vp9: Allow usage of lookahead for real-time, 1 pass vbr.

Allow usage of lookahead for VBR in real-time mode, for 1 pass vbr.

Current usage is for fast checking of future scene cuts/changes,
and adjusting rate control (gf interval and active_worst/target size).

Added unittests (datarate) for 1 pass vbr mode, with non-zero lag.

Added an experimental option to limit QP based on lookahead.

Overall positive gain in metrics on ytlive set:
avgPNSR/SSIM up on average ~1-3%; several clips up by 5, 7%.

Change-Id: I960d57dfc89de121c4824b9a9bf88d2814e74b56
This commit is contained in:
Marco
2016-02-17 12:03:57 -08:00
parent 3e04114f3d
commit 05fe0f20a6
6 changed files with 308 additions and 76 deletions

View File

@@ -450,8 +450,8 @@ class DatarateTestVP9Large : public ::libvpx_test::EncoderTest,
int denoiser_offon_period_;
};
// Check basic rate targeting for VBR mode.
TEST_P(DatarateTestVP9Large, BasicRateTargetingVBR) {
// Check basic rate targeting for VBR mode with 0 lag.
TEST_P(DatarateTestVP9Large, BasicRateTargetingVBRLagZero) {
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.g_error_resilient = 0;
@@ -471,7 +471,33 @@ TEST_P(DatarateTestVP9Large, BasicRateTargetingVBR) {
}
}
// Check basic rate targeting for CBR,
// Check basic rate targeting for VBR mode with non-zero lag.
TEST_P(DatarateTestVP9Large, BasicRateTargetingVBRLagNonZero) {
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.g_error_resilient = 0;
cfg_.rc_end_usage = VPX_VBR;
// For non-zero lag, rate control will work (be within bounds) for
// real-time mode.
if (deadline_ == VPX_DL_REALTIME)
cfg_.g_lag_in_frames = 15;
else
cfg_.g_lag_in_frames = 0;
::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288,
30, 1, 0, 300);
for (int i = 400; i <= 800; i += 400) {
cfg_.rc_target_bitrate = i;
ResetModel();
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.75)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.25)
<< " The datarate for the file is greater than target by too much!";
}
}
// Check basic rate targeting for CBR mode.
TEST_P(DatarateTestVP9Large, BasicRateTargeting) {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;

View File

@@ -3351,7 +3351,6 @@ static void encode_without_recode_loop(VP9_COMP *cpi,
cpi->oxcf.mode == REALTIME &&
cpi->oxcf.speed >= 5 &&
cpi->resize_state == 0 &&
cm->frame_type != KEY_FRAME &&
(cpi->oxcf.content == VP9E_CONTENT_SCREEN ||
cpi->oxcf.rc_mode == VPX_VBR))
vp9_avg_source_sad(cpi);

