2010-05-18 11:58:33 -04:00
|
|
|
/*
|
2010-09-09 08:16:39 -04:00
|
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
2010-05-18 11:58:33 -04:00
|
|
|
*
|
2010-06-18 12:39:21 -04:00
|
|
|
* Use of this source code is governed by a BSD-style license
|
2010-06-04 16:19:40 -04:00
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
2010-06-18 12:39:21 -04:00
|
|
|
* in the file PATENTS. All contributing project authors may
|
2010-06-04 16:19:40 -04:00
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
2010-05-18 11:58:33 -04:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
* Notes:
|
|
|
|
*
|
|
|
|
* This implementation makes use of 16 bit fixed point verio of two multiply
|
|
|
|
* constants:
|
|
|
|
* 1. sqrt(2) * cos (pi/8)
|
|
|
|
* 2. sqrt(2) * sin (pi/8)
|
|
|
|
* Becuase the first constant is bigger than 1, to maintain the same 16 bit
|
|
|
|
* fixed point precision as the second one, we use a trick of
|
|
|
|
* x * a = x + x*(a-1)
|
|
|
|
* so
|
|
|
|
* x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1).
|
|
|
|
**************************************************************************/
|
2012-10-30 17:54:22 -07:00
|
|
|
#include <assert.h>
|
|
|
|
#include <math.h>
|
2010-12-01 15:50:14 -08:00
|
|
|
#include "vpx_ports/config.h"
|
2012-11-27 13:59:17 -08:00
|
|
|
#include "vp9/common/vp9_systemdependent.h"
|
2010-12-01 15:50:14 -08:00
|
|
|
|
2012-11-27 13:59:17 -08:00
|
|
|
#include "vp9/common/vp9_blockd.h"
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2010-05-18 11:58:33 -04:00
|
|
|
static const int cospi8sqrt2minus1 = 20091;
|
|
|
|
static const int sinpi8sqrt2 = 35468;
|
|
|
|
static const int rounding = 0;
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2012-08-02 09:07:33 -07:00
|
|
|
// TODO: these transforms can be further converted into integer forms
|
|
|
|
// for complexity optimization
|
2012-10-30 17:12:12 -07:00
|
|
|
static const float idct_4[16] = {
|
2012-06-25 12:26:09 -07:00
|
|
|
0.500000000000000, 0.653281482438188, 0.500000000000000, 0.270598050073099,
|
|
|
|
0.500000000000000, 0.270598050073099, -0.500000000000000, -0.653281482438188,
|
|
|
|
0.500000000000000, -0.270598050073099, -0.500000000000000, 0.653281482438188,
|
|
|
|
0.500000000000000, -0.653281482438188, 0.500000000000000, -0.270598050073099
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const float iadst_4[16] = {
|
2012-06-25 12:26:09 -07:00
|
|
|
0.228013428883779, 0.577350269189626, 0.656538502008139, 0.428525073124360,
|
|
|
|
0.428525073124360, 0.577350269189626, -0.228013428883779, -0.656538502008139,
|
|
|
|
0.577350269189626, 0, -0.577350269189626, 0.577350269189626,
|
|
|
|
0.656538502008139, -0.577350269189626, 0.428525073124359, -0.228013428883779
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const float idct_8[64] = {
|
2012-08-02 09:07:33 -07:00
|
|
|
0.353553390593274, 0.490392640201615, 0.461939766255643, 0.415734806151273,
|
|
|
|
0.353553390593274, 0.277785116509801, 0.191341716182545, 0.097545161008064,
|
|
|
|
0.353553390593274, 0.415734806151273, 0.191341716182545, -0.097545161008064,
|
|
|
|
-0.353553390593274, -0.490392640201615, -0.461939766255643, -0.277785116509801,
|
|
|
|
0.353553390593274, 0.277785116509801, -0.191341716182545, -0.490392640201615,
|
|
|
|
-0.353553390593274, 0.097545161008064, 0.461939766255643, 0.415734806151273,
|
|
|
|
0.353553390593274, 0.097545161008064, -0.461939766255643, -0.277785116509801,
|
|
|
|
0.353553390593274, 0.415734806151273, -0.191341716182545, -0.490392640201615,
|
|
|
|
0.353553390593274, -0.097545161008064, -0.461939766255643, 0.277785116509801,
|
|
|
|
0.353553390593274, -0.415734806151273, -0.191341716182545, 0.490392640201615,
|
|
|
|
0.353553390593274, -0.277785116509801, -0.191341716182545, 0.490392640201615,
|
|
|
|
-0.353553390593274, -0.097545161008064, 0.461939766255643, -0.415734806151273,
|
|
|
|
0.353553390593274, -0.415734806151273, 0.191341716182545, 0.097545161008064,
|
|
|
|
-0.353553390593274, 0.490392640201615, -0.461939766255643, 0.277785116509801,
|
|
|
|
0.353553390593274, -0.490392640201615, 0.461939766255643, -0.415734806151273,
|
|
|
|
0.353553390593274, -0.277785116509801, 0.191341716182545, -0.097545161008064
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const float iadst_8[64] = {
|
2012-08-02 09:07:33 -07:00
|
|
|
0.089131608307533, 0.255357107325376, 0.387095214016349, 0.466553967085785,
|
|
|
|
0.483002021635509, 0.434217976756762, 0.326790388032145, 0.175227946595735,
|
|
|
|
0.175227946595735, 0.434217976756762, 0.466553967085785, 0.255357107325376,
|
|
|
|
-0.089131608307533, -0.387095214016348, -0.483002021635509, -0.326790388032145,
|
|
|
|
0.255357107325376, 0.483002021635509, 0.175227946595735, -0.326790388032145,
|
|
|
|
-0.466553967085785, -0.089131608307533, 0.387095214016349, 0.434217976756762,
|
|
|
|
0.326790388032145, 0.387095214016349, -0.255357107325376, -0.434217976756762,
|
|
|
|
0.175227946595735, 0.466553967085786, -0.089131608307534, -0.483002021635509,
|
|
|
|
0.387095214016349, 0.175227946595735, -0.483002021635509, 0.089131608307533,
|
|
|
|
0.434217976756762, -0.326790388032145, -0.255357107325377, 0.466553967085785,
|
|
|
|
0.434217976756762, -0.089131608307533, -0.326790388032145, 0.483002021635509,
|
|
|
|
-0.255357107325376, -0.175227946595735, 0.466553967085785, -0.387095214016348,
|
|
|
|
0.466553967085785, -0.326790388032145, 0.089131608307533, 0.175227946595735,
|
|
|
|
-0.387095214016348, 0.483002021635509, -0.434217976756762, 0.255357107325376,
|
|
|
|
0.483002021635509, -0.466553967085785, 0.434217976756762, -0.387095214016348,
|
|
|
|
0.326790388032145, -0.255357107325375, 0.175227946595736, -0.089131608307532
|
|
|
|
};
|
2012-08-29 11:25:38 -07:00
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t idct_i4[16] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
8192, 10703, 8192, 4433,
|
|
|
|
8192, 4433, -8192, -10703,
|
|
|
|
8192, -4433, -8192, 10703,
|
|
|
|
8192, -10703, 8192, -4433
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t iadst_i4[16] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
3736, 9459, 10757, 7021,
|
|
|
|
7021, 9459, -3736, -10757,
|
|
|
|
9459, 0, -9459, 9459,
|
|
|
|
10757, -9459, 7021, -3736
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t idct_i8[64] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
5793, 8035, 7568, 6811,
|
|
|
|
5793, 4551, 3135, 1598,
|
|
|
|
5793, 6811, 3135, -1598,
|
|
|
|
-5793, -8035, -7568, -4551,
|
|
|
|
5793, 4551, -3135, -8035,
|
|
|
|
-5793, 1598, 7568, 6811,
|
|
|
|
5793, 1598, -7568, -4551,
|
|
|
|
5793, 6811, -3135, -8035,
|
|
|
|
5793, -1598, -7568, 4551,
|
|
|
|
5793, -6811, -3135, 8035,
|
|
|
|
5793, -4551, -3135, 8035,
|
|
|
|
-5793, -1598, 7568, -6811,
|
|
|
|
5793, -6811, 3135, 1598,
|
|
|
|
-5793, 8035, -7568, 4551,
|
|
|
|
5793, -8035, 7568, -6811,
|
|
|
|
5793, -4551, 3135, -1598
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t iadst_i8[64] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
1460, 4184, 6342, 7644,
|
|
|
|
7914, 7114, 5354, 2871,
|
|
|
|
2871, 7114, 7644, 4184,
|
|
|
|
-1460, -6342, -7914, -5354,
|
|
|
|
4184, 7914, 2871, -5354,
|
|
|
|
-7644, -1460, 6342, 7114,
|
|
|
|
5354, 6342, -4184, -7114,
|
|
|
|
2871, 7644, -1460, -7914,
|
|
|
|
6342, 2871, -7914, 1460,
|
|
|
|
7114, -5354, -4184, 7644,
|
|
|
|
7114, -1460, -5354, 7914,
|
|
|
|
-4184, -2871, 7644, -6342,
|
|
|
|
7644, -5354, 1460, 2871,
|
|
|
|
-6342, 7914, -7114, 4184,
|
|
|
|
7914, -7644, 7114, -6342,
|
|
|
|
5354, -4184, 2871, -1460
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static float idct_16[256] = {
|
2012-08-29 11:25:38 -07:00
|
|
|
0.250000, 0.351851, 0.346760, 0.338330, 0.326641, 0.311806, 0.293969, 0.273300,
|
|
|
|
0.250000, 0.224292, 0.196424, 0.166664, 0.135299, 0.102631, 0.068975, 0.034654,
|
|
|
|
0.250000, 0.338330, 0.293969, 0.224292, 0.135299, 0.034654, -0.068975, -0.166664,
|
|
|
|
-0.250000, -0.311806, -0.346760, -0.351851, -0.326641, -0.273300, -0.196424, -0.102631,
|
|
|
|
0.250000, 0.311806, 0.196424, 0.034654, -0.135299, -0.273300, -0.346760, -0.338330,
|
|
|
|
-0.250000, -0.102631, 0.068975, 0.224292, 0.326641, 0.351851, 0.293969, 0.166664,
|
|
|
|
0.250000, 0.273300, 0.068975, -0.166664, -0.326641, -0.338330, -0.196424, 0.034654,
|
|
|
|
0.250000, 0.351851, 0.293969, 0.102631, -0.135299, -0.311806, -0.346760, -0.224292,
|
|
|
|
0.250000, 0.224292, -0.068975, -0.311806, -0.326641, -0.102631, 0.196424, 0.351851,
|
|
|
|
0.250000, -0.034654, -0.293969, -0.338330, -0.135299, 0.166664, 0.346760, 0.273300,
|
|
|
|
0.250000, 0.166664, -0.196424, -0.351851, -0.135299, 0.224292, 0.346760, 0.102631,
|
|
|
|
-0.250000, -0.338330, -0.068975, 0.273300, 0.326641, 0.034654, -0.293969, -0.311806,
|
|
|
|
0.250000, 0.102631, -0.293969, -0.273300, 0.135299, 0.351851, 0.068975, -0.311806,
|
|
|
|
-0.250000, 0.166664, 0.346760, 0.034654, -0.326641, -0.224292, 0.196424, 0.338330,
|
|
|
|
0.250000, 0.034654, -0.346760, -0.102631, 0.326641, 0.166664, -0.293969, -0.224292,
|
|
|
|
0.250000, 0.273300, -0.196424, -0.311806, 0.135299, 0.338330, -0.068975, -0.351851,
|
|
|
|
0.250000, -0.034654, -0.346760, 0.102631, 0.326641, -0.166664, -0.293969, 0.224292,
|
|
|
|
0.250000, -0.273300, -0.196424, 0.311806, 0.135299, -0.338330, -0.068975, 0.351851,
|
|
|
|
0.250000, -0.102631, -0.293969, 0.273300, 0.135299, -0.351851, 0.068975, 0.311806,
|
|
|
|
-0.250000, -0.166664, 0.346760, -0.034654, -0.326641, 0.224292, 0.196424, -0.338330,
|
|
|
|
0.250000, -0.166664, -0.196424, 0.351851, -0.135299, -0.224292, 0.346760, -0.102631,
|
|
|
|
-0.250000, 0.338330, -0.068975, -0.273300, 0.326641, -0.034654, -0.293969, 0.311806,
|
|
|
|
0.250000, -0.224292, -0.068975, 0.311806, -0.326641, 0.102631, 0.196424, -0.351851,
|
|
|
|
0.250000, 0.034654, -0.293969, 0.338330, -0.135299, -0.166664, 0.346760, -0.273300,
|
|
|
|
0.250000, -0.273300, 0.068975, 0.166664, -0.326641, 0.338330, -0.196424, -0.034654,
|
|
|
|
0.250000, -0.351851, 0.293969, -0.102631, -0.135299, 0.311806, -0.346760, 0.224292,
|
|
|
|
0.250000, -0.311806, 0.196424, -0.034654, -0.135299, 0.273300, -0.346760, 0.338330,
|
|
|
|
-0.250000, 0.102631, 0.068975, -0.224292, 0.326641, -0.351851, 0.293969, -0.166664,
|
|
|
|
