make build_inter_predictors block size agnostic (split)

All build_inter_predictors can now be serviced by the same inner
function.

Change-Id: I40b08bee8f047286db4b1aad9dcae37b879c3f2a
This commit is contained in:
John Koleszar 2013-04-17 13:41:18 -07:00
parent e0df9b213d
commit 0053b46d51
3 changed files with 150 additions and 335 deletions

View File

@ -878,31 +878,40 @@ typedef void (*foreach_predicted_block_visitor)(int plane, int block,
static INLINE void foreach_predicted_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_predicted_block_visitor visit, void *arg) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
int i, x, y;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// block sizes in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int block_size_b = bw + bh;
// subsampled size of the block
const int ss_sum = xd->plane[plane].subsampling_x +
xd->plane[plane].subsampling_y;
const int ss_block_size = block_size_b - ss_sum;
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bh = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
// size of the predictor to use.
// TODO(jkoleszar): support I8X8, I4X4
const int pred_w = bw - xd->plane[plane].subsampling_x;
const int pred_h = bh - xd->plane[plane].subsampling_y;
const int pred_b = mode == SPLITMV ? 0 : pred_w + pred_h;
const int step = 1 << pred_b;
int pred_w, pred_h;
int i;
if (mode == SPLITMV) {
// 4x4 or 8x8
const int is_4x4 =
(xd->mode_info_context->mbmi.partitioning == PARTITIONING_4X4);
pred_w = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_x;
pred_h = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_y;
} else {
pred_w = bw;
pred_h = bh;
}
assert(pred_w <= bw);
assert(pred_h <= bh);
assert(pred_b <= block_size_b);
assert(pred_b == (mode == SPLITMV ? 0 : ss_block_size));
for (i = 0; i < (1 << ss_block_size); i += step) {
// visit each subblock in raster order
i = 0;
for (y = 0; y < 1 << bh; y += 1 << pred_h) {
for (x = 0; x < 1 << bw; x += 1 << pred_w) {
visit(plane, i, bsize, pred_w, pred_h, arg);
i += 1 << pred_w;
}
i -= 1 << bw;
i += 1 << (bw + pred_h);
}
}
static INLINE void foreach_predicted_block(