View File

@@ -45,6 +45,8 @@
#define FRAME_OVERHEAD_BITS 200
#define LIMIT_QP_ONEPASS_VBR_LAG 0
#if CONFIG_VP9_HIGHBITDEPTH
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
@@ -338,11 +340,16 @@ void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
rc->total_target_bits = 0;
rc->total_target_vs_actual = 0;
rc->avg_frame_low_motion = 0;
rc->high_source_sad = 0;
rc->count_last_scene_change = 0;
rc->avg_source_sad = 0;
rc->af_ratio_onepass_vbr = 10;
rc->prev_avg_source_sad_lag = 0;
rc->high_source_sad = 0;
rc->high_source_sad_lagindex = -1;
rc->fac_active_worst_inter = 150;
rc->fac_active_worst_gf = 100;
rc->force_qpmin = 0;
for (i = 0; i < MAX_LAG_BUFFERS; ++i)
rc->avg_source_sad[i] = 0;
rc->frames_since_key = 8; // Sensible default for first frame.
rc->this_key_frame_forced = 0;
rc->next_key_frame_forced = 0;
@@ -630,12 +637,11 @@ static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
} else {
if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 >> 2
: rc->last_q[INTER_FRAME];
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 >> 2 :
rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
} else {
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] << 1 :
VPXMIN(rc->last_q[INTER_FRAME] << 1,
(rc->avg_frame_qindex[INTER_FRAME] * 3 >> 1));
rc->avg_frame_qindex[INTER_FRAME] * rc->fac_active_worst_inter / 100;
}
}
return VPXMIN(active_worst_quality, rc->worst_quality);
@@ -976,6 +982,14 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
active_worst_quality = clamp(active_worst_quality,
active_best_quality, rc->worst_quality);
#if LIMIT_QP_ONEPASS_VBR_LAG
if (oxcf->lag_in_frames > 0 && oxcf->rc_mode == VPX_VBR) {
if (rc->force_qpmin > 0 && active_best_quality < rc->force_qpmin)
active_best_quality = clamp(active_best_quality,
rc->force_qpmin, rc->worst_quality);
}
#endif
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
@@ -1508,24 +1522,25 @@ static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
return vp9_rc_clamp_iframe_target_size(cpi, target);
}
static void adjust_gf_key_frame(VP9_COMP *cpi) {
static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
RATE_CONTROL *const rc = &cpi->rc;
rc->constrained_gf_group = 0;
// Reset gf interval to make more equal spacing for up-coming key frame.
if ((rc->frames_to_key <= 7 * rc->baseline_gf_interval >> 2) &&
(rc->frames_to_key > rc->baseline_gf_interval)) {
rc->baseline_gf_interval = rc->frames_to_key >> 1;
// Reset gf interval to make more equal spacing for frame_constraint.
if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
(frame_constraint > rc->baseline_gf_interval)) {
rc->baseline_gf_interval = frame_constraint >> 1;
if (rc->baseline_gf_interval < 5)
rc->baseline_gf_interval = rc->frames_to_key;
rc->baseline_gf_interval = frame_constraint;
rc->constrained_gf_group = 1;
} else {
// Reset since frames_till_gf_update_due must be <= frames_to_key.
if (rc->baseline_gf_interval > rc->frames_to_key) {
rc->baseline_gf_interval = rc->frames_to_key;
// Reset to keep gf_interval <= frame_constraint.
if (rc->baseline_gf_interval > frame_constraint) {
rc->baseline_gf_interval = frame_constraint;
rc->constrained_gf_group = 1;
}
}
}
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
@@ -1573,7 +1588,7 @@ void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
(rc->avg_frame_low_motion << 1) / (rc->avg_frame_low_motion + 100));
rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
}
adjust_gf_key_frame(cpi);
adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
cpi->refresh_golden_frame = 1;
rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
@@ -2087,12 +2102,134 @@ int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
return resize_action;
}
void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi, uint64_t avg_sad_current) {
VP9_COMMON * const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
int found = 0;
int found2 = 0;
int frame;
int i;
uint64_t avg_source_sad_lag = avg_sad_current;
int high_source_sad_lagindex = -1;
int steady_sad_lagindex = -1;
uint32_t sad_thresh1 = 60000;
uint32_t sad_thresh2 = 120000;
int low_content = 0;
int high_content = 0;
double rate_err = 1.0;
// Get measure of complexity over the future frames, and get the first
// future frame with high_source_sad/scene-change.
int tot_frames = vp9_lookahead_depth(cpi->lookahead) - 1;
for (frame = tot_frames; frame >= 1; --frame) {
const int lagframe_idx = tot_frames - frame + 1;
uint64_t reference_sad = rc->avg_source_sad[0];