0.250000, -0.338330, 0.293969, -0.224292, 0.135299, -0.034654, -0.068975, 0.166664,
|
|
|
|
-0.250000, 0.311806, -0.346760, 0.351851, -0.326641, 0.273300, -0.196424, 0.102631,
|
|
|
|
0.250000, -0.351851, 0.346760, -0.338330, 0.326641, -0.311806, 0.293969, -0.273300,
|
|
|
|
0.250000, -0.224292, 0.196424, -0.166664, 0.135299, -0.102631, 0.068975, -0.034654
|
|
|
|
};
|
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static float iadst_16[256] = {
|
2012-08-29 11:25:38 -07:00
|
|
|
0.033094, 0.098087, 0.159534, 0.215215, 0.263118, 0.301511, 0.329007, 0.344612,
|
|
|
|
0.347761, 0.338341, 0.316693, 0.283599, 0.240255, 0.188227, 0.129396, 0.065889,
|
|
|
|
0.065889, 0.188227, 0.283599, 0.338341, 0.344612, 0.301511, 0.215215, 0.098087,
|
|
|
|
-0.033094, -0.159534, -0.263118, -0.329007, -0.347761, -0.316693, -0.240255, -0.129396,
|
|
|
|
0.098087, 0.263118, 0.344612, 0.316693, 0.188227, 0.000000, -0.188227, -0.316693,
|
|
|
|
-0.344612, -0.263118, -0.098087, 0.098087, 0.263118, 0.344612, 0.316693, 0.188227,
|
|
|
|
0.129396, 0.316693, 0.329007, 0.159534, -0.098087, -0.301511, -0.338341, -0.188227,
|
|
|
|
0.065889, 0.283599, 0.344612, 0.215215, -0.033094, -0.263118, -0.347761, -0.240255,
|
|
|
|
0.159534, 0.344612, 0.240255, -0.065889, -0.316693, -0.301511, -0.033094, 0.263118,
|
|
|
|
0.338341, 0.129396, -0.188227, -0.347761, -0.215215, 0.098087, 0.329007, 0.283599,
|
|
|
|
0.188227, 0.344612, 0.098087, -0.263118, -0.316693, -0.000000, 0.316693, 0.263118,
|
|
|
|
-0.098087, -0.344612, -0.188227, 0.188227, 0.344612, 0.098087, -0.263118, -0.316693,
|
|
|
|
0.215215, 0.316693, -0.065889, -0.347761, -0.098087, 0.301511, 0.240255, -0.188227,
|
|
|
|
-0.329007, 0.033094, 0.344612, 0.129396, -0.283599, -0.263118, 0.159534, 0.338341,
|
|
|
|
0.240255, 0.263118, -0.215215, -0.283599, 0.188227, 0.301511, -0.159534, -0.316693,
|
|
|
|
0.129396, 0.329007, -0.098087, -0.338341, 0.065889, 0.344612, -0.033094, -0.347761,
|
|
|
|
0.263118, 0.188227, -0.316693, -0.098087, 0.344612, 0.000000, -0.344612, 0.098087,
|
|
|
|
0.316693, -0.188227, -0.263118, 0.263118, 0.188227, -0.316693, -0.098087, 0.344612,
|
|
|
|
0.283599, 0.098087, -0.347761, 0.129396, 0.263118, -0.301511, -0.065889, 0.344612,
|
|
|
|
-0.159534, -0.240255, 0.316693, 0.033094, -0.338341, 0.188227, 0.215215, -0.329007,
|
|
|
|
0.301511, 0.000000, -0.301511, 0.301511, 0.000000, -0.301511, 0.301511, 0.000000,
|
|
|
|
-0.301511, 0.301511, 0.000000, -0.301511, 0.301511, 0.000000, -0.301511, 0.301511,
|
|
|
|
0.316693, -0.098087, -0.188227, 0.344612, -0.263118, -0.000000, 0.263118, -0.344612,
|
|
|
|
0.188227, 0.098087, -0.316693, 0.316693, -0.098087, -0.188227, 0.344612, -0.263118,
|
|
|
|
0.329007, -0.188227, -0.033094, 0.240255, -0.344612, 0.301511, -0.129396, -0.098087,
|
|
|
|
0.283599, -0.347761, 0.263118, -0.065889, -0.159534, 0.316693, -0.338341, 0.215215,
|
|
|
|
0.338341, -0.263118, 0.129396, 0.033094, -0.188227, 0.301511, -0.347761, 0.316693,
|
|
|
|
-0.215215, 0.065889, 0.098087, -0.240255, 0.329007, -0.344612, 0.283599, -0.159534,
|
|
|
|
0.344612, -0.316693, 0.263118, -0.188227, 0.098087, 0.000000, -0.098087, 0.188227,
|
|
|
|
-0.263118, 0.316693, -0.344612, 0.344612, -0.316693, 0.263118, -0.188227, 0.098087,
|
|
|
|
0.347761, -0.344612, 0.338341, -0.329007, 0.316693, -0.301511, 0.283599, -0.263118,
|
|
|
|
0.240255, -0.215215, 0.188227, -0.159534, 0.129396, -0.098087, 0.065889, -0.033094
|
|
|
|
};
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t idct_i16[256] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
4096, 5765, 5681, 5543, 5352, 5109, 4816, 4478,
|
|
|
|
4096, 3675, 3218, 2731, 2217, 1682, 1130, 568,
|
|
|
|
4096, 5543, 4816, 3675, 2217, 568, -1130, -2731,
|
|
|
|
-4096, -5109, -5681, -5765, -5352, -4478, -3218, -1682,
|
|
|
|
4096, 5109, 3218, 568, -2217, -4478, -5681, -5543,
|
|
|
|
-4096, -1682, 1130, 3675, 5352, 5765, 4816, 2731,
|
|
|
|
4096, 4478, 1130, -2731, -5352, -5543, -3218, 568,
|
|
|
|
4096, 5765, 4816, 1682, -2217, -5109, -5681, -3675,
|
|
|
|
4096, 3675, -1130, -5109, -5352, -1682, 3218, 5765,
|
|
|
|
4096, -568, -4816, -5543, -2217, 2731, 5681, 4478,
|
|
|
|
4096, 2731, -3218, -5765, -2217, 3675, 5681, 1682,
|
|
|
|
-4096, -5543, -1130, 4478, 5352, 568, -4816, -5109,
|
|
|
|
4096, 1682, -4816, -4478, 2217, 5765, 1130, -5109,
|
|
|
|
-4096, 2731, 5681, 568, -5352, -3675, 3218, 5543,
|
|
|
|
4096, 568, -5681, -1682, 5352, 2731, -4816, -3675,
|
|
|
|
4096, 4478, -3218, -5109, 2217, 5543, -1130, -5765,
|
|
|
|
4096, -568, -5681, 1682, 5352, -2731, -4816, 3675,
|
|
|
|
4096, -4478, -3218, 5109, 2217, -5543, -1130, 5765,
|
|
|
|
4096, -1682, -4816, 4478, 2217, -5765, 1130, 5109,
|
|
|
|
-4096, -2731, 5681, -568, -5352, 3675, 3218, -5543,
|
|
|
|
4096, -2731, -3218, 5765, -2217, -3675, 5681, -1682,
|
|
|
|
-4096, 5543, -1130, -4478, 5352, -568, -4816, 5109,
|
|
|
|
4096, -3675, -1130, 5109, -5352, 1682, 3218, -5765,
|
|
|
|
4096, 568, -4816, 5543, -2217, -2731, 5681, -4478,
|
|
|
|
4096, -4478, 1130, 2731, -5352, 5543, -3218, -568,
|
|
|
|
4096, -5765, 4816, -1682, -2217, 5109, -5681, 3675,
|
|
|
|
4096, -5109, 3218, -568, -2217, 4478, -5681, 5543,
|
|
|
|
-4096, 1682, 1130, -3675, 5352, -5765, 4816, -2731,
|
|
|
|
4096, -5543, 4816, -3675, 2217, -568, -1130, 2731,
|
|
|
|
-4096, 5109, -5681, 5765, -5352, 4478, -3218, 1682,
|
|
|
|
4096, -5765, 5681, -5543, 5352, -5109, 4816, -4478,
|
|
|
|
4096, -3675, 3218, -2731, 2217, -1682, 1130, -568
|
|
|
|
};
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2012-10-30 17:12:12 -07:00
|
|
|
static const int16_t iadst_i16[256] = {
|
2012-10-18 16:31:59 -07:00
|
|
|
542, 1607, 2614, 3526, 4311, 4940, 5390, 5646,
|
|
|
|
5698, 5543, 5189, 4646, 3936, 3084, 2120, 1080,
|
|
|
|
1080, 3084, 4646, 5543, 5646, 4940, 3526, 1607,
|
|
|
|
-542, -2614, -4311, -5390, -5698, -5189, -3936, -2120,
|
|
|
|
1607, 4311, 5646, 5189, 3084, 0, -3084, -5189,
|
|
|
|
-5646, -4311, -1607, 1607, 4311, 5646, 5189, 3084,
|
|
|
|
2120, 5189, 5390, 2614, -1607, -4940, -5543, -3084,
|
|
|
|
1080, 4646, 5646, 3526, -542, -4311, -5698, -3936,
|
|
|
|
2614, 5646, 3936, -1080, -5189, -4940, -542, 4311,
|
|
|
|
5543, 2120, -3084, -5698, -3526, 1607, 5390, 4646,
|
|
|
|
3084, 5646, 1607, -4311, -5189, 0, 5189, 4311,
|
|
|
|
-1607, -5646, -3084, 3084, 5646, 1607, -4311, -5189,
|
|
|
|
3526, 5189, -1080, -5698, -1607, 4940, 3936, -3084,
|
|
|
|
-5390, 542, 5646, 2120, -4646, -4311, 2614, 5543,
|
|
|
|
3936, 4311, -3526, -4646, 3084, 4940, -2614, -5189,
|
|
|
|
2120, 5390, -1607, -5543, 1080, 5646, -542, -5698,
|
|
|
|
4311, 3084, -5189, -1607, 5646, 0, -5646, 1607,
|
|
|
|
5189, -3084, -4311, 4311, 3084, -5189, -1607, 5646,
|
|
|
|
4646, 1607, -5698, 2120, 4311, -4940, -1080, 5646,
|
|
|
|
-2614, -3936, 5189, 542, -5543, 3084, 3526, -5390,
|
|
|
|
4940, 0, -4940, 4940, 0, -4940, 4940, 0,
|
|
|
|
-4940, 4940, 0, -4940, 4940, 0, -4940, 4940,
|
|
|
|
5189, -1607, -3084, 5646, -4311, 0, 4311, -5646,
|
|
|
|
3084, 1607, -5189, 5189, -1607, -3084, 5646, -4311,
|
|
|
|
5390, -3084, -542, 3936, -5646, 4940, -2120, -1607,
|
|
|
|
4646, -5698, 4311, -1080, -2614, 5189, -5543, 3526,
|
|
|
|
5543, -4311, 2120, 542, -3084, 4940, -5698, 5189,
|
|
|
|
-3526, 1080, 1607, -3936, 5390, -5646, 4646, -2614,
|
|
|
|
5646, -5189, 4311, -3084, 1607, 0, -1607, 3084,
|
|
|
|
-4311, 5189, -5646, 5646, -5189, 4311, -3084, 1607,
|
|
|
|
5698, -5646, 5543, -5390, 5189, -4940, 4646, -4311,
|
|
|
|
3936, -3526, 3084, -2614, 2120, -1607, 1080, -542
|
|
|
|
};
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_ihtllm_float_c(const int16_t *input, int16_t *output, int pitch,
|
2012-10-18 16:31:59 -07:00
|
|
|
TX_TYPE tx_type, int tx_dim) {
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
|
|
|
int i, j, k;
|
2012-10-18 16:31:59 -07:00
|
|
|
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
|
|
|
|
// the implementation could be simplified in
|
|
|
|
// conjunction with integer transform
|
|
|
|
const int16_t *ip = input;
|
|
|
|
int16_t *op = output;
|
2012-10-05 11:16:46 +01:00
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
float *pfa = &bufa[0];
|
|
|
|
float *pfb = &bufb[0];
|
|
|
|
|
|
|
|
// pointers to vertical and horizontal transforms
|
2012-10-30 17:12:12 -07:00
|
|
|
const float *ptv, *pth;
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2012-10-15 16:41:41 -07:00
|
|
|
assert(tx_type != DCT_DCT);
|
2012-10-05 11:16:46 +01:00
|
|
|
// load and convert residual array into floating-point
|
|
|
|
for(j = 0; j < tx_dim; j++) {
|
|
|
|
for(i = 0; i < tx_dim; i++) {
|
|
|
|
pfa[i] = (float)ip[i];
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
2012-10-05 11:16:46 +01:00
|
|
|
pfa += tx_dim;
|
|
|
|
ip += tx_dim;
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
// vertical transformation
|
2012-08-02 09:07:33 -07:00
|
|
|
pfa = &bufa[0];
|
2012-10-05 11:16:46 +01:00
|
|
|
pfb = &bufb[0];
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
switch(tx_type) {
|
|
|
|
case ADST_ADST :
|
|
|
|
case ADST_DCT :
|
|
|
|
ptv = (tx_dim == 4) ? &iadst_4[0] :
|
|
|
|
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
|
|
|
|
break;
|
2012-08-02 09:07:33 -07:00
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
default :
|
|
|
|
ptv = (tx_dim == 4) ? &idct_4[0] :
|
|
|
|
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(j = 0; j < tx_dim; j++) {
|
|
|
|
for(i = 0; i < tx_dim; i++) {
|
|
|
|
pfb[i] = 0 ;
|
|
|
|
for(k = 0; k < tx_dim; k++) {
|
|
|
|
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
|
|
|
|
}
|
|
|
|
pfa += 1;
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
pfb += tx_dim;
|
|
|
|
ptv += tx_dim;
|
|
|
|
pfa = &bufa[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
// horizontal transformation
|
|
|
|
pfa = &bufa[0];
|
|
|
|
pfb = &bufb[0];
|
2012-08-02 09:07:33 -07:00
|
|
|
|
|
|
|
switch(tx_type) {
|
|
|
|
case ADST_ADST :
|
|
|
|
case DCT_ADST :
|
2012-08-29 11:25:38 -07:00
|
|
|
pth = (tx_dim == 4) ? &iadst_4[0] :
|
|
|
|
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
|
2012-08-02 09:07:33 -07:00
|
|
|
break;
|
|
|
|
|
|
|
|
default :
|
2012-08-29 11:25:38 -07:00
|
|
|
pth = (tx_dim == 4) ? &idct_4[0] :
|
|
|
|
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
|
2012-08-02 09:07:33 -07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