View File

@ -435,128 +435,28 @@ static void build_2x1_inter_predictor_wh(const BLOCKD *d0, const BLOCKD *d1,
}
}
static void build_2x1_inter_predictor(const BLOCKD *d0, const BLOCKD *d1,
struct scale_factors *s,
int block_size, int stride,
int which_mv, int weight,
const struct subpix_fn_table *subpix,
int row, int col) {
uint8_t *d0_predictor = *(d0->base_dst) + d0->dst;
uint8_t *d1_predictor = *(d1->base_dst) + d1->dst;
struct scale_factors * scale = &s[which_mv];
stride = d0->dst_stride;
assert(d1_predictor - d0_predictor == block_size);
assert(d1->pre == d0->pre + block_size);
scale->set_scaled_offsets(scale, row, col);
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
vp9_build_inter_predictor(*base_pre + d0->pre,
d0->pre_stride,
d0_predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
2 * block_size, block_size,
weight, subpix);
} else {
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
vp9_build_inter_predictor(*base_pre0 + d0->pre,
d0->pre_stride,
d0_predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
block_size, block_size,
weight, subpix);
scale->set_scaled_offsets(scale, row, col + block_size);
vp9_build_inter_predictor(*base_pre1 + d1->pre,
d1->pre_stride,
d1_predictor, stride,
&d1->bmi.as_mv[which_mv],
scale,
block_size, block_size,
weight, subpix);
}
}
static void build_2x1_inter_predictor_q4(const BLOCKD *d0, const BLOCKD *d1,
struct scale_factors *s,
int block_size, int stride,
int which_mv, int weight,
const struct subpix_fn_table *subpix,
int row, int col) {
uint8_t *d0_predictor = *(d0->base_dst) + d0->dst;
uint8_t *d1_predictor = *(d1->base_dst) + d1->dst;
struct scale_factors * scale = &s[which_mv];
stride = d0->dst_stride;
assert(d1_predictor - d0_predictor == block_size);
assert(d1->pre == d0->pre + block_size);
scale->set_scaled_offsets(scale, row, col);
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
vp9_build_inter_predictor_q4(*base_pre + d0->pre,
d0->pre_stride,
d0_predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
2 * block_size, block_size,
weight, subpix);
} else {
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
vp9_build_inter_predictor_q4(*base_pre0 + d0->pre,
d0->pre_stride,
d0_predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
block_size, block_size,
weight, subpix);
scale->set_scaled_offsets(scale, row, col + block_size);
vp9_build_inter_predictor_q4(*base_pre1 + d1->pre,
d1->pre_stride,
d1_predictor, stride,
&d1->bmi.as_mv[which_mv],
scale,
block_size, block_size,
weight, subpix);
}
}
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
#if !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row;
return round_mv_comp_q4(temp);
}
static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col;
return round_mv_comp_q4(temp);
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
int bwl, int bhl, int ss_x, int ss_y,
@ -583,6 +483,18 @@ MV clamp_mv_to_umv_border_sb(const MV *src_mv,
return clamped_mv;
}
// TODO(jkoleszar): In principle, nothing has to depend on this, but it's
// currently required. Some users look at the mi->bmi, some look at the
// xd->bmi.
static void duplicate_splitmv_bmi(MACROBLOCKD *xd) {
int i;
for (i = 0; i < 16; i += 2) {
xd->block[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
xd->block[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
}
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
int x;
@ -597,18 +509,22 @@ static void build_inter_predictors(int plane, int block,
int pred_w, int pred_h,
void *argv) {
const struct build_inter_predictors_args* const arg = argv;
const int bwl = pred_w, bw = 4 << bwl;
const int bhl = pred_h, bh = 4 << bhl;
MACROBLOCKD * const xd = arg->xd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bh = 4 << bhl, bw = 4 << bwl;
const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl;
const int x = x_idx * 4, y = y_idx * 4;
MACROBLOCKD * const xd = arg->xd;
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
assert(x < bw);
assert(y < bh);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_w == bw);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_h == bh);
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const MV* const mv = (xd->mode_info_context->mbmi.mode == SPLITMV)
? &xd->block[block].bmi.as_mv[which_mv].as_mv
: &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
// source
const uint8_t * const base_pre = arg->pre[which_mv][plane];
const int pre_stride = arg->pre_stride[which_mv][plane];
const uint8_t *const pre = base_pre +
@ -616,8 +532,27 @@ static void build_inter_predictors(int plane, int block,
struct scale_factors * const scale =
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
// dest
uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x;
// motion vector
const MV *mv;
MV split_chroma_mv;
int_mv clamped_mv;
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
if (plane == 0) {
mv = &xd->block[block].bmi.as_mv[which_mv].as_mv;
} else {
const int y_block = (block & 2) * 4 + (block & 1) * 2;
split_chroma_mv.row = mi_mv_pred_row_q4(xd, y_block, which_mv);
split_chroma_mv.col = mi_mv_pred_col_q4(xd, y_block, which_mv);
mv = &split_chroma_mv;
}
} else {
mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
}
/* TODO(jkoleszar): This clamping is done in the incorrect place for the
* scaling case. It needs to be done on the scaled MV, not the pre-scaling
* MV. Note however that it performs the subsampling aware scaling so
@ -630,13 +565,13 @@ static void build_inter_predictors(int plane, int block,
xd->mb_to_top_edge,
xd->mb_to_right_edge,
xd->mb_to_bottom_edge);
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor_q4(pre, pre_stride,
arg->dst[plane], arg->dst_stride[plane],
dst, arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
bw, bh, which_mv, &xd->subpix);
4 << pred_w, 4 << pred_h, which_mv,
&xd->subpix);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
@ -651,6 +586,12 @@ void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
{{xd->pre.y_buffer, NULL, NULL}, {xd->second_pre.y_buffer, NULL, NULL}},
{{xd->pre.y_stride, 0, 0}, {xd->second_pre.y_stride, 0, 0}},
};
// TODO(jkoleszar): This is a hack no matter where you put it, but does it
// belong here?
if (xd->mode_info_context->mbmi.mode == SPLITMV)
duplicate_splitmv_bmi(xd);
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
@ -670,12 +611,55 @@ void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
};
foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd,
int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize) {
uint8_t *const y = xd->dst.y_buffer;