for (i = 1; i < lagframe_idx; ++i) {
if (rc->avg_source_sad[i] > 0)
reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
}
// Detect up-coming scene change.
if (!found &&
(rc->avg_source_sad[lagframe_idx] > VPXMAX(sad_thresh1,
(unsigned int)(reference_sad << 1)) ||
rc->avg_source_sad[lagframe_idx] > VPXMAX(3 * sad_thresh1 >> 2,
(unsigned int)(reference_sad << 2)))) {
high_source_sad_lagindex = lagframe_idx;
found = 1;
}
// Detect change from motion to steady.
if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
found2 = 1;
for (i = lagframe_idx; i < tot_frames; ++i) {
if (!(rc->avg_source_sad[i] > 0 &&
rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
rc->avg_source_sad[i] < (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
found2 = 0;
i = tot_frames;
}
}
if (found2)
steady_sad_lagindex = lagframe_idx;
}
avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
}
if (tot_frames > 0)
avg_source_sad_lag = avg_source_sad_lag / tot_frames;
// Constrain distance between detected scene cuts.
if (high_source_sad_lagindex != -1 &&
high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
rc->high_source_sad_lagindex = -1;
else
rc->high_source_sad_lagindex = high_source_sad_lagindex;
// Adjust some factors for the next GF group, ignore initial key frame,
// and only for lag_in_frames not too small.
if (cpi->refresh_golden_frame == 1 &&
cm->frame_type != KEY_FRAME &&
cm->current_video_frame > 30 &&
cpi->oxcf.lag_in_frames > 8) {
int frame_constraint;
if (rc->rolling_target_bits > 0)
rate_err =
(double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
high_content = high_source_sad_lagindex != -1 ||
avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
avg_source_sad_lag > sad_thresh2;
low_content = high_source_sad_lagindex == -1 &&
((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
(avg_source_sad_lag < sad_thresh1));
if (low_content) {
rc->gfu_boost = DEFAULT_GF_BOOST;
rc->baseline_gf_interval =
VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
} else if (high_content) {
rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
rc->baseline_gf_interval = VPXMAX(5, rc->baseline_gf_interval >> 1);
}
// Check for constraining gf_interval for up-coming scene/content changes,
// or for up-coming key frame, whichever is closer.
frame_constraint = rc->frames_to_key;
if (rc->high_source_sad_lagindex > 0 &&
frame_constraint > rc->high_source_sad_lagindex)
frame_constraint = rc->high_source_sad_lagindex;
if (steady_sad_lagindex > 0 && steady_sad_lagindex > 2 &&
frame_constraint > steady_sad_lagindex)
frame_constraint = steady_sad_lagindex;
adjust_gfint_frame_constraint(cpi, frame_constraint);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// Adjust factors for active_worst setting & af_ratio for next gf interval.
rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100).
rc->fac_active_worst_gf = 100;
if (rate_err < 1.5 && !high_content) {
rc->fac_active_worst_inter = 120;
rc->fac_active_worst_gf = 90;
}
if (low_content && rc->avg_frame_low_motion > 80) {
rc->af_ratio_onepass_vbr = 15;
}
else if (high_content || rc->avg_frame_low_motion < 30) {
rc->af_ratio_onepass_vbr = 5;
rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
}
target = calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
#if LIMIT_QP_ONEPASS_VBR_LAG
if (rc->avg_frame_low_motion > 85 &&
avg_source_sad_lag < (sad_thresh1 >> 1))
rc->force_qpmin = 48;
else
rc->force_qpmin = 0;
#endif
}
rc->prev_avg_source_sad_lag = avg_source_sad_lag;
}
// Compute average source sad (temporal sad: between current source and
// previous source) over a subset of superblocks. Use this is detect big changes
// in content and allow rate control to react.
// TODO(marpan): Superblock sad is computed again in variance partition for
// non-rd mode (but based on last reconstructed frame). Should try to reuse
// these computations.
// This function also handles special case of lag_in_frames, to measure content
// level in #future frames set by the lag_in_frames.
void vp9_avg_source_sad(VP9_COMP *cpi) {
VP9_COMMON * const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
@@ -2100,21 +2237,73 @@ void vp9_avg_source_sad(VP9_COMP *cpi) {
if (cpi->Last_Source != NULL &&
cpi->Last_Source->y_width == cpi->Source->y_width &&
cpi->Last_Source->y_height == cpi->Source->y_height) {
const uint8_t *src_y = cpi->Source->y_buffer;
const int src_ystride = cpi->Source->y_stride;
const uint8_t *last_src_y = cpi->Last_Source->y_buffer;
const int last_src_ystride = cpi->Last_Source->y_stride;
int sbi_row, sbi_col;
const BLOCK_SIZE bsize = BLOCK_64X64;
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = {NULL};
uint8_t *src_y = cpi->Source->y_buffer;
int src_ystride = cpi->Source->y_stride;
uint8_t *last_src_y = cpi->Last_Source->y_buffer;
int last_src_ystride = cpi->Last_Source->y_stride;
int start_frame = 0;
int frames_to_buffer = 1;
int frame = 0;
uint64_t avg_sad_current = 0;
uint32_t min_thresh = 4000;
float thresh = 8.0f;
// Loop over sub-sample of frame, and compute average sad over 64x64 blocks.
if (cpi->oxcf.rc_mode == VPX_VBR) {
min_thresh = 60000;
thresh = 2.1f;
}
if (cpi->oxcf.lag_in_frames > 0) {
frames_to_buffer = (cm->current_video_frame == 1) ?
vp9_lookahead_depth(cpi->lookahead) - 1: 2;
start_frame = vp9_lookahead_depth(cpi->lookahead) - 1;
for (frame = 0; frame < frames_to_buffer; ++frame) {
const int lagframe_idx = start_frame - frame;
if (lagframe_idx >= 0) {
struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead,
lagframe_idx);
frames[frame] = &buf->img;
}
}
// The avg_sad for this current frame is the value of frame#1
// (first future frame) from previous frame.
avg_sad_current = rc->avg_source_sad[1];
if (avg_sad_current > VPXMAX(min_thresh,
(unsigned int)(rc->avg_source_sad[0] * thresh)) &&
cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
rc->high_source_sad = 1;
else
rc->high_source_sad = 0;
// Update recursive average for current frame.
if (avg_sad_current > 0)
rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] +
avg_sad_current) >> 2;
// Shift back data, starting at frame#1.
for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
}
for (frame = 0; frame < frames_to_buffer; ++frame) {
if (cpi->oxcf.lag_in_frames == 0 ||
(frames[frame] != NULL &&
frames[frame + 1] != NULL &&
frames[frame]->y_width == frames[frame + 1]->y_width &&
frames[frame]->y_height == frames[frame + 1]->y_height)) {
int sbi_row, sbi_col;
const int lagframe_idx = (cpi->oxcf.lag_in_frames == 0) ? 0 :
start_frame - frame + 1;
const BLOCK_SIZE bsize = BLOCK_64X64;
// Loop over sub-sample of frame, compute average sad over 64x64 blocks.
uint64_t avg_sad = 0;
int num_samples = 0;
int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
for (sbi_row = 0; sbi_row < sb_rows; sbi_row ++) {
for (sbi_col = 0; sbi_col < sb_cols; sbi_col ++) {
if (cpi->oxcf.lag_in_frames > 0) {
src_y = frames[frame]->y_buffer;
src_ystride = frames[frame]->y_stride;
last_src_y = frames[frame + 1]->y_buffer;
last_src_ystride = frames[frame + 1]->y_stride;
}
for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
// Checker-board pattern, ignore boundary.
if ((sbi_row > 0 && sbi_col > 0) &&
(sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
@@ -2135,23 +2324,26 @@ void vp9_avg_source_sad(VP9_COMP *cpi) {
if (num_samples > 0)
avg_sad = avg_sad / num_samples;
// Set high_source_sad flag if we detect very high increase in avg_sad
// between current and the previous frame value(s). Use a minimum threshold
// between current and previous frame value(s). Use minimum threshold
// for cases where there is small change from content that is completely
// static.
if (cpi->oxcf.rc_mode == VPX_VBR) {
min_thresh = 60000;
thresh = 2.1f;
}
if (avg_sad >
VPXMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) &&
if (lagframe_idx == 0) {
if (avg_sad > VPXMAX(min_thresh,
(unsigned int)(rc->avg_source_sad[0] * thresh)) &&
rc->frames_since_key > 1)
rc->high_source_sad = 1;
else
rc->high_source_sad = 0;
if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2;
rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
} else {
rc->avg_source_sad[lagframe_idx] = avg_sad;
}
}
}
// For VBR, under scene change/high content change, force golden refresh.
if (cpi->oxcf.rc_mode == VPX_VBR &&
cm->frame_type != KEY_FRAME &&
rc->high_source_sad &&
rc->frames_to_key > 3 &&
rc->count_last_scene_change > 4 &&
@@ -2161,7 +2353,7 @@ void vp9_avg_source_sad(VP9_COMP *cpi) {
rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
rc->baseline_gf_interval = VPXMIN(20,
VPXMAX(10, rc->baseline_gf_interval));
adjust_gf_key_frame(cpi);
adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
target = calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
@@ -2169,6 +2361,9 @@ void vp9_avg_source_sad(VP9_COMP *cpi) {
} else {
rc->count_last_scene_change++;
}
// If lag_in_frame is used, set the gf boost and interval.
if (cpi->oxcf.lag_in_frames > 0)
adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
}
}

View File

@@ -16,6 +16,7 @@
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/encoder/vp9_lookahead.h"
#ifdef __cplusplus
extern "C" {
@@ -159,11 +160,16 @@ typedef struct {
int frame_height[FRAME_SCALE_STEPS];
int rf_level_maxq[RATE_FACTOR_LEVELS];
uint64_t avg_source_sad;
int fac_active_worst_inter;
int fac_active_worst_gf;
uint64_t avg_source_sad[MAX_LAG_BUFFERS];
uint64_t prev_avg_source_sad_lag;
int high_source_sad_lagindex;
int high_source_sad;
int count_last_scene_change;
int avg_frame_low_motion;
int af_ratio_onepass_vbr;
int force_qpmin;
} RATE_CONTROL;
struct VP9_COMP;

View File

@@ -1039,8 +1039,9 @@ static struct stream_state *new_stream(struct VpxEncoderConfig *global,
/* Allows removal of the application version from the EBML tags */
stream->webm_ctx.debug = global->debug;
/* Default lag_in_frames is 0 in realtime mode */
if (global->deadline == VPX_DL_REALTIME)
/* Default lag_in_frames is 0 in realtime mode CBR mode*/
if (global->deadline == VPX_DL_REALTIME &&
stream->config.cfg.rc_end_usage == 1)
stream->config.cfg.g_lag_in_frames = 0;
}
@@ -1132,11 +1133,14 @@ static int parse_stream_params(struct VpxEncoderConfig *global,
validate_positive_rational(arg.name, &config->cfg.g_timebase);
} else if (arg_match(&arg, &error_resilient, argi)) {
config->cfg.g_error_resilient = arg_parse_uint(&arg);
} else if (arg_match(&arg, &end_usage, argi)) {
config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg);
} else if (arg_match(&arg, &lag_in_frames, argi)) {
config->cfg.g_lag_in_frames = arg_parse_uint(&arg);
if (global->deadline == VPX_DL_REALTIME &&
config->cfg.rc_end_usage == VPX_CBR &&
config->cfg.g_lag_in_frames != 0) {
warn("non-zero %s option ignored in realtime mode.\n", arg.name);
warn("non-zero %s option ignored in realtime CBR mode.\n", arg.name);
config->cfg.g_lag_in_frames = 0;
}
} else if (arg_match(&arg, &dropframe_thresh, argi)) {

View File

@@ -24,7 +24,7 @@ static const char quantizer_warning_string[] =
"Bad quantizer values. Quantizer values should not be equal, and should "
"differ by at least 8.";
static const char lag_in_frames_with_realtime[] =
"Lag in frames is ignored when deadline is set to realtime.";
"Lag in frames is ignored when deadline is set to realtime for cbr mode.";
struct WarningListNode {
const char *warning_string;
@@ -80,8 +80,9 @@ static void check_quantizer(int min_q, int max_q,
static void check_lag_in_frames_realtime_deadline(
int lag_in_frames,
int deadline,
int rc_end_usage,
struct WarningList *warning_list) {
if (deadline == VPX_DL_REALTIME && lag_in_frames != 0)
if (deadline == VPX_DL_REALTIME && lag_in_frames != 0 && rc_end_usage == 1)
add_warning(lag_in_frames_with_realtime, warning_list);
}
@@ -97,6 +98,7 @@ void check_encoder_config(int disable_prompt,
&warning_list);
check_lag_in_frames_realtime_deadline(stream_config->g_lag_in_frames,
global_config->deadline,
stream_config->rc_end_usage,
&warning_list);
/* Count and print warnings. */
for (warning = warning_list.warning_node;