for(j = 0; j < tx_dim; j++) {
|
|
|
|
for(i = 0; i < tx_dim; i++) {
|
|
|
|
pfa[i] = 0;
|
|
|
|
for(k = 0; k < tx_dim; k++) {
|
|
|
|
pfa[i] += pfb[k] * pth[k];
|
|
|
|
}
|
|
|
|
pth += tx_dim;
|
|
|
|
}
|
|
|
|
|
|
|
|
pfa += tx_dim;
|
|
|
|
pfb += tx_dim;
|
|
|
|
|
|
|
|
switch(tx_type) {
|
|
|
|
case ADST_ADST :
|
|
|
|
case DCT_ADST :
|
|
|
|
pth = (tx_dim == 4) ? &iadst_4[0] :
|
|
|
|
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default :
|
|
|
|
pth = (tx_dim == 4) ? &idct_4[0] :
|
|
|
|
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
|
|
|
|
break;
|
|
|
|
}
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
2012-08-06 14:48:11 -07:00
|
|
|
|
2012-10-05 11:16:46 +01:00
|
|
|
// convert to short integer format and load BLOCKD buffer
|
|
|
|
op = output;
|
|
|
|
pfa = &bufa[0];
|
|
|
|
|
|
|
|
for(j = 0; j < tx_dim; j++) {
|
|
|
|
for(i = 0; i < tx_dim; i++) {
|
2012-10-18 16:31:59 -07:00
|
|
|
op[i] = (pfa[i] > 0 ) ? (int16_t)( pfa[i] / 8 + 0.49) :
|
|
|
|
-(int16_t)( - pfa[i] / 8 + 0.49);
|
2012-10-05 11:16:46 +01:00
|
|
|
}
|
|
|
|
|
2012-10-30 17:54:22 -07:00
|
|
|
op += shortpitch;
|
2012-10-05 11:16:46 +01:00
|
|
|
pfa += tx_dim;
|
|
|
|
}
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-02 09:07:33 -07:00
|
|
|
}
|
2012-06-25 12:26:09 -07:00
|
|
|
|
2012-10-18 16:31:59 -07:00
|
|
|
/* Converted the transforms to integer form. */
|
2012-10-30 17:54:22 -07:00
|
|
|
#define VERTICAL_SHIFT 14 // 16
|
2012-10-18 16:31:59 -07:00
|
|
|
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
|
2012-10-30 17:54:22 -07:00
|
|
|
#define HORIZONTAL_SHIFT 17 // 15
|
2012-10-18 16:31:59 -07:00
|
|
|
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
|
2012-11-29 07:19:38 -08:00
|
|
|
void vp9_ihtllm_c(const int16_t *input, int16_t *output, int pitch,
|
2012-10-31 16:09:17 -07:00
|
|
|
TX_TYPE tx_type, int tx_dim) {
|
2012-10-18 16:31:59 -07:00
|
|
|
int i, j, k;
|
|
|
|
int16_t imbuf[256];
|
|
|
|
|
|
|
|
const int16_t *ip = input;
|
|
|
|
int16_t *op = output;
|
|
|
|
int16_t *im = &imbuf[0];
|
|
|
|
|
|
|
|
/* pointers to vertical and horizontal transforms. */
|
|
|
|
const int16_t *ptv = NULL, *pth = NULL;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
switch (tx_type) {
|
|
|
|
case ADST_ADST :
|
|
|
|
ptv = pth = (tx_dim == 4) ? &iadst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &iadst_i8[0]
|
|
|
|
: &iadst_i16[0]);
|
|
|
|
break;
|
|
|
|
case ADST_DCT :
|
|
|
|
ptv = (tx_dim == 4) ? &iadst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
|
|
|
|
pth = (tx_dim == 4) ? &idct_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
|
|
|
|
break;
|
|
|
|
case DCT_ADST :
|
|
|
|
ptv = (tx_dim == 4) ? &idct_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
|
|
|
|
pth = (tx_dim == 4) ? &iadst_i4[0]
|
|
|
|
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
|
|
|
|
break;
|
|
|
|
case DCT_DCT :
|
|
|
|
ptv = pth = (tx_dim == 4) ? &idct_i4[0]
|
2012-10-30 17:54:22 -07:00
|
|
|
: ((tx_dim == 8) ? &idct_i8[0]
|
|
|
|
: &idct_i16[0]);
|
2012-10-18 16:31:59 -07:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* vertical transformation */
|
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
|
|
|
int temp = 0;
|
|
|
|
|
|
|
|
for (k = 0; k < tx_dim; k++) {
|
|
|
|
temp += ptv[k] * ip[(k * tx_dim)];
|
|
|
|
}
|
|
|
|
|
|
|
|
im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
|
|
|
|
ip++;
|
|
|
|
}
|
2012-10-30 17:54:22 -07:00
|
|
|
im += tx_dim; // 16
|
2012-10-18 16:31:59 -07:00
|
|
|
ptv += tx_dim;
|
|
|
|
ip = input;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* horizontal transformation */
|
|
|
|
im = &imbuf[0];
|
|
|
|
|
|
|
|
for (j = 0; j < tx_dim; j++) {
|
|
|
|
const int16_t *pthc = pth;
|
|
|
|
|
|
|
|
for (i = 0; i < tx_dim; i++) {
|
|
|
|
int temp = 0;
|
|
|
|
|
|
|
|
for (k = 0; k < tx_dim; k++) {
|
|
|
|
temp += im[k] * pthc[k];
|
|
|
|
}
|
|
|
|
|
|
|
|
op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
|
|
|
|
pthc += tx_dim;
|
|
|
|
}
|
|
|
|
|
2012-10-30 17:54:22 -07:00
|
|
|
im += tx_dim; // 16
|
2012-10-18 16:31:59 -07:00
|
|
|
op += shortpitch;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_idct4x4llm_c(short *input, short *output, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
int temp1, temp2;
|
|
|
|
int shortpitch = pitch >> 1;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[8];
|
|
|
|
b1 = ip[0] - ip[8];
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;
|
|
|
|
temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);
|
|
|
|
c1 = temp1 - temp2;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);
|
|
|
|
temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;
|
|
|
|
d1 = temp1 + temp2;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
op[shortpitch * 0] = a1 + d1;
|
|
|
|
op[shortpitch * 3] = a1 - d1;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
op[shortpitch * 1] = b1 + c1;
|
|
|
|
op[shortpitch * 2] = b1 - c1;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
ip = output;
|
|
|
|
op = output;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[2];
|
|
|
|
b1 = ip[0] - ip[2];
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
temp1 = (ip[1] * sinpi8sqrt2 + rounding) >> 16;
|
|
|
|
temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1 + rounding) >> 16);
|
|
|
|
c1 = temp1 - temp2;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1 + rounding) >> 16);
|
|
|
|
temp2 = (ip[3] * sinpi8sqrt2 + rounding) >> 16;
|
|
|
|
d1 = temp1 + temp2;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
op[0] = (a1 + d1 + 16) >> 5;
|
|
|
|
op[3] = (a1 - d1 + 16) >> 5;
|
2010-12-01 15:50:14 -08:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
op[1] = (b1 + c1 + 16) >> 5;
|
|
|
|
op[2] = (b1 - c1 + 16) >> 5;
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
ip += shortpitch;
|
|
|
|
op += shortpitch;
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_idct4x4llm_1_c(short *input, short *output, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
int a1;
|
|
|
|
short *op = output;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
a1 = ((input[0] + 16) >> 5);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
op[0] = a1;
|
|
|
|
op[1] = a1;
|
|
|
|
op[2] = a1;
|
|
|
|
op[3] = a1;
|
|
|
|
op += shortpitch;
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
|
|
|
|
2012-10-31 16:09:17 -07:00
|
|
|
void vp9_dc_only_idct_add_c(short input_dc, unsigned char *pred_ptr,
|
|
|
|
unsigned char *dst_ptr, int pitch, int stride) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int a1 = ((input_dc + 16) >> 5);
|
|
|
|
int r, c;
|
2010-05-28 14:28:12 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
for (r = 0; r < 4; r++) {
|
|
|
|
for (c = 0; c < 4; c++) {
|
|
|
|
int a = a1 + pred_ptr[c];
|
2010-05-28 14:28:12 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
if (a < 0)
|
|
|
|
a = 0;
|
2010-05-28 14:28:12 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
if (a > 255)
|
|
|
|
a = 255;
|
2010-05-28 14:28:12 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
dst_ptr[c] = (unsigned char) a;
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
2010-05-28 14:28:12 -04:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
dst_ptr += stride;
|
|
|
|
pred_ptr += pitch;
|
|
|
|
}
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_c(short *input, short *output) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ((ip[0] + ip[3]));
|
|
|
|
b1 = ((ip[1] + ip[2]));
|
|
|
|
c1 = ((ip[1] - ip[2]));
|
|
|
|
d1 = ((ip[0] - ip[3]));
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[1] = (c1 + d1) >> 1;
|
|
|
|
op[2] = (a1 - b1) >> 1;
|
|
|
|
op[3] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[12];
|
|
|
|
b1 = ip[4] + ip[8];
|
|
|
|
c1 = ip[4] - ip[8];
|
|
|
|
d1 = ip[0] - ip[12];
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[4] = (c1 + d1) >> 1;
|
|
|
|
op[8] = (a1 - b1) >> 1;
|
|
|
|
op[12] = (d1 - c1) >> 1;
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_1_c(short *in, short *out) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
short tmp[4];
|
|
|
|
short *ip = in;
|
|
|
|
short *op = tmp;
|
|
|
|
|
|
|
|
op[0] = (ip[0] + 1) >> 1;
|
|
|
|
op[1] = op[2] = op[3] = (ip[0] >> 1);
|
|
|
|
|
|
|
|
ip = tmp;
|
|
|
|
op = out;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
op[0] = (ip[0] + 1) >> 1;
|
|
|
|
op[4] = op[8] = op[12] = (ip[0] >> 1);
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
2010-05-18 11:58:33 -04:00
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
#if CONFIG_LOSSLESS
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_lossless_c(short *input, short *output) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ((ip[0] + ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
b1 = ((ip[1] + ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
c1 = ((ip[1] - ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
d1 = ((ip[0] - ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[1] = (c1 + d1) >> 1;
|
|
|
|
op[2] = (a1 - b1) >> 1;
|
|
|
|
op[3] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[0] + ip[12];
|
|
|
|
b1 = ip[4] + ip[8];
|
|
|
|
c1 = ip[4] - ip[8];
|
|
|
|
d1 = ip[0] - ip[12];
|
|
|
|
|
|
|
|
|
|
|
|
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[4] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[8] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[12] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_1_lossless_c(short *in, short *out) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
short tmp[4];
|
|
|
|
short *ip = in;
|
|
|
|
short *op = tmp;
|
|
|
|
|
|
|
|
op[0] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) + 1) >> 1;
|
|
|
|
op[1] = op[2] = op[3] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) >> 1);
|
|
|
|
|
|
|
|
ip = tmp;
|
|
|
|
op = out;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
op[0] = ((ip[0] + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
op[4] = op[8] = op[12] = ((ip[0] >> 1)) << Y2_WHT_UPSCALE_FACTOR;
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_x8_c(short *input, short *output, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
int a1, b1, c1, d1;
|
|
|
|
short *ip = input;
|
|
|
|
short *op = output;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ((ip[0] + ip[3])) >> WHT_UPSCALE_FACTOR;
|
|
|
|
b1 = ((ip[1] + ip[2])) >> WHT_UPSCALE_FACTOR;
|
|
|
|
c1 = ((ip[1] - ip[2])) >> WHT_UPSCALE_FACTOR;
|
|
|
|
d1 = ((ip[0] - ip[3])) >> WHT_UPSCALE_FACTOR;
|
|
|
|
|
|
|
|
op[0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[1] = (c1 + d1) >> 1;
|
|
|
|
op[2] = (a1 - b1) >> 1;
|
|
|
|
op[3] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip += 4;
|
|
|
|
op += shortpitch;
|
|
|
|
}
|
|
|
|
|
|
|
|
ip = output;
|
|
|
|
op = output;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
a1 = ip[shortpitch * 0] + ip[shortpitch * 3];
|
|
|
|
b1 = ip[shortpitch * 1] + ip[shortpitch * 2];
|
|
|
|
c1 = ip[shortpitch * 1] - ip[shortpitch * 2];
|
|
|
|
d1 = ip[shortpitch * 0] - ip[shortpitch * 3];
|
|
|
|
|
|
|
|
|
|
|
|
op[shortpitch * 0] = (a1 + b1 + 1) >> 1;
|
|
|
|
op[shortpitch * 1] = (c1 + d1) >> 1;
|
|
|
|
op[shortpitch * 2] = (a1 - b1) >> 1;
|
|
|
|
op[shortpitch * 3] = (d1 - c1) >> 1;
|
|
|
|
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_inv_walsh4x4_1_x8_c(short *in, short *out, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
short tmp[4];
|
|
|
|
short *ip = in;
|
|
|
|
short *op = tmp;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
op[0] = ((ip[0] >> WHT_UPSCALE_FACTOR) + 1) >> 1;
|
|
|
|
op[1] = op[2] = op[3] = ((ip[0] >> WHT_UPSCALE_FACTOR) >> 1);
|
|
|
|
|
|
|
|
|
|
|
|
ip = tmp;
|
|
|
|
op = out;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
op[shortpitch * 0] = (ip[0] + 1) >> 1;
|
|
|
|
op[shortpitch * 1] = op[shortpitch * 2] = op[shortpitch * 3] = ip[0] >> 1;
|
|
|
|
ip++;
|
|
|
|
op++;
|
|
|
|
}
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
|
2012-10-31 16:09:17 -07:00
|
|
|
void vp9_dc_only_inv_walsh_add_c(short input_dc, unsigned char *pred_ptr,
|
|
|
|
unsigned char *dst_ptr,
|
|
|
|
int pitch, int stride) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int r, c;
|
|
|
|
short tmp[16];
|
2012-10-30 16:25:53 -07:00
|
|
|
vp9_short_inv_walsh4x4_1_x8_c(&input_dc, tmp, 4 << 1);
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
for (r = 0; r < 4; r++) {
|
|
|
|
for (c = 0; c < 4; c++) {
|
|
|
|
int a = tmp[r * 4 + c] + pred_ptr[c];
|
|
|
|
if (a < 0)
|
|
|
|
a = 0;
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
if (a > 255)
|
|
|
|
a = 255;
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
dst_ptr[c] = (unsigned char) a;
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
dst_ptr += stride;
|
|
|
|
pred_ptr += pitch;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
#endif
|
2012-02-28 17:11:12 -08:00
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_dc_only_idct_add_8x8_c(short input_dc,
|
2012-02-16 13:41:17 -08:00
|
|
|
unsigned char *pred_ptr,
|
|
|
|
unsigned char *dst_ptr,
|
2012-07-13 15:21:29 -07:00
|
|
|
int pitch, int stride) {
|
|
|
|
int a1 = ((input_dc + 16) >> 5);
|
|
|
|
int r, c, b;
|
|
|
|
unsigned char *orig_pred = pred_ptr;
|
|
|
|
unsigned char *orig_dst = dst_ptr;
|
|
|
|
for (b = 0; b < 4; b++) {
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
|
|
for (c = 0; c < 4; c++) {
|
|
|
|
int a = a1 + pred_ptr[c];
|
|
|
|
|
|
|
|
if (a < 0)
|
|
|
|
a = 0;
|
|
|
|
|
|
|
|
if (a > 255)
|
|
|
|
a = 255;
|
|
|
|
|
|
|
|
dst_ptr[c] = (unsigned char) a;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst_ptr += stride;
|
|
|
|
pred_ptr += pitch;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
dst_ptr = orig_dst + (b + 1) % 2 * 4 + (b + 1) / 2 * 4 * stride;
|
|
|
|
pred_ptr = orig_pred + (b + 1) % 2 * 4 + (b + 1) / 2 * 4 * pitch;
|
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
|
|
|
|
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
|
|
|
|
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
|
|
|
|
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
|
|
|
|
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
|
|
|
|
#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */
|
|
|
|
|
|
|
|
/* row (horizontal) IDCT
|
|
|
|
*
|
|
|
|
* 7 pi 1 dst[k] = sum c[l] * src[l] * cos( -- *
|
|
|
|
* ( k + - ) * l ) l=0 8 2
|
|
|
|
*
|
|
|
|
* where: c[0] = 128 c[1..7] = 128*sqrt(2) */
|
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
static void idctrow(int *blk) {
|
|
|
|
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
|
|
|
|
/* shortcut */
|
|
|
|
if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
|
|
|
|
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) {
|
|
|
|
blk[0] = blk[1] = blk[2] = blk[3] = blk[4]
|
|
|
|
= blk[5] = blk[6] = blk[7] = blk[0] << 3;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */
|
|
|
|
/* first stage */
|
|
|
|
x8 = W7 * (x4 + x5);
|
|
|
|
x4 = x8 + (W1 - W7) * x4;
|
|
|
|
x5 = x8 - (W1 + W7) * x5;
|
|
|
|
x8 = W3 * (x6 + x7);
|
|
|
|
x6 = x8 - (W3 - W5) * x6;
|
|
|
|
x7 = x8 - (W3 + W5) * x7;
|
|
|
|
|
|
|
|
/* second stage */
|
|
|
|
x8 = x0 + x1;
|
|
|
|
x0 -= x1;
|
|
|
|
x1 = W6 * (x3 + x2);
|
|
|
|
x2 = x1 - (W2 + W6) * x2;
|
|
|
|
x3 = x1 + (W2 - W6) * x3;
|
|
|
|
x1 = x4 + x6;
|
|
|
|
x4 -= x6;
|
|
|
|
x6 = x5 + x7;
|
|
|
|
x5 -= x7;
|
|
|
|
|
|
|
|
/* third stage */
|
|
|
|
x7 = x8 + x3;
|
|
|
|
x8 -= x3;
|
|
|
|
x3 = x0 + x2;
|
|
|
|
x0 -= x2;
|
|
|
|
x2 = (181 * (x4 + x5) + 128) >> 8;
|
|
|
|
x4 = (181 * (x4 - x5) + 128) >> 8;
|
|
|
|
|
|
|
|
/* fourth stage */
|
|
|
|
blk[0] = (x7 + x1) >> 8;
|
|
|
|
blk[1] = (x3 + x2) >> 8;
|
|
|
|
blk[2] = (x0 + x4) >> 8;
|
|
|
|
blk[3] = (x8 + x6) >> 8;
|
|
|
|
blk[4] = (x8 - x6) >> 8;
|
|
|
|
blk[5] = (x0 - x4) >> 8;
|
|
|
|
blk[6] = (x3 - x2) >> 8;
|
|
|
|
blk[7] = (x7 - x1) >> 8;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* column (vertical) IDCT
|
|
|
|
*
|
|
|
|
* 7 pi 1 dst[8*k] = sum c[l] * src[8*l] *
|
|
|
|
* cos( -- * ( k + - ) * l ) l=0 8 2
|
|
|
|
*
|
|
|
|
* where: c[0] = 1/1024 c[1..7] = (1/1024)*sqrt(2) */
|
2012-07-13 15:21:29 -07:00
|
|
|
static void idctcol(int *blk) {
|
|
|
|
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
|
2012-02-16 13:41:17 -08:00
|
|
|
|
2012-07-13 15:21:29 -07:00
|
|
|
/* shortcut */
|
|
|
|
if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
|
2012-02-16 13:41:17 -08:00
|
|
|
(x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) |
|
2012-07-13 15:21:29 -07:00
|
|
|
(x7 = blk[8 * 3]))) {
|
|
|
|
blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3]
|
|
|
|
= blk[8 * 4] = blk[8 * 5] = blk[8 * 6]
|
|
|
|
= blk[8 * 7] = ((blk[8 * 0] + 32) >> 6);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
x0 = (blk[8 * 0] << 8) + 16384;
|
|
|
|
|
|
|
|
/* first stage */
|
|
|
|
x8 = W7 * (x4 + x5) + 4;
|
|
|
|
x4 = (x8 + (W1 - W7) * x4) >> 3;
|
|
|
|
x5 = (x8 - (W1 + W7) * x5) >> 3;
|
|
|
|
x8 = W3 * (x6 + x7) + 4;
|
|
|
|
x6 = (x8 - (W3 - W5) * x6) >> 3;
|
|
|
|
x7 = (x8 - (W3 + W5) * x7) >> 3;
|
|
|
|
|
|
|
|
/* second stage */
|
|
|
|
x8 = x0 + x1;
|
|
|
|
x0 -= x1;
|
|
|
|
x1 = W6 * (x3 + x2) + 4;
|
|
|
|
x2 = (x1 - (W2 + W6) * x2) >> 3;
|
|
|
|
x3 = (x1 + (W2 - W6) * x3) >> 3;
|
|
|
|
x1 = x4 + x6;
|
|
|
|
x4 -= x6;
|
|
|
|
x6 = x5 + x7;
|
|
|
|
x5 -= x7;
|
|
|
|
|
|
|
|
/* third stage */
|
|
|
|
x7 = x8 + x3;
|
|
|
|
x8 -= x3;
|
|
|
|
x3 = x0 + x2;
|
|
|
|
x0 -= x2;
|
|
|
|
x2 = (181 * (x4 + x5) + 128) >> 8;
|
|
|
|
x4 = (181 * (x4 - x5) + 128) >> 8;
|
|
|
|
|
|
|
|
/* fourth stage */
|
|
|
|
blk[8 * 0] = (x7 + x1) >> 14;
|
|
|
|
blk[8 * 1] = (x3 + x2) >> 14;
|
|
|
|
blk[8 * 2] = (x0 + x4) >> 14;
|
|
|
|
blk[8 * 3] = (x8 + x6) >> 14;
|
|
|
|
blk[8 * 4] = (x8 - x6) >> 14;
|
|
|
|
blk[8 * 5] = (x0 - x4) >> 14;
|
|
|
|
blk[8 * 6] = (x3 - x2) >> 14;
|
|
|
|
blk[8 * 7] = (x7 - x1) >> 14;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
#define TX_DIM 8
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_idct8x8_c(short *coefs, short *block, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int X[TX_DIM * TX_DIM];
|
|
|
|
int i, j;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < TX_DIM; i++) {
|
|
|
|
for (j = 0; j < TX_DIM; j++) {
|
|
|
|
X[i * TX_DIM + j] = (int)(coefs[i * TX_DIM + j] + 1
|
|
|
|
+ (coefs[i * TX_DIM + j] < 0)) >> 2;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
idctrow(X + 8 * i);
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
idctcol(X + i);
|
|
|
|
|
|
|
|
for (i = 0; i < TX_DIM; i++) {
|
|
|
|
for (j = 0; j < TX_DIM; j++) {
|
|
|
|
block[i * shortpitch + j] = X[i * TX_DIM + j] >> 1;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
2012-11-09 17:50:13 -08:00
|
|
|
/* Row IDCT when only first 4 coefficients are non-zero. */
|
|
|
|
static void idctrow10(int *blk) {
|
|
|
|
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
|
|
|
|
|
|
|
|
/* shortcut */
|
|
|
|
if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
|
|
|
|
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) {
|
|
|
|
blk[0] = blk[1] = blk[2] = blk[3] = blk[4]
|
|
|
|
= blk[5] = blk[6] = blk[7] = blk[0] << 3;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */
|
|
|
|
/* first stage */
|
|
|
|
x5 = W7 * x4;
|
|
|
|
x4 = W1 * x4;
|
|
|
|
x6 = W3 * x7;
|
|
|
|
x7 = -W5 * x7;
|
|
|
|
|
|
|
|
/* second stage */
|
|
|
|
x2 = W6 * x3;
|
|
|
|
x3 = W2 * x3;
|
|
|
|
x1 = x4 + x6;
|
|
|
|
x4 -= x6;
|
|
|
|
x6 = x5 + x7;
|
|
|
|
x5 -= x7;
|
|
|
|
|
|
|
|
/* third stage */
|
|
|
|
x7 = x0 + x3;
|
|
|
|
x8 = x0 - x3;
|
|
|
|
x3 = x0 + x2;
|
|
|
|
x0 -= x2;
|
|
|
|
x2 = (181 * (x4 + x5) + 128) >> 8;
|
|
|
|
x4 = (181 * (x4 - x5) + 128) >> 8;
|
|
|
|
|
|
|
|
/* fourth stage */
|
|
|
|
blk[0] = (x7 + x1) >> 8;
|
|
|
|
blk[1] = (x3 + x2) >> 8;
|
|
|
|
blk[2] = (x0 + x4) >> 8;
|
|
|
|
blk[3] = (x8 + x6) >> 8;
|
|
|
|
blk[4] = (x8 - x6) >> 8;
|
|
|
|
blk[5] = (x0 - x4) >> 8;
|
|
|
|
blk[6] = (x3 - x2) >> 8;
|
|
|
|
blk[7] = (x7 - x1) >> 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Column (vertical) IDCT when only first 4 coefficients are non-zero. */
|
|
|
|
static void idctcol10(int *blk) {
|
|
|
|
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
|
|
|
|
|
|
|
|
/* shortcut */
|
|
|
|
if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
|
|
|
|
(x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) |
|
|
|
|
(x7 = blk[8 * 3]))) {
|
|
|
|
blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3]
|
|
|
|
= blk[8 * 4] = blk[8 * 5] = blk[8 * 6]
|
|
|
|
= blk[8 * 7] = ((blk[8 * 0] + 32) >> 6);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
x0 = (blk[8 * 0] << 8) + 16384;
|
|
|
|
|
|
|
|
/* first stage */
|
|
|
|
x5 = (W7 * x4 + 4) >> 3;
|
|
|
|
x4 = (W1 * x4 + 4) >> 3;
|
|
|
|
x6 = (W3 * x7 + 4) >> 3;
|
|
|
|
x7 = (-W5 * x7 + 4) >> 3;
|
|
|
|
|
|
|
|
/* second stage */
|
|
|
|
x2 = (W6 * x3 + 4) >> 3;
|
|
|
|
x3 = (W2 * x3 + 4) >> 3;
|
|
|
|
x1 = x4 + x6;
|
|
|
|
x4 -= x6;
|
|
|
|
x6 = x5 + x7;
|
|
|
|
x5 -= x7;
|
|
|
|
|
|
|
|
/* third stage */
|
|
|
|
x7 = x0 + x3;
|
|
|
|
x8 = x0 - x3;
|
|
|
|
x3 = x0 + x2;
|
|
|
|
x0 -= x2;
|
|
|
|
x2 = (181 * (x4 + x5) + 128) >> 8;
|
|
|
|
x4 = (181 * (x4 - x5) + 128) >> 8;
|
|
|
|
|
|
|
|
/* fourth stage */
|
|
|
|
blk[8 * 0] = (x7 + x1) >> 14;
|
|
|
|
blk[8 * 1] = (x3 + x2) >> 14;
|
|
|
|
blk[8 * 2] = (x0 + x4) >> 14;
|
|
|
|
blk[8 * 3] = (x8 + x6) >> 14;
|
|
|
|
blk[8 * 4] = (x8 - x6) >> 14;
|
|
|
|
blk[8 * 5] = (x0 - x4) >> 14;
|
|
|
|
blk[8 * 6] = (x3 - x2) >> 14;
|
|
|
|
blk[8 * 7] = (x7 - x1) >> 14;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_idct10_8x8_c(short *coefs, short *block, int pitch) {
|
|
|
|
int X[TX_DIM * TX_DIM];
|
|
|
|
int i, j;
|
|
|
|
int shortpitch = pitch >> 1;
|
|
|
|
|
|
|
|
for (i = 0; i < TX_DIM; i++) {
|
|
|
|
for (j = 0; j < TX_DIM; j++) {
|
|
|
|
X[i * TX_DIM + j] = (int)(coefs[i * TX_DIM + j] + 1
|
|
|
|
+ (coefs[i * TX_DIM + j] < 0)) >> 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do first 4 row idct only since non-zero dct coefficients are all in
|
|
|
|
* upper-left 4x4 area. */
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
idctrow10(X + 8 * i);
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
idctcol10(X + i);
|
|
|
|
|
|
|
|
for (i = 0; i < TX_DIM; i++) {
|
|
|
|
for (j = 0; j < TX_DIM; j++) {
|
|
|
|
block[i * shortpitch + j] = X[i * TX_DIM + j] >> 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_ihaar2x2_c(short *input, short *output, int pitch) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i;
|
|
|
|
short *ip = input; // 0,1, 4, 8
|
|
|
|
short *op = output;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
|
|
op[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
op[0] = (ip[0] + ip[1] + ip[4] + ip[8] + 1) >> 1;
|
|
|
|
op[1] = (ip[0] - ip[1] + ip[4] - ip[8]) >> 1;
|
|
|
|
op[4] = (ip[0] + ip[1] - ip[4] - ip[8]) >> 1;
|
|
|
|
op[8] = (ip[0] - ip[1] - ip[4] + ip[8]) >> 1;
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
2012-08-02 17:03:14 -07:00
|
|
|
|
|
|
|
#if 0
|
|
|
|
// Keep a really bad float version as reference for now.
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_idct16x16_c(short *input, short *output, int pitch) {
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
|
|
|
double x;
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i, j, k, l;
|
|
|
|
for (l = 0; l < 16; ++l) {
|
|
|
|
for (k = 0; k < 16; ++k) {
|
|
|
|
double s = 0;
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 0; j < 16; ++j) {
|
|
|
|
x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/32;
|
|
|
|
if (i != 0)
|
|
|
|
x *= sqrt(2.0);
|
|
|
|
if (j != 0)
|
|
|
|
x *= sqrt(2.0);
|
|
|
|
s += x;
|
|
|
|
}
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
2012-10-05 11:16:46 +01:00
|
|
|
output[k*short_pitch+l] = (short)round(s);
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-11-01 09:04:28 -07:00
|
|
|
#define TEST_INT_16x16_IDCT 1
|
|
|
|
#if !TEST_INT_16x16_IDCT
|
2012-08-07 13:55:49 -07:00
|
|
|
static const double C1 = 0.995184726672197;
|
|
|
|
static const double C2 = 0.98078528040323;
|
|
|
|
static const double C3 = 0.956940335732209;
|
|
|
|
static const double C4 = 0.923879532511287;
|
|
|
|
static const double C5 = 0.881921264348355;
|
|
|
|
static const double C6 = 0.831469612302545;
|
|
|
|
static const double C7 = 0.773010453362737;
|
|
|
|
static const double C8 = 0.707106781186548;
|
|
|
|
static const double C9 = 0.634393284163646;
|
|
|
|
static const double C10 = 0.555570233019602;
|
|
|
|
static const double C11 = 0.471396736825998;
|
|
|
|
static const double C12 = 0.38268343236509;
|
|
|
|
static const double C13 = 0.290284677254462;
|
|
|
|
static const double C14 = 0.195090322016128;
|
|
|
|
static const double C15 = 0.098017140329561;
|
|
|
|
|
|
|
|
|
2012-08-02 17:03:14 -07:00
|
|
|
static void butterfly_16x16_idct_1d(double input[16], double output[16]) {
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
|
|
|
double step[16];
|
|
|
|
double intermediate[16];
|
|
|
|
double temp1, temp2;
|
|
|
|
|
|
|
|
|
|
|
|
// step 1 and 2
|
|
|
|
step[ 0] = input[0] + input[8];
|
|
|
|
step[ 1] = input[0] - input[8];
|
|
|
|
|
|
|
|
temp1 = input[4]*C12;
|
|
|
|
temp2 = input[12]*C4;
|
|
|
|
|
|
|
|
temp1 -= temp2;
|
|
|
|
temp1 *= C8;
|
|
|
|
|
|
|
|
step[ 2] = 2*(temp1);
|
|
|
|
|
|
|
|
temp1 = input[4]*C4;
|
|
|
|
temp2 = input[12]*C12;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = (temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
step[ 3] = 2*(temp1);
|
|
|
|
|
|
|
|
temp1 = input[2]*C8;
|
|
|
|
temp1 = 2*(temp1);
|
|
|
|
temp2 = input[6] + input[10];
|
|
|
|
|
|
|
|
step[ 4] = temp1 + temp2;
|
|
|
|
step[ 5] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = input[14]*C8;
|
|
|
|
temp1 = 2*(temp1);
|
|
|
|
temp2 = input[6] - input[10];
|
|
|
|
|
|
|
|
step[ 6] = temp2 - temp1;
|
|
|
|
step[ 7] = temp2 + temp1;
|
|
|
|
|
|
|
|
// for odd input
|
|
|
|
temp1 = input[3]*C12;
|
|
|
|
temp2 = input[13]*C4;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = (temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[ 8] = 2*(temp1);
|
|
|
|
|
|
|
|
temp1 = input[3]*C4;
|
|
|
|
temp2 = input[13]*C12;
|
|
|
|
temp2 -= temp1;
|
|
|
|
temp2 = (temp2);
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[ 9] = 2*(temp2);
|
|
|
|
|
|
|
|
intermediate[10] = 2*(input[9]*C8);
|
|
|
|
intermediate[11] = input[15] - input[1];
|
|
|
|
intermediate[12] = input[15] + input[1];
|
|
|
|
intermediate[13] = 2*((input[7]*C8));
|
|
|
|
|
|
|
|
temp1 = input[11]*C12;
|
|
|
|
temp2 = input[5]*C4;
|
|
|
|
temp2 -= temp1;
|
|
|
|
temp2 = (temp2);
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[14] = 2*(temp2);
|
|
|
|
|
|
|
|
temp1 = input[11]*C4;
|
|
|
|
temp2 = input[5]*C12;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = (temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[15] = 2*(temp1);
|
|
|
|
|
|
|
|
step[ 8] = intermediate[ 8] + intermediate[14];
|
|
|
|
step[ 9] = intermediate[ 9] + intermediate[15];
|
|
|
|
step[10] = intermediate[10] + intermediate[11];
|
|
|
|
step[11] = intermediate[10] - intermediate[11];
|
|
|
|
step[12] = intermediate[12] + intermediate[13];
|
|
|
|
step[13] = intermediate[12] - intermediate[13];
|
|
|
|
step[14] = intermediate[ 8] - intermediate[14];
|
|
|
|
step[15] = intermediate[ 9] - intermediate[15];
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
output[0] = step[ 0] + step[ 3];
|
|
|
|
output[1] = step[ 1] + step[ 2];
|
|
|
|
output[2] = step[ 1] - step[ 2];
|
|
|
|
output[3] = step[ 0] - step[ 3];
|
|
|
|
|
|
|
|
temp1 = step[ 4]*C14;
|
|
|
|
temp2 = step[ 7]*C2;
|
|
|
|
temp1 -= temp2;
|
|
|
|
output[4] = (temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 4]*C2;
|
|
|
|
temp2 = step[ 7]*C14;
|
|
|
|
temp1 += temp2;
|
|
|
|
output[7] = (temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 5]*C10;
|
|
|
|
temp2 = step[ 6]*C6;
|
|
|
|
temp1 -= temp2;
|
|
|
|
output[5] = (temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 5]*C6;
|
|
|
|
temp2 = step[ 6]*C10;
|
|
|
|
temp1 += temp2;
|
|
|
|
output[6] = (temp1);
|
|
|
|
|
|
|
|
output[8] = step[ 8] + step[11];
|
|
|
|
output[9] = step[ 9] + step[10];
|
|
|
|
output[10] = step[ 9] - step[10];
|
|
|
|
output[11] = step[ 8] - step[11];
|
|
|
|
output[12] = step[12] + step[15];
|
|
|
|
output[13] = step[13] + step[14];
|
|
|
|
output[14] = step[13] - step[14];
|
|
|
|
output[15] = step[12] - step[15];
|
|
|
|
|
|
|
|
// output 4
|
|
|
|
step[ 0] = output[0] + output[7];
|
|
|
|
step[ 1] = output[1] + output[6];
|
|
|
|
step[ 2] = output[2] + output[5];
|
|
|
|
step[ 3] = output[3] + output[4];
|
|
|
|
step[ 4] = output[3] - output[4];
|
|
|
|
step[ 5] = output[2] - output[5];
|
|
|
|
step[ 6] = output[1] - output[6];
|
|
|
|
step[ 7] = output[0] - output[7];
|
|
|
|
|
|
|
|
temp1 = output[8]*C7;
|
|
|
|
temp2 = output[15]*C9;
|
|
|
|
temp1 -= temp2;
|
|
|
|
step[ 8] = (temp1);
|
|
|
|
|
|
|
|
temp1 = output[9]*C11;
|
|
|
|
temp2 = output[14]*C5;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[ 9] = (temp1);
|
|
|
|
|
|
|
|
temp1 = output[10]*C3;
|
|
|
|
temp2 = output[13]*C13;
|
|
|
|
temp1 -= temp2;
|
|
|
|
step[10] = (temp1);
|
|
|
|
|
|
|
|
temp1 = output[11]*C15;
|
|
|
|
temp2 = output[12]*C1;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[11] = (temp1);
|
|
|
|
|
|
|
|
temp1 = output[11]*C1;
|
|
|
|
temp2 = output[12]*C15;
|
|
|
|
temp2 -= temp1;
|
|
|
|
step[12] = (temp2);
|
|
|
|
|
|
|
|
temp1 = output[10]*C13;
|
|
|
|
temp2 = output[13]*C3;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[13] = (temp1);
|
|
|
|
|
|
|
|
temp1 = output[9]*C5;
|
|
|
|
temp2 = output[14]*C11;
|
|
|
|
temp2 -= temp1;
|
|
|
|
step[14] = (temp2);
|
|
|
|
|
|
|
|
temp1 = output[8]*C9;
|
|
|
|
temp2 = output[15]*C7;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[15] = (temp1);
|
|
|
|
|
|
|
|
// step 5
|
|
|
|
output[0] = (step[0] + step[15]);
|
|
|
|
output[1] = (step[1] + step[14]);
|
|
|
|
output[2] = (step[2] + step[13]);
|
|
|
|
output[3] = (step[3] + step[12]);
|
|
|
|
output[4] = (step[4] + step[11]);
|
|
|
|
output[5] = (step[5] + step[10]);
|
|
|
|
output[6] = (step[6] + step[ 9]);
|
|
|
|
output[7] = (step[7] + step[ 8]);
|
|
|
|
|
|
|
|
output[15] = (step[0] - step[15]);
|
|
|
|
output[14] = (step[1] - step[14]);
|
|
|
|
output[13] = (step[2] - step[13]);
|
|
|
|
output[12] = (step[3] - step[12]);
|
|
|
|
output[11] = (step[4] - step[11]);
|
|
|
|
output[10] = (step[5] - step[10]);
|
|
|
|
output[9] = (step[6] - step[ 9]);
|
|
|
|
output[8] = (step[7] - step[ 8]);
|
|
|
|
}
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// Remove once an int version of iDCT is written
|
|
|
|
#if 0
|
|
|
|
void reference_16x16_idct_1d(double input[16], double output[16]) {
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
|
|
|
const double kPi = 3.141592653589793238462643383279502884;
|
|
|
|
const double kSqrt2 = 1.414213562373095048801688724209698;
|
|
|
|
for (int k = 0; k < 16; k++) {
|
|
|
|
output[k] = 0.0;
|
|
|
|
for (int n = 0; n < 16; n++) {
|
|
|
|
output[k] += input[n]*cos(kPi*(2*k+1)*n/32.0);
|
|
|
|
if (n == 0)
|
|
|
|
output[k] = output[k]/kSqrt2;
|
|
|
|
}
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
|
|
|
}
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-10-30 16:25:53 -07:00
|
|
|
void vp9_short_idct16x16_c(short *input, short *output, int pitch) {
|
2012-10-05 11:16:46 +01:00
|
|
|
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-10-05 11:16:46 +01:00
|
|
|
{
|
|
|
|
double out[16*16], out2[16*16];
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
// First transform rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = input[j + i*short_pitch];
|
|
|
|
butterfly_16x16_idct_1d(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
out[j + i*16] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Then transform columns
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
double temp_in[16], temp_out[16];
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = out[j*16 + i];
|
|
|
|
butterfly_16x16_idct_1d(temp_in, temp_out);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
out2[j*16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
for (i = 0; i < 16*16; ++i)
|
|
|
|
output[i] = round(out2[i]/128);
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
2012-10-31 14:40:53 -07:00
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
2012-08-02 17:03:14 -07:00
|
|
|
}
|
2012-11-01 09:04:28 -07:00
|
|
|
|
|
|
|
#else
|
|
|
|
static const int16_t C1 = 16305;
|
|
|
|
static const int16_t C2 = 16069;
|
|
|
|
static const int16_t C3 = 15679;
|
|
|
|
static const int16_t C4 = 15137;
|
|
|
|
static const int16_t C5 = 14449;
|
|
|
|
static const int16_t C6 = 13623;
|
|
|
|
static const int16_t C7 = 12665;
|
|
|
|
static const int16_t C8 = 11585;
|
|
|
|
static const int16_t C9 = 10394;
|
|
|
|
static const int16_t C10 = 9102;
|
|
|
|
static const int16_t C11 = 7723;
|
|
|
|
static const int16_t C12 = 6270;
|
|
|
|
static const int16_t C13 = 4756;
|
|
|
|
static const int16_t C14 = 3196;
|
|
|
|
static const int16_t C15 = 1606;
|
|
|
|
|
|
|
|
#define INITIAL_SHIFT 2
|
|
|
|
#define INITIAL_ROUNDING (1 << (INITIAL_SHIFT - 1))
|
|
|
|
#define RIGHT_SHIFT 14
|
|
|
|
#define RIGHT_ROUNDING (1 << (RIGHT_SHIFT - 1))
|
|
|
|
|
|
|
|
static void butterfly_16x16_idct_1d(int16_t input[16], int16_t output[16],
|
|
|
|
int last_shift_bits) {
|
|
|
|
int16_t step[16];
|
|
|
|
int intermediate[16];
|
|
|
|
int temp1, temp2;
|
|
|
|
|
|
|
|
int step1_shift = RIGHT_SHIFT + INITIAL_SHIFT;
|
|
|
|
int step1_rounding = 1 << (step1_shift - 1);
|
|
|
|
int last_rounding = 0;
|
|
|
|
|
|
|
|
if (last_shift_bits > 0)
|
|
|
|
last_rounding = 1 << (last_shift_bits - 1);
|
|
|
|
|
|
|
|
// step 1 and 2
|
|
|
|
step[ 0] = (input[0] + input[8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 1] = (input[0] - input[8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
temp1 = input[4] * C12;
|
|
|
|
temp2 = input[12] * C4;
|
|
|
|
temp1 = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
step[ 2] = (2 * (temp1) + step1_rounding) >> step1_shift;
|
|
|
|
|
|
|
|
temp1 = input[4] * C4;
|
|
|
|
temp2 = input[12] * C12;
|
|
|
|
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
step[ 3] = (2 * (temp1) + step1_rounding) >> step1_shift;
|
|
|
|
|
|
|
|
temp1 = input[2] * C8;
|
|
|
|
temp1 = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp2 = input[6] + input[10];
|
|
|
|
step[ 4] = (temp1 + temp2 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 5] = (temp1 - temp2 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
temp1 = input[14] * C8;
|
|
|
|
temp1 = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp2 = input[6] - input[10];
|
|
|
|
step[ 6] = (temp2 - temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 7] = (temp2 + temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
// for odd input
|
|
|
|
temp1 = input[3] * C12;
|
|
|
|
temp2 = input[13] * C4;
|
|
|
|
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[ 8] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = input[3] * C4;
|
|
|
|
temp2 = input[13] * C12;
|
|
|
|
temp2 = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[ 9] = (2 * (temp2) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
intermediate[10] = (2 * (input[9] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
intermediate[11] = input[15] - input[1];
|
|
|
|
intermediate[12] = input[15] + input[1];
|
|
|
|
intermediate[13] = (2 * (input[7] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = input[11] * C12;
|
|
|
|
temp2 = input[5] * C4;
|
|
|
|
temp2 = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[14] = (2 * (temp2) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = input[11] * C4;
|
|
|
|
temp2 = input[5] * C12;
|
|
|
|
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[15] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
step[ 8] = (intermediate[ 8] + intermediate[14] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[ 9] = (intermediate[ 9] + intermediate[15] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[10] = (intermediate[10] + intermediate[11] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[11] = (intermediate[10] - intermediate[11] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[12] = (intermediate[12] + intermediate[13] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[13] = (intermediate[12] - intermediate[13] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[14] = (intermediate[ 8] - intermediate[14] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
step[15] = (intermediate[ 9] - intermediate[15] + INITIAL_ROUNDING)
|
|
|
|
>> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
output[0] = step[ 0] + step[ 3];
|
|
|
|
output[1] = step[ 1] + step[ 2];
|
|
|
|
output[2] = step[ 1] - step[ 2];
|
|
|
|
output[3] = step[ 0] - step[ 3];
|
|
|
|
|
|
|
|
temp1 = step[ 4] * C14;
|
|
|
|
temp2 = step[ 7] * C2;
|
|
|
|
output[4] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 4] * C2;
|
|
|
|
temp2 = step[ 7] * C14;
|
|
|
|
output[7] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 5] * C10;
|
|
|
|
temp2 = step[ 6] * C6;
|
|
|
|
output[5] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 5] * C6;
|
|
|
|
temp2 = step[ 6] * C10;
|
|
|
|
output[6] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
output[8] = step[ 8] + step[11];
|
|
|
|
output[9] = step[ 9] + step[10];
|
|
|
|
output[10] = step[ 9] - step[10];
|
|
|
|
output[11] = step[ 8] - step[11];
|
|
|
|
output[12] = step[12] + step[15];
|
|
|
|
output[13] = step[13] + step[14];
|
|
|
|
output[14] = step[13] - step[14];
|
|
|
|
output[15] = step[12] - step[15];
|
|
|
|
|
|
|
|
// output 4
|
|
|
|
step[ 0] = output[0] + output[7];
|
|
|
|
step[ 1] = output[1] + output[6];
|
|
|
|
step[ 2] = output[2] + output[5];
|
|
|
|
step[ 3] = output[3] + output[4];
|
|
|
|
step[ 4] = output[3] - output[4];
|
|
|
|
step[ 5] = output[2] - output[5];
|
|
|
|
step[ 6] = output[1] - output[6];
|
|
|
|
step[ 7] = output[0] - output[7];
|
|
|
|
|
|
|
|
temp1 = output[8] * C7;
|
|
|
|
temp2 = output[15] * C9;
|
|
|
|
step[ 8] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[9] * C11;
|
|
|
|
temp2 = output[14] * C5;
|
|
|
|
step[ 9] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[10] * C3;
|
|
|
|
temp2 = output[13] * C13;
|
|
|
|
step[10] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[11] * C15;
|
|
|
|
temp2 = output[12] * C1;
|
|
|
|
step[11] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[11] * C1;
|
|
|
|
temp2 = output[12] * C15;
|
|
|
|
step[12] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[10] * C13;
|
|
|
|
temp2 = output[13] * C3;
|
|
|
|
step[13] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[9] * C5;
|
|
|
|
temp2 = output[14] * C11;
|
|
|
|
step[14] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[8] * C9;
|
|
|
|
temp2 = output[15] * C7;
|
|
|
|
step[15] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
// step 5
|
|
|
|
output[0] = (step[0] + step[15] + last_rounding) >> last_shift_bits;
|
|
|
|
output[1] = (step[1] + step[14] + last_rounding) >> last_shift_bits;
|
|
|
|
output[2] = (step[2] + step[13] + last_rounding) >> last_shift_bits;
|
|
|
|
output[3] = (step[3] + step[12] + last_rounding) >> last_shift_bits;
|
|
|
|
output[4] = (step[4] + step[11] + last_rounding) >> last_shift_bits;
|
|
|
|
output[5] = (step[5] + step[10] + last_rounding) >> last_shift_bits;
|
|
|
|
output[6] = (step[6] + step[ 9] + last_rounding) >> last_shift_bits;
|
|
|
|
output[7] = (step[7] + step[ 8] + last_rounding) >> last_shift_bits;
|
|
|
|
|
|
|
|
output[15] = (step[0] - step[15] + last_rounding) >> last_shift_bits;
|
|
|
|
output[14] = (step[1] - step[14] + last_rounding) >> last_shift_bits;
|
|
|
|
output[13] = (step[2] - step[13] + last_rounding) >> last_shift_bits;
|
|
|
|
output[12] = (step[3] - step[12] + last_rounding) >> last_shift_bits;
|
|
|
|
output[11] = (step[4] - step[11] + last_rounding) >> last_shift_bits;
|
|
|
|
output[10] = (step[5] - step[10] + last_rounding) >> last_shift_bits;
|
|
|
|
output[9] = (step[6] - step[ 9] + last_rounding) >> last_shift_bits;
|
|
|
|
output[8] = (step[7] - step[ 8] + last_rounding) >> last_shift_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) {
|
|
|
|
int16_t out[16 * 16];
|
|
|
|
int16_t *outptr = &out[0];
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
int16_t temp_in[16], temp_out[16];
|
|
|
|
|
|
|
|
// First transform rows
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
butterfly_16x16_idct_1d(input, outptr, 0);
|
|
|
|
input += short_pitch;
|
|
|
|
outptr += 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Then transform columns
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = out[j * 16 + i];
|
|
|
|
butterfly_16x16_idct_1d(temp_in, temp_out, 3);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
output[j * 16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
}
|
2012-11-06 16:06:22 -08:00
|
|
|
|
|
|
|
/* The following function is called when we know the maximum number of non-zero
|
|
|
|
* dct coefficients is less or equal 10.