uint8_t *const u = xd->dst.u_buffer;
uint8_t *const v = xd->dst.v_buffer;
const int y_stride = xd->dst.y_stride;
const int uv_stride = xd->dst.uv_stride;
vp9_build_inter_predictors_sby(xd, y, y_stride, mb_row, mb_col, bsize);
vp9_build_inter_predictors_sbuv(xd, u, v, uv_stride, mb_row, mb_col, bsize);
#if CONFIG_COMP_INTERINTRA_PRED
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
if (bsize == BLOCK_SIZE_SB32X32)
vp9_build_interintra_32x32_predictors_sb(xd, y, u, v,
y_stride, uv_stride);
else
vp9_build_interintra_64x64_predictors_sb(xd, y, u, v,
y_stride, uv_stride);
}
#endif
}
#endif // !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
#define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT))
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
// Whether to use implicit weighting for UV
#define USE_IMPLICIT_WEIGHT_UV
@ -1012,9 +996,7 @@ static void build_inter16x16_predictors_mby_w(MACROBLOCKD *xd,
which_mv ? weight : 0, &xd->subpix);
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
@ -1055,9 +1037,6 @@ static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter_predictors_sby_w(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
@ -1120,9 +1099,7 @@ void vp9_build_inter_predictors_sby(MACROBLOCKD *x,
build_inter_predictors_sby_w(x, dst_y, dst_ystride, weight,
mb_row, mb_col, bsize);
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter_predictors_sbuv_w(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
@ -1201,7 +1178,6 @@ void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
build_inter_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col, bsize);
}
#endif
void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,
int mb_row, int mb_col,
@ -1225,76 +1201,7 @@ void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,
}
#endif
}
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd,
int mb_row, int mb_col) {
int i;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
int which_mv = 0;
const int use_second_ref = mbmi->second_ref_frame > 0;
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && defined(USE_IMPLICIT_WEIGHT_SPLITMV)
int weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 8, 16, which_mv,
which_mv ? weight : 0,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 4, 16, which_mv,
which_mv ? weight : 0,
&xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
#if !defined(USE_IMPLICIT_WEIGHT_UV)
weight = AVERAGE_WEIGHT;
#endif
#endif
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = 4 * (i & 1);
const int y = ((i - 16) >> 1) * 4;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor_q4(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
which_mv ? weight : 0, &xd->subpix,
mb_row * 8 + y, mb_col * 8 + x);
}
}
}
#endif // CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static INLINE int round_mv_comp(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
@ -1316,120 +1223,20 @@ static int mi_mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
return round_mv_comp(temp);
}
static int b_mv_pred_row(MACROBLOCKD *mb, int off, int idx) {
BLOCKD *const blockd = mb->block;
const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.row +
blockd[off + 1].bmi.as_mv[idx].as_mv.row +
blockd[off + 4].bmi.as_mv[idx].as_mv.row +
blockd[off + 5].bmi.as_mv[idx].as_mv.row;
return round_mv_comp(temp);
}
static int b_mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
BLOCKD *const blockd = mb->block;
const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.col +
blockd[off + 1].bmi.as_mv[idx].as_mv.col +
blockd[off + 4].bmi.as_mv[idx].as_mv.col +
blockd[off + 5].bmi.as_mv[idx].as_mv.col;
return round_mv_comp(temp);
}
static void build_4x4uvmvs(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
const int yoffset = i * 8 + j * 2;
const int uoffset = 16 + i * 2 + j;
const int voffset = 20 + i * 2 + j;
MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv;
MV *v = &blockd[voffset].bmi.as_mv[0].as_mv;
u->row = mi_mv_pred_row(xd, yoffset, 0);
u->col = mi_mv_pred_col(xd, yoffset, 0);
clamp_mv_to_umv_border(u, xd);
v->row = u->row;
v->col = u->col;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
u = &blockd[uoffset].bmi.as_mv[1].as_mv;
v = &blockd[voffset].bmi.as_mv[1].as_mv;
u->row = mi_mv_pred_row(xd, yoffset, 1);
u->col = mi_mv_pred_col(xd, yoffset, 1);
clamp_mv_to_umv_border(u, xd);
v->row = u->row;
v->col = u->col;
}
}
}
}
void vp9_build_inter_predictors_mb(MACROBLOCKD *xd,
int mb_row,
int mb_col) {
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16);
} else {
build_4x4uvmvs(xd);
build_inter4x4_predictors_mb(xd, mb_row, mb_col);
}
}
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
int mb_row, int mb_col) {
int i, j, weight;
BLOCKD *const blockd = xd->block;
uint8_t *const u = xd->dst.u_buffer;
uint8_t *const v = xd->dst.v_buffer;
const int uv_stride = xd->dst.uv_stride;
/* build uv mvs */
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
const int yoffset = i * 8 + j * 2;
const int uoffset = 16 + i * 2 + j;
const int voffset = 20 + i * 2 + j;
MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv;
MV *v = &blockd[voffset].bmi.as_mv[0].as_mv;
v->row = u->row = b_mv_pred_row(xd, yoffset, 0);
v->col = u->col = b_mv_pred_col(xd, yoffset, 0);
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
u = &blockd[uoffset].bmi.as_mv[1].as_mv;
v = &blockd[voffset].bmi.as_mv[1].as_mv;
v->row = u->row = b_mv_pred_row(xd, yoffset, 1);
v->col = u->col = b_mv_pred_col(xd, yoffset, 1);
}
}
}
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && \
defined(USE_IMPLICIT_WEIGHT_SPLITMV) && \
defined(USE_IMPLICIT_WEIGHT_UV)
weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
#else
weight = AVERAGE_WEIGHT;
#endif
for (i = 16; i < 24; i += 2) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
const int x = 4 * (i & 1);
const int y = ((i - 16) >> 1) * 4;
int which_mv;
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor_q4(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
which_mv ? weight : 0,
&xd->subpix, mb_row * 8 + y, mb_col * 8 + x);
}
}
vp9_build_inter_predictors_sbuv(xd, u, v, uv_stride, mb_row, mb_col,
BLOCK_SIZE_MB16X16);
}

View File

@ -16,21 +16,20 @@
struct subpix_fn_table;
void vp9_build_inter_predictors_sby(MACROBLOCKD *x,
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize);
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *x,
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize);
void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,
int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize);