
			
		||||
          mbmi->interintra_wedge_sign = 0;
 | 
			
		||||
          tmp_mv.as_int = cur_mv[0].as_int;
 | 
			
		||||
          tmp_rate_mv = rate_mv;
 | 
			
		||||
          vp10_combine_interintra(xd, bsize, 0,
 | 
			
		||||
                                  tmp_buf, MAX_SB_SIZE,
 | 
			
		||||
                                  intrapred, MAX_SB_SIZE);
 | 
			
		||||
                                  tmp_buf, bw,
 | 
			
		||||
                                  intrapred, bw);
 | 
			
		||||
        }
 | 
			
		||||
        // Evaluate closer to true rd
 | 
			
		||||
        vp10_subtract_plane(x, bsize, 0);
 | 
			
		||||
@@ -7637,8 +7754,6 @@ static int64_t handle_inter_mode(VP10_COMP *cpi, MACROBLOCK *x,
 | 
			
		||||
        best_interintra_rd_wedge = rd;
 | 
			
		||||
        if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
 | 
			
		||||
          mbmi->use_wedge_interintra = 1;
 | 
			
		||||
          mbmi->interintra_wedge_index = best_wedge_index;
 | 
			
		||||
          mbmi->interintra_wedge_sign = 0;
 | 
			
		||||
          best_interintra_rd = best_interintra_rd_wedge;
 | 
			
		||||
          mbmi->mv[0].as_int = tmp_mv.as_int;
 | 
			
		||||
          *rate2 += tmp_rate_mv - rate_mv;
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										135
									
								
								vp10/encoder/wedge_utils.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								vp10/encoder/wedge_utils.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,135 @@
 | 
			
		||||
/*
 | 
			
		||||
 *  Copyright (c) 2016 The WebM project authors. All Rights Reserved.
 | 
			
		||||
 *
 | 
			
		||||
 *  Use of this source code is governed by a BSD-style license
 | 
			
		||||
 *  that can be found in the LICENSE file in the root of the source
 | 
			
		||||
 *  tree. An additional intellectual property rights grant can be found
 | 
			
		||||
 *  in the file PATENTS.  All contributing project authors may
 | 
			
		||||
 *  be found in the AUTHORS file in the root of the source tree.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <assert.h>
 | 
			
		||||
 | 
			
		||||
#include "vpx/vpx_integer.h"
 | 
			
		||||
 | 
			
		||||
#include "vpx_ports/mem.h"
 | 
			
		||||
 | 
			
		||||
#include "vpx_dsp/vpx_dsp_common.h"
 | 
			
		||||
 | 
			
		||||
#include "vp10/common/reconinter.h"
 | 
			
		||||
 | 
			
		||||
#define MAX_MASK_VALUE  (1 << WEDGE_WEIGHT_BITS)
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Computes SSE of a compound predictor constructed from 2 fundamental
 | 
			
		||||
 * predictors p0 and p1 using blending with mask.
 | 
			
		||||
 *
 | 
			
		||||
 * r1:  Residuals of p1.
 | 
			
		||||
 *      (source - p1)
 | 
			
		||||
 * d:   Difference of p1 and p0.
 | 
			
		||||
 *      (p1 - p0)
 | 
			
		||||
 * m:   The blending mask
 | 
			
		||||
 * N:   Number of pixels
 | 
			
		||||
 *
 | 
			
		||||
 * 'r1', 'd', and 'm' are contiguous.
 | 
			
		||||
 *
 | 
			
		||||
 * Computes:
 | 
			
		||||
 *  Sum((MAX_MASK_VALUE*r1 + mask*d)**2), which is equivalent to:
 | 
			
		||||
 *  Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2),
 | 
			
		||||
 *    where r0 is (source - p0), and r1 is (source - p1), which is in turn
 | 
			
		||||
 *    is equivalent to:
 | 
			
		||||
 *  Sum((source*MAX_MASK_VALUE - (mask*p0 + (MAX_MASK_VALUE-mask)*p1))**2),
 | 
			
		||||
 *    which is the SSE of the residuals of the compound predictor scaled up by
 | 
			
		||||
 *    MAX_MASK_VALUE**2.
 | 
			
		||||
 *
 | 
			
		||||
 * Note that we clamp the partial term in the loop to 16 bits signed. This is
 | 
			
		||||
 * to facilitate equivalent SIMD implementation. It should have no effect if
 | 
			
		||||
 * residuals are within 16 - WEDGE_WEIGHT_BITS (=10) signed, which always
 | 
			
		||||
 * holds for 8 bit input, and on real input, it should hold practically always,
 | 
			
		||||
 * as residuals are expected to be small.
 | 
			
		||||
 */
 | 
			
		||||
uint64_t vp10_wedge_sse_from_residuals_c(const int16_t *r1,
 | 
			
		||||
                                         const int16_t *d,
 | 
			
		||||
                                         const uint8_t *m,
 | 
			
		||||
                                         int N) {
 | 
			
		||||
  uint64_t csse = 0;
 | 
			
		||||
  int i;
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
  for (i = 0 ; i < N ; i++) {
 | 
			
		||||
    int32_t t = MAX_MASK_VALUE*r1[i] + m[i]*d[i];
 | 
			
		||||
    t = clamp(t, INT16_MIN, INT16_MAX);
 | 
			
		||||
    csse += t*t;
 | 
			
		||||
  }
 | 
			
		||||
  return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Choose the mask sign for a compound predictor.
 | 
			
		||||
 *
 | 
			
		||||
 * ds:    Difference of the squares of the residuals.
 | 
			
		||||
 *        r0**2 - r1**2
 | 
			
		||||
 * m:     The blending mask
 | 
			
		||||
 * N:     Number of pixels
 | 
			
		||||
 * limit: Pre-computed threshold value.
 | 
			
		||||
 *        MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2))
 | 
			
		||||
 *
 | 
			
		||||
 * 'ds' and 'm' are contiguous.
 | 
			
		||||
 *
 | 
			
		||||
 * Returns true if the negated mask has lower SSE compared to the positive
 | 
			
		||||
 * mask. Computation is based on:
 | 
			
		||||
 *  Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2)
 | 
			
		||||
 *                                     >
 | 
			
		||||
 *                                Sum(((MAX_MASK_VALUE-mask)*r0 + mask*r1)**2)
 | 
			
		||||
 *
 | 
			
		||||
 *  which can be simplified to:
 | 
			
		||||
 *
 | 
			
		||||
 *  Sum(mask*(r0**2 - r1**2)) > MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2))
 | 
			
		||||
 *
 | 
			
		||||
 *  The right hand side does not depend on the mask, and needs to be passed as
 | 
			
		||||
 *  the 'limit' parameter.
 | 
			
		||||
 *
 | 
			
		||||
 *  After pre-computing (r0**2 - r1**2), which is passed in as 'ds', the left
 | 
			
		||||
 *  hand side is simply a scalar product between an int16_t and uint8_t vector.
 | 
			
		||||
 *
 | 
			
		||||
 *  Note that for efficiency, ds is stored on 16 bits. Real input residuals
 | 
			
		||||
 *  being small, this should not cause a noticeable issue.
 | 
			
		||||
 */
 | 
			
		||||
int vp10_wedge_sign_from_residuals_c(const int16_t *ds,
 | 
			
		||||
                                     const uint8_t *m,
 | 
			
		||||
                                     int N,
 | 
			
		||||
                                     int64_t limit) {
 | 
			
		||||
  int64_t acc = 0;
 | 
			
		||||
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    acc += *ds++ * *m++;
 | 
			
		||||
  } while (--N);
 | 
			
		||||
 | 
			
		||||
  return acc > limit;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Compute the element-wise difference of the squares of 2 arrays.
 | 
			
		||||
 *
 | 
			
		||||
 * d: Difference of the squares of the inputs: a**2 - b**2
 | 
			
		||||
 * a: First input array
 | 
			
		||||
 * b: Second input array
 | 
			
		||||
 * N: Number of elements
 | 
			
		||||
 *
 | 
			
		||||
 * 'd', 'a', and 'b' are contiguous.
 | 
			
		||||
 *
 | 
			
		||||
 * The result is saturated to signed 16 bits.
 | 
			
		||||
 */
 | 
			
		||||
void vp10_wedge_compute_delta_squares_c(int16_t *d,
 | 
			
		||||
                                        const int16_t *a,
 | 
			
		||||
                                        const int16_t *b,
 | 
			
		||||
                                        int N) {
 | 
			
		||||
  int i;
 | 
			
		||||
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
 | 
			
		||||
  for (i = 0 ; i < N ; i++)
 | 
			
		||||
    d[i] = clamp(a[i]*a[i] - b[i]*b[i], INT16_MIN, INT16_MAX);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										260
									
								
								vp10/encoder/x86/wedge_utils_sse2.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										260
									
								
								vp10/encoder/x86/wedge_utils_sse2.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,260 @@
 | 
			
		||||
/*
 | 
			
		||||
 *  Copyright (c) 2016 The WebM project authors. All Rights Reserved.
 | 
			
		||||
 *
 | 
			
		||||
 *  Use of this source code is governed by a BSD-style license
 | 
			
		||||
 *  that can be found in the LICENSE file in the root of the source
 | 
			
		||||
 *  tree. An additional intellectual property rights grant can be found
 | 
			
		||||
 *  in the file PATENTS.  All contributing project authors may
 | 
			
		||||
 *  be found in the AUTHORS file in the root of the source tree.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <assert.h>
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
 | 
			
		||||
#include "vpx_dsp/x86/synonyms.h"
 | 
			
		||||
 | 
			
		||||
#include "vpx/vpx_integer.h"
 | 
			
		||||
 | 
			
		||||
#include "vp10/common/reconinter.h"
 | 
			
		||||
 | 
			
		||||
#define MAX_MASK_VALUE  (1 << WEDGE_WEIGHT_BITS)
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * See vp10_wedge_sse_from_residuals_c
 | 
			
		||||
 */
 | 
			
		||||
uint64_t vp10_wedge_sse_from_residuals_sse2(const int16_t *r1,
 | 
			
		||||
                                            const int16_t *d,
 | 
			
		||||
                                            const uint8_t *m,
 | 
			
		||||
                                            int N) {
 | 
			
		||||
  int n = -N;
 | 
			
		||||
  int n8 = n + 8;
 | 
			
		||||
 | 
			
		||||
  uint64_t csse;
 | 
			
		||||
 | 
			
		||||
  const __m128i v_mask_max_w = _mm_set1_epi16(MAX_MASK_VALUE);
 | 
			
		||||
  const __m128i v_zext_q = _mm_set_epi32(0, 0xffffffff, 0, 0xffffffff);
 | 
			
		||||
 | 
			
		||||
  __m128i v_acc0_q = _mm_setzero_si128();
 | 
			
		||||
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
 | 
			
		||||
  r1 += N;
 | 
			
		||||
  d += N;
 | 
			
		||||
  m += N;
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    const __m128i v_r0_w = xx_load_128(r1 + n);
 | 
			
		||||
    const __m128i v_r1_w = xx_load_128(r1 + n8);
 | 
			
		||||
    const __m128i v_d0_w = xx_load_128(d + n);
 | 
			
		||||
    const __m128i v_d1_w = xx_load_128(d + n8);
 | 
			
		||||
    const __m128i v_m01_b = xx_load_128(m + n);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_rd0l_w = _mm_unpacklo_epi16(v_d0_w, v_r0_w);
 | 
			
		||||
    const __m128i v_rd0h_w = _mm_unpackhi_epi16(v_d0_w, v_r0_w);
 | 
			
		||||
    const __m128i v_rd1l_w = _mm_unpacklo_epi16(v_d1_w, v_r1_w);
 | 
			
		||||
    const __m128i v_rd1h_w = _mm_unpackhi_epi16(v_d1_w, v_r1_w);
 | 
			
		||||
    const __m128i v_m0_w = _mm_unpacklo_epi8(v_m01_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m1_w = _mm_unpackhi_epi8(v_m01_b, _mm_setzero_si128());
 | 
			
		||||
 | 
			
		||||
    const __m128i v_m0l_w = _mm_unpacklo_epi16(v_m0_w, v_mask_max_w);
 | 
			
		||||
    const __m128i v_m0h_w = _mm_unpackhi_epi16(v_m0_w, v_mask_max_w);
 | 
			
		||||
    const __m128i v_m1l_w = _mm_unpacklo_epi16(v_m1_w, v_mask_max_w);
 | 
			
		||||
    const __m128i v_m1h_w = _mm_unpackhi_epi16(v_m1_w, v_mask_max_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_t0l_d = _mm_madd_epi16(v_rd0l_w, v_m0l_w);
 | 
			
		||||
    const __m128i v_t0h_d = _mm_madd_epi16(v_rd0h_w, v_m0h_w);
 | 
			
		||||
    const __m128i v_t1l_d = _mm_madd_epi16(v_rd1l_w, v_m1l_w);
 | 
			
		||||
    const __m128i v_t1h_d = _mm_madd_epi16(v_rd1h_w, v_m1h_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_t0_w = _mm_packs_epi32(v_t0l_d, v_t0h_d);
 | 
			
		||||
    const __m128i v_t1_w = _mm_packs_epi32(v_t1l_d, v_t1h_d);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_sq0_d = _mm_madd_epi16(v_t0_w, v_t0_w);
 | 
			
		||||
    const __m128i v_sq1_d = _mm_madd_epi16(v_t1_w, v_t1_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_sum0_q = _mm_add_epi64(_mm_and_si128(v_sq0_d, v_zext_q),
 | 
			
		||||
                                           _mm_srli_epi64(v_sq0_d, 32));
 | 
			
		||||
    const __m128i v_sum1_q = _mm_add_epi64(_mm_and_si128(v_sq1_d, v_zext_q),
 | 
			
		||||
                                           _mm_srli_epi64(v_sq1_d, 32));
 | 
			
		||||
 | 
			
		||||
    v_acc0_q = _mm_add_epi64(v_acc0_q, v_sum0_q);
 | 
			
		||||
    v_acc0_q = _mm_add_epi64(v_acc0_q, v_sum1_q);
 | 
			
		||||
 | 
			
		||||
    n8 += 16;
 | 
			
		||||
    n += 16;
 | 
			
		||||
  } while (n);
 | 
			
		||||
 | 
			
		||||
  v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8));
 | 
			
		||||
 | 
			
		||||
#if ARCH_X86_64
 | 
			
		||||
  csse = (uint64_t)_mm_cvtsi128_si64(v_acc0_q);
 | 
			
		||||
#else
 | 
			
		||||
  xx_storel_64(&csse, v_acc0_q);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * See vp10_wedge_sign_from_residuals_c
 | 
			
		||||
 */
 | 
			
		||||
int vp10_wedge_sign_from_residuals_sse2(const int16_t *ds,
 | 
			
		||||
                                        const uint8_t *m,
 | 
			
		||||
                                        int N,
 | 
			
		||||
                                        int64_t limit) {
 | 
			
		||||
  int64_t acc;
 | 
			
		||||
 | 
			
		||||
  __m128i v_sign_d;
 | 
			
		||||
  __m128i v_acc0_d = _mm_setzero_si128();
 | 
			
		||||
  __m128i v_acc1_d = _mm_setzero_si128();
 | 
			
		||||
  __m128i v_acc_q;
 | 
			
		||||
 | 
			
		||||
  // Input size limited to 8192 by the use of 32 bit accumulators and m
 | 
			
		||||
  // being between [0, 64]. Overflow might happen at larger sizes,
 | 
			
		||||
  // though it is practically impossible on real video input.
 | 
			
		||||
  assert(N < 8192);
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    const __m128i v_m01_b = xx_load_128(m);
 | 
			
		||||
    const __m128i v_m23_b = xx_load_128(m + 16);
 | 
			
		||||
    const __m128i v_m45_b = xx_load_128(m + 32);
 | 
			
		||||
    const __m128i v_m67_b = xx_load_128(m + 48);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_d0_w = xx_load_128(ds);
 | 
			
		||||
    const __m128i v_d1_w = xx_load_128(ds + 8);
 | 
			
		||||
    const __m128i v_d2_w = xx_load_128(ds + 16);
 | 
			
		||||
    const __m128i v_d3_w = xx_load_128(ds + 24);
 | 
			
		||||
    const __m128i v_d4_w = xx_load_128(ds + 32);
 | 
			
		||||
    const __m128i v_d5_w = xx_load_128(ds + 40);
 | 
			
		||||
    const __m128i v_d6_w = xx_load_128(ds + 48);
 | 
			
		||||
    const __m128i v_d7_w = xx_load_128(ds + 56);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_m0_w = _mm_unpacklo_epi8(v_m01_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m1_w = _mm_unpackhi_epi8(v_m01_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m2_w = _mm_unpacklo_epi8(v_m23_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m3_w = _mm_unpackhi_epi8(v_m23_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m4_w = _mm_unpacklo_epi8(v_m45_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m5_w = _mm_unpackhi_epi8(v_m45_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m6_w = _mm_unpacklo_epi8(v_m67_b, _mm_setzero_si128());
 | 
			
		||||
    const __m128i v_m7_w = _mm_unpackhi_epi8(v_m67_b, _mm_setzero_si128());
 | 
			
		||||
 | 
			
		||||
    const __m128i v_p0_d = _mm_madd_epi16(v_d0_w, v_m0_w);
 | 
			
		||||
    const __m128i v_p1_d = _mm_madd_epi16(v_d1_w, v_m1_w);
 | 
			
		||||
    const __m128i v_p2_d = _mm_madd_epi16(v_d2_w, v_m2_w);
 | 
			
		||||
    const __m128i v_p3_d = _mm_madd_epi16(v_d3_w, v_m3_w);
 | 
			
		||||
    const __m128i v_p4_d = _mm_madd_epi16(v_d4_w, v_m4_w);
 | 
			
		||||
    const __m128i v_p5_d = _mm_madd_epi16(v_d5_w, v_m5_w);
 | 
			
		||||
    const __m128i v_p6_d = _mm_madd_epi16(v_d6_w, v_m6_w);
 | 
			
		||||
    const __m128i v_p7_d = _mm_madd_epi16(v_d7_w, v_m7_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_p01_d = _mm_add_epi32(v_p0_d, v_p1_d);
 | 
			
		||||
    const __m128i v_p23_d = _mm_add_epi32(v_p2_d, v_p3_d);
 | 
			
		||||
    const __m128i v_p45_d = _mm_add_epi32(v_p4_d, v_p5_d);
 | 
			
		||||
    const __m128i v_p67_d = _mm_add_epi32(v_p6_d, v_p7_d);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_p0123_d = _mm_add_epi32(v_p01_d, v_p23_d);
 | 
			
		||||
    const __m128i v_p4567_d = _mm_add_epi32(v_p45_d, v_p67_d);
 | 
			
		||||
 | 
			
		||||
    v_acc0_d = _mm_add_epi32(v_acc0_d, v_p0123_d);
 | 
			
		||||
    v_acc1_d = _mm_add_epi32(v_acc1_d, v_p4567_d);
 | 
			
		||||
 | 
			
		||||
    ds += 64;
 | 
			
		||||
    m += 64;
 | 
			
		||||
 | 
			
		||||
    N -= 64;
 | 
			
		||||
  } while (N);
 | 
			
		||||
 | 
			
		||||
  v_sign_d = _mm_cmplt_epi32(v_acc0_d, _mm_setzero_si128());
 | 
			
		||||
  v_acc0_d = _mm_add_epi64(_mm_unpacklo_epi32(v_acc0_d, v_sign_d),
 | 
			
		||||
                          _mm_unpackhi_epi32(v_acc0_d, v_sign_d));
 | 
			
		||||
 | 
			
		||||
  v_sign_d = _mm_cmplt_epi32(v_acc1_d, _mm_setzero_si128());
 | 
			
		||||
  v_acc1_d = _mm_add_epi64(_mm_unpacklo_epi32(v_acc1_d, v_sign_d),
 | 
			
		||||
                          _mm_unpackhi_epi32(v_acc1_d, v_sign_d));
 | 
			
		||||
 | 
			
		||||
  v_acc_q = _mm_add_epi64(v_acc0_d, v_acc1_d);
 | 
			
		||||
 | 
			
		||||
  v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8));
 | 
			
		||||
 | 
			
		||||
#if ARCH_X86_64
 | 
			
		||||
  acc = (uint64_t)_mm_cvtsi128_si64(v_acc_q);
 | 
			
		||||
#else
 | 
			
		||||
  xx_storel_64(&acc, v_acc_q);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  return acc > limit;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Negate under mask
 | 
			
		||||
static INLINE __m128i negm_epi16(__m128i v_v_w, __m128i v_mask_w) {
 | 
			
		||||
  return _mm_sub_epi16(_mm_xor_si128(v_v_w, v_mask_w), v_mask_w);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * vp10_wedge_compute_delta_squares_c
 | 
			
		||||
 */
 | 
			
		||||
void vp10_wedge_compute_delta_squares_sse2(int16_t *d,
 | 
			
		||||
                                          const int16_t *a,
 | 
			
		||||
                                          const int16_t *b,
 | 
			
		||||
                                          int N) {
 | 
			
		||||
  const __m128i v_neg_w = _mm_set_epi16(0xffff, 0, 0xffff, 0,
 | 
			
		||||
                                        0xffff, 0, 0xffff, 0);
 | 
			
		||||
 | 
			
		||||
  assert(N % 64 == 0);
 | 
			
		||||
 | 
			
		||||
  do {
 | 
			
		||||
    const __m128i v_a0_w = xx_load_128(a);
 | 
			
		||||
    const __m128i v_b0_w = xx_load_128(b);
 | 
			
		||||
    const __m128i v_a1_w = xx_load_128(a + 8);
 | 
			
		||||
    const __m128i v_b1_w = xx_load_128(b + 8);
 | 
			
		||||
    const __m128i v_a2_w = xx_load_128(a + 16);
 | 
			
		||||
    const __m128i v_b2_w = xx_load_128(b + 16);
 | 
			
		||||
    const __m128i v_a3_w = xx_load_128(a + 24);
 | 
			
		||||
    const __m128i v_b3_w = xx_load_128(b + 24);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_ab0l_w = _mm_unpacklo_epi16(v_a0_w, v_b0_w);
 | 
			
		||||
    const __m128i v_ab0h_w = _mm_unpackhi_epi16(v_a0_w, v_b0_w);
 | 
			
		||||
    const __m128i v_ab1l_w = _mm_unpacklo_epi16(v_a1_w, v_b1_w);
 | 
			
		||||
    const __m128i v_ab1h_w = _mm_unpackhi_epi16(v_a1_w, v_b1_w);
 | 
			
		||||
    const __m128i v_ab2l_w = _mm_unpacklo_epi16(v_a2_w, v_b2_w);
 | 
			
		||||
    const __m128i v_ab2h_w = _mm_unpackhi_epi16(v_a2_w, v_b2_w);
 | 
			
		||||
    const __m128i v_ab3l_w = _mm_unpacklo_epi16(v_a3_w, v_b3_w);
 | 
			
		||||
    const __m128i v_ab3h_w = _mm_unpackhi_epi16(v_a3_w, v_b3_w);
 | 
			
		||||
 | 
			
		||||
    // Negate top word of pairs
 | 
			
		||||
    const __m128i v_abl0n_w = negm_epi16(v_ab0l_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abh0n_w = negm_epi16(v_ab0h_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abl1n_w = negm_epi16(v_ab1l_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abh1n_w = negm_epi16(v_ab1h_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abl2n_w = negm_epi16(v_ab2l_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abh2n_w = negm_epi16(v_ab2h_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abl3n_w = negm_epi16(v_ab3l_w, v_neg_w);
 | 
			
		||||
    const __m128i v_abh3n_w = negm_epi16(v_ab3h_w, v_neg_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_r0l_w = _mm_madd_epi16(v_ab0l_w, v_abl0n_w);
 | 
			
		||||
    const __m128i v_r0h_w = _mm_madd_epi16(v_ab0h_w, v_abh0n_w);
 | 
			
		||||
    const __m128i v_r1l_w = _mm_madd_epi16(v_ab1l_w, v_abl1n_w);
 | 
			
		||||
    const __m128i v_r1h_w = _mm_madd_epi16(v_ab1h_w, v_abh1n_w);
 | 
			
		||||
    const __m128i v_r2l_w = _mm_madd_epi16(v_ab2l_w, v_abl2n_w);
 | 
			
		||||
    const __m128i v_r2h_w = _mm_madd_epi16(v_ab2h_w, v_abh2n_w);
 | 
			
		||||
    const __m128i v_r3l_w = _mm_madd_epi16(v_ab3l_w, v_abl3n_w);
 | 
			
		||||
    const __m128i v_r3h_w = _mm_madd_epi16(v_ab3h_w, v_abh3n_w);
 | 
			
		||||
 | 
			
		||||
    const __m128i v_r0_w = _mm_packs_epi32(v_r0l_w, v_r0h_w);
 | 
			
		||||
    const __m128i v_r1_w = _mm_packs_epi32(v_r1l_w, v_r1h_w);
 | 
			
		||||
    const __m128i v_r2_w = _mm_packs_epi32(v_r2l_w, v_r2h_w);
 | 
			
		||||
    const __m128i v_r3_w = _mm_packs_epi32(v_r3l_w, v_r3h_w);
 | 
			
		||||
 | 
			
		||||
    xx_store_128(d, v_r0_w);
 | 
			
		||||
    xx_store_128(d + 8, v_r1_w);
 | 
			
		||||
    xx_store_128(d + 16, v_r2_w);
 | 
			
		||||
    xx_store_128(d + 24, v_r3_w);
 | 
			
		||||
 | 
			
		||||
    a += 32;
 | 
			
		||||
    b += 32;
 | 
			
		||||
    d += 32;
 | 
			
		||||
    N -= 32;
 | 
			
		||||
  } while (N);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -126,6 +126,10 @@ endif
 | 
			
		||||
ifeq ($(CONFIG_VP9_TEMPORAL_DENOISING),yes)
 | 
			
		||||
VP10_CX_SRCS-$(HAVE_SSE2) += encoder/x86/denoiser_sse2.c
 | 
			
		||||
endif
 | 
			
		||||
ifeq ($(CONFIG_EXT_INTER),yes)
 | 
			
		||||
VP10_CX_SRCS-yes += encoder/wedge_utils.c
 | 
			
		||||
VP10_CX_SRCS-$(HAVE_SSE2) += encoder/x86/wedge_utils_sse2.c
 | 
			
		||||
endif
 | 
			
		||||
 | 
			
		||||
VP10_CX_SRCS-$(HAVE_AVX2) += encoder/x86/error_intrin_avx2.c
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user