|
|
|
|
*/
|
|
|
|
static void butterfly_16x16_idct10_1d(int16_t input[16], int16_t output[16],
|
|
|
|
int last_shift_bits) {
|
|
|
|
int16_t step[16] = {0};
|
|
|
|
int intermediate[16] = {0};
|
|
|
|
int temp1, temp2;
|
|
|
|
int last_rounding = 0;
|
|
|
|
|
|
|
|
if (last_shift_bits > 0)
|
|
|
|
last_rounding = 1 << (last_shift_bits - 1);
|
|
|
|
|
|
|
|
// step 1 and 2
|
|
|
|
step[ 0] = (input[0] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 1] = (input[0] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
temp1 = (2 * (input[2] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
step[ 4] = (temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 5] = (temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
// for odd input
|
|
|
|
temp1 = (input[3] * C12 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[ 8] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = (-input[3] * C4 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[ 9] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
step[ 8] = (intermediate[ 8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[ 9] = (intermediate[ 9] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[10] = (-input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[11] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[12] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[13] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[14] = (intermediate[ 8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
step[15] = (intermediate[ 9] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
output[0] = step[ 0];
|
|
|
|
output[1] = step[ 1];
|
|
|
|
output[2] = step[ 1];
|
|
|
|
output[3] = step[ 0];
|
|
|
|
|
|
|
|
temp1 = step[ 4] * C14;
|
|
|
|
output[4] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 4] * C2;
|
|
|
|
output[7] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 5] * C10;
|
|
|
|
output[5] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = step[ 5] * C6;
|
|
|
|
output[6] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
output[8] = step[ 8] + step[11];
|
|
|
|
output[9] = step[ 9] + step[10];
|
|
|
|
output[10] = step[ 9] - step[10];
|
|
|
|
output[11] = step[ 8] - step[11];
|
|
|
|
output[12] = step[12] + step[15];
|
|
|
|
output[13] = step[13] + step[14];
|
|
|
|
output[14] = step[13] - step[14];
|
|
|
|
output[15] = step[12] - step[15];
|
|
|
|
|
|
|
|
// output 4
|
|
|
|
step[ 0] = output[0] + output[7];
|
|
|
|
step[ 1] = output[1] + output[6];
|
|
|
|
step[ 2] = output[2] + output[5];
|
|
|
|
step[ 3] = output[3] + output[4];
|
|
|
|
step[ 4] = output[3] - output[4];
|
|
|
|
step[ 5] = output[2] - output[5];
|
|
|
|
step[ 6] = output[1] - output[6];
|
|
|
|
step[ 7] = output[0] - output[7];
|
|
|
|
|
|
|
|
temp1 = output[8] * C7;
|
|
|
|
temp2 = output[15] * C9;
|
|
|
|
step[ 8] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[9] * C11;
|
|
|
|
temp2 = output[14] * C5;
|
|
|
|
step[ 9] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[10] * C3;
|
|
|
|
temp2 = output[13] * C13;
|
|
|
|
step[10] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[11] * C15;
|
|
|
|
temp2 = output[12] * C1;
|
|
|
|
step[11] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[11] * C1;
|
|
|
|
temp2 = output[12] * C15;
|
|
|
|
step[12] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[10] * C13;
|
|
|
|
temp2 = output[13] * C3;
|
|
|
|
step[13] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[9] * C5;
|
|
|
|
temp2 = output[14] * C11;
|
|
|
|
step[14] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
temp1 = output[8] * C9;
|
|
|
|
temp2 = output[15] * C7;
|
|
|
|
step[15] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
|
|
|
|
|
|
|
|
// step 5
|
|
|
|
output[0] = (step[0] + step[15] + last_rounding) >> last_shift_bits;
|
|
|
|
output[1] = (step[1] + step[14] + last_rounding) >> last_shift_bits;
|
|
|
|
output[2] = (step[2] + step[13] + last_rounding) >> last_shift_bits;
|
|
|
|
output[3] = (step[3] + step[12] + last_rounding) >> last_shift_bits;
|
|
|
|
output[4] = (step[4] + step[11] + last_rounding) >> last_shift_bits;
|
|
|
|
output[5] = (step[5] + step[10] + last_rounding) >> last_shift_bits;
|
|
|
|
output[6] = (step[6] + step[ 9] + last_rounding) >> last_shift_bits;
|
|
|
|
output[7] = (step[7] + step[ 8] + last_rounding) >> last_shift_bits;
|
|
|
|
|
|
|
|
output[15] = (step[0] - step[15] + last_rounding) >> last_shift_bits;
|
|
|
|
output[14] = (step[1] - step[14] + last_rounding) >> last_shift_bits;
|
|
|
|
output[13] = (step[2] - step[13] + last_rounding) >> last_shift_bits;
|
|
|
|
output[12] = (step[3] - step[12] + last_rounding) >> last_shift_bits;
|
|
|
|
output[11] = (step[4] - step[11] + last_rounding) >> last_shift_bits;
|
|
|
|
output[10] = (step[5] - step[10] + last_rounding) >> last_shift_bits;
|
|
|
|
output[9] = (step[6] - step[ 9] + last_rounding) >> last_shift_bits;
|
|
|
|
output[8] = (step[7] - step[ 8] + last_rounding) >> last_shift_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_idct10_16x16_c(int16_t *input, int16_t *output, int pitch) {
|
|
|
|
int16_t out[16 * 16];
|
|
|
|
int16_t *outptr = &out[0];
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
int16_t temp_in[16], temp_out[16];
|
|
|
|
|
|
|
|
/* First transform rows. Since all non-zero dct coefficients are in
|
|
|
|
* upper-left 4x4 area, we only need to calculate first 4 rows here.
|
|
|
|
*/
|
|
|
|
vpx_memset(out, 0, sizeof(out));
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
|
|
butterfly_16x16_idct10_1d(input, outptr, 0);
|
|
|
|
input += short_pitch;
|
|
|
|
outptr += 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Then transform columns
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
temp_in[j] = out[j*16 + i];
|
|
|
|
butterfly_16x16_idct10_1d(temp_in, temp_out, 3);
|
|
|
|
for (j = 0; j < 16; ++j)
|
|
|
|
output[j*16 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
}
|
2012-11-01 09:04:28 -07:00
|
|
|
#undef INITIAL_SHIFT
|
|
|
|
#undef INITIAL_ROUNDING
|
|
|
|
#undef RIGHT_SHIFT
|
|
|
|
#undef RIGHT_ROUNDING
|
|
|
|
#endif
|
32x32 transform for superblocks.
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
|
|
|
|
|
|
|
#if CONFIG_TX32X32
|
|
|
|
#if !CONFIG_DWT32X32HYBRID
|
|
|
|
#define DownshiftMultiplyBy2(x) x * 2
|
|
|
|
#define DownshiftMultiply(x) x
|
|
|
|
static void idct16(double *input, double *output, int stride) {
|
|
|
|
static const double C1 = 0.995184726672197;
|
|
|
|
static const double C2 = 0.98078528040323;
|
|
|
|
static const double C3 = 0.956940335732209;
|
|
|
|
static const double C4 = 0.923879532511287;
|
|
|
|
static const double C5 = 0.881921264348355;
|
|
|
|
static const double C6 = 0.831469612302545;
|
|
|
|
static const double C7 = 0.773010453362737;
|
|
|
|
static const double C8 = 0.707106781186548;
|
|
|
|
static const double C9 = 0.634393284163646;
|
|
|
|
static const double C10 = 0.555570233019602;
|
|
|
|
static const double C11 = 0.471396736825998;
|
|
|
|
static const double C12 = 0.38268343236509;
|
|
|
|
static const double C13 = 0.290284677254462;
|
|
|
|
static const double C14 = 0.195090322016128;
|
|
|
|
static const double C15 = 0.098017140329561;
|
|
|
|
|
|
|
|
double step[16];
|
|
|
|
double intermediate[16];
|
|
|
|
double temp1, temp2;
|
|
|
|
|
|
|
|
// step 1 and 2
|
|
|
|
step[ 0] = input[stride*0] + input[stride*8];
|
|
|
|
step[ 1] = input[stride*0] - input[stride*8];
|
|
|
|
|
|
|
|
temp1 = input[stride*4]*C12;
|
|
|
|
temp2 = input[stride*12]*C4;
|
|
|
|
|
|
|
|
temp1 -= temp2;
|
|
|
|
temp1 = DownshiftMultiply(temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
|
|
|
|
step[ 2] = DownshiftMultiplyBy2(temp1);
|
|
|
|
|
|
|
|
temp1 = input[stride*4]*C4;
|
|
|
|
temp2 = input[stride*12]*C12;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = DownshiftMultiply(temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
step[ 3] = DownshiftMultiplyBy2(temp1);
|
|
|
|
|
|
|
|
temp1 = input[stride*2]*C8;
|
|
|
|
temp1 = DownshiftMultiplyBy2(temp1);
|
|
|
|
temp2 = input[stride*6] + input[stride*10];
|
|
|
|
|
|
|
|
step[ 4] = temp1 + temp2;
|
|
|
|
step[ 5] = temp1 - temp2;
|
|
|
|
|
|
|
|
temp1 = input[stride*14]*C8;
|
|
|
|
temp1 = DownshiftMultiplyBy2(temp1);
|
|
|
|
temp2 = input[stride*6] - input[stride*10];
|
|
|
|
|
|
|
|
step[ 6] = temp2 - temp1;
|
|
|
|
step[ 7] = temp2 + temp1;
|
|
|
|
|
|
|
|
// for odd input
|
|
|
|
temp1 = input[stride*3]*C12;
|
|
|
|
temp2 = input[stride*13]*C4;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = DownshiftMultiply(temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[ 8] = DownshiftMultiplyBy2(temp1);
|
|
|
|
|
|
|
|
temp1 = input[stride*3]*C4;
|
|
|
|
temp2 = input[stride*13]*C12;
|
|
|
|
temp2 -= temp1;
|
|
|
|
temp2 = DownshiftMultiply(temp2);
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[ 9] = DownshiftMultiplyBy2(temp2);
|
|
|
|
|
|
|
|
intermediate[10] = DownshiftMultiplyBy2(input[stride*9]*C8);
|
|
|
|
intermediate[11] = input[stride*15] - input[stride*1];
|
|
|
|
intermediate[12] = input[stride*15] + input[stride*1];
|
|
|
|
intermediate[13] = DownshiftMultiplyBy2((input[stride*7]*C8));
|
|
|
|
|
|
|
|
temp1 = input[stride*11]*C12;
|
|
|
|
temp2 = input[stride*5]*C4;
|
|
|
|
temp2 -= temp1;
|
|
|
|
temp2 = DownshiftMultiply(temp2);
|
|
|
|
temp2 *= C8;
|
|
|
|
intermediate[14] = DownshiftMultiplyBy2(temp2);
|
|
|
|
|
|
|
|
temp1 = input[stride*11]*C4;
|
|
|
|
temp2 = input[stride*5]*C12;
|
|
|
|
temp1 += temp2;
|
|
|
|
temp1 = DownshiftMultiply(temp1);
|
|
|
|
temp1 *= C8;
|
|
|
|
intermediate[15] = DownshiftMultiplyBy2(temp1);
|
|
|
|
|
|
|
|
step[ 8] = intermediate[ 8] + intermediate[14];
|
|
|
|
step[ 9] = intermediate[ 9] + intermediate[15];
|
|
|
|
step[10] = intermediate[10] + intermediate[11];
|
|
|
|
step[11] = intermediate[10] - intermediate[11];
|
|
|
|
step[12] = intermediate[12] + intermediate[13];
|
|
|
|
step[13] = intermediate[12] - intermediate[13];
|
|
|
|
step[14] = intermediate[ 8] - intermediate[14];
|
|
|
|
step[15] = intermediate[ 9] - intermediate[15];
|
|
|
|
|
|
|
|
// step 3
|
|
|
|
output[stride*0] = step[ 0] + step[ 3];
|
|
|
|
output[stride*1] = step[ 1] + step[ 2];
|
|
|
|
output[stride*2] = step[ 1] - step[ 2];
|
|
|
|
output[stride*3] = step[ 0] - step[ 3];
|
|
|
|
|
|
|
|
temp1 = step[ 4]*C14;
|
|
|
|
temp2 = step[ 7]*C2;
|
|
|
|
temp1 -= temp2;
|
|
|
|
output[stride*4] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 4]*C2;
|
|
|
|
temp2 = step[ 7]*C14;
|
|
|
|
temp1 += temp2;
|
|
|
|
output[stride*7] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 5]*C10;
|
|
|
|
temp2 = step[ 6]*C6;
|
|
|
|
temp1 -= temp2;
|
|
|
|
output[stride*5] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = step[ 5]*C6;
|
|
|
|
temp2 = step[ 6]*C10;
|
|
|
|
temp1 += temp2;
|
|
|
|
output[stride*6] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
output[stride*8] = step[ 8] + step[11];
|
|
|
|
output[stride*9] = step[ 9] + step[10];
|
|
|
|
output[stride*10] = step[ 9] - step[10];
|
|
|
|
output[stride*11] = step[ 8] - step[11];
|
|
|
|
output[stride*12] = step[12] + step[15];
|
|
|
|
output[stride*13] = step[13] + step[14];
|
|
|
|
output[stride*14] = step[13] - step[14];
|
|
|
|
output[stride*15] = step[12] - step[15];
|
|
|
|
|
|
|
|
// output 4
|
|
|
|
step[ 0] = output[stride*0] + output[stride*7];
|
|
|
|
step[ 1] = output[stride*1] + output[stride*6];
|
|
|
|
step[ 2] = output[stride*2] + output[stride*5];
|
|
|
|
step[ 3] = output[stride*3] + output[stride*4];
|
|
|
|
step[ 4] = output[stride*3] - output[stride*4];
|
|
|
|
step[ 5] = output[stride*2] - output[stride*5];
|
|
|
|
step[ 6] = output[stride*1] - output[stride*6];
|
|
|
|
step[ 7] = output[stride*0] - output[stride*7];
|
|
|
|
|
|
|
|
temp1 = output[stride*8]*C7;
|
|
|
|
temp2 = output[stride*15]*C9;
|
|
|
|
temp1 -= temp2;
|
|
|
|
step[ 8] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = output[stride*9]*C11;
|
|
|
|
temp2 = output[stride*14]*C5;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[ 9] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = output[stride*10]*C3;
|
|
|
|
temp2 = output[stride*13]*C13;
|
|
|
|
temp1 -= temp2;
|
|
|
|
step[10] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = output[stride*11]*C15;
|
|
|
|
temp2 = output[stride*12]*C1;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[11] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = output[stride*11]*C1;
|
|
|
|
temp2 = output[stride*12]*C15;
|
|
|
|
temp2 -= temp1;
|
|
|
|
step[12] = DownshiftMultiply(temp2);
|
|
|
|
|
|
|
|
temp1 = output[stride*10]*C13;
|
|
|
|
temp2 = output[stride*13]*C3;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[13] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
temp1 = output[stride*9]*C5;
|
|
|
|
temp2 = output[stride*14]*C11;
|
|
|
|
temp2 -= temp1;
|
|
|
|
step[14] = DownshiftMultiply(temp2);
|
|
|
|
|
|
|
|
temp1 = output[stride*8]*C9;
|
|
|
|
temp2 = output[stride*15]*C7;
|
|
|
|
temp1 += temp2;
|
|
|
|
step[15] = DownshiftMultiply(temp1);
|
|
|
|
|
|
|
|
// step 5
|
|
|
|
output[stride*0] = step[0] + step[15];
|
|
|
|
output[stride*1] = step[1] + step[14];
|
|
|
|
output[stride*2] = step[2] + step[13];
|
|
|
|
output[stride*3] = step[3] + step[12];
|
|
|
|
output[stride*4] = step[4] + step[11];
|
|
|
|
output[stride*5] = step[5] + step[10];
|
|
|
|
output[stride*6] = step[6] + step[ 9];
|
|
|
|
output[stride*7] = step[7] + step[ 8];
|
|
|
|
|
|
|
|
output[stride*15] = step[0] - step[15];
|
|
|
|
output[stride*14] = step[1] - step[14];
|
|
|
|
output[stride*13] = step[2] - step[13];
|
|
|
|
output[stride*12] = step[3] - step[12];
|
|
|
|
output[stride*11] = step[4] - step[11];
|
|
|
|
output[stride*10] = step[5] - step[10];
|
|
|
|
output[stride*9] = step[6] - step[ 9];
|
|
|
|
output[stride*8] = step[7] - step[ 8];
|
|
|
|
}
|
|
|
|
static void butterfly_32_idct_1d(double *input, double *output, int stride) {
|
|
|
|
static const double C1 = 0.998795456205; // cos(pi * 1 / 64)
|
|
|
|
static const double C3 = 0.989176509965; // cos(pi * 3 / 64)
|
|
|
|
static const double C5 = 0.970031253195; // cos(pi * 5 / 64)
|
|
|
|
static const double C7 = 0.941544065183; // cos(pi * 7 / 64)
|
|
|
|
static const double C9 = 0.903989293123; // cos(pi * 9 / 64)
|
|
|
|
static const double C11 = 0.857728610000; // cos(pi * 11 / 64)
|
|
|
|
static const double C13 = 0.803207531481; // cos(pi * 13 / 64)
|
|
|
|
static const double C15 = 0.740951125355; // cos(pi * 15 / 64)
|
|
|
|
static const double C16 = 0.707106781187; // cos(pi * 16 / 64)
|
|
|
|
static const double C17 = 0.671558954847; // cos(pi * 17 / 64)
|
|
|
|
static const double C19 = 0.595699304492; // cos(pi * 19 / 64)
|
|
|
|
static const double C21 = 0.514102744193; // cos(pi * 21 / 64)
|
|
|
|
static const double C23 = 0.427555093430; // cos(pi * 23 / 64)
|
|
|
|
static const double C25 = 0.336889853392; // cos(pi * 25 / 64)
|
|
|
|
static const double C27 = 0.242980179903; // cos(pi * 27 / 64)
|
|
|
|
static const double C29 = 0.146730474455; // cos(pi * 29 / 64)
|
|
|
|
static const double C31 = 0.049067674327; // cos(pi * 31 / 64)
|
|
|
|
|
|
|
|
double step1[32];
|
|
|
|
double step2[32];
|
|
|
|
|
|
|
|
step1[ 0] = input[stride*0];
|
|
|
|
step1[ 1] = input[stride*2];
|
|
|
|
step1[ 2] = input[stride*4];
|
|
|
|
step1[ 3] = input[stride*6];
|
|
|
|
step1[ 4] = input[stride*8];
|
|
|
|
step1[ 5] = input[stride*10];
|
|
|
|
step1[ 6] = input[stride*12];
|
|
|
|
step1[ 7] = input[stride*14];
|
|
|
|
step1[ 8] = input[stride*16];
|
|
|
|
step1[ 9] = input[stride*18];
|
|
|
|
step1[10] = input[stride*20];
|
|
|
|
step1[11] = input[stride*22];
|
|
|
|
step1[12] = input[stride*24];
|
|
|
|
step1[13] = input[stride*26];
|
|
|
|
step1[14] = input[stride*28];
|
|
|
|
step1[15] = input[stride*30];
|
|
|
|
|
|
|
|
step1[16] = DownshiftMultiplyBy2(input[stride*1]*C16);
|
|
|
|
step1[17] = (input[stride*3] + input[stride*1]);
|
|
|
|
step1[18] = (input[stride*5] + input[stride*3]);
|
|
|
|
step1[19] = (input[stride*7] + input[stride*5]);
|
|
|
|
step1[20] = (input[stride*9] + input[stride*7]);
|
|
|
|
step1[21] = (input[stride*11] + input[stride*9]);
|
|
|
|
step1[22] = (input[stride*13] + input[stride*11]);
|
|
|
|
step1[23] = (input[stride*15] + input[stride*13]);
|
|
|
|
step1[24] = (input[stride*17] + input[stride*15]);
|
|
|
|
step1[25] = (input[stride*19] + input[stride*17]);
|
|
|
|
step1[26] = (input[stride*21] + input[stride*19]);
|
|
|
|
step1[27] = (input[stride*23] + input[stride*21]);
|
|
|
|
step1[28] = (input[stride*25] + input[stride*23]);
|
|
|
|
step1[29] = (input[stride*27] + input[stride*25]);
|
|
|
|
step1[30] = (input[stride*29] + input[stride*27]);
|
|
|
|
step1[31] = (input[stride*31] + input[stride*29]);
|
|
|
|
|
|
|
|
idct16(step1, step2, 1);
|
|
|
|
idct16(step1 + 16, step2 + 16, 1);
|
|
|
|
|
|
|
|
step2[16] = DownshiftMultiply(step2[16] / (2*C1));
|
|
|
|
step2[17] = DownshiftMultiply(step2[17] / (2*C3));
|
|
|
|
step2[18] = DownshiftMultiply(step2[18] / (2*C5));
|
|
|
|
step2[19] = DownshiftMultiply(step2[19] / (2*C7));
|
|
|
|
step2[20] = DownshiftMultiply(step2[20] / (2*C9));
|
|
|
|
step2[21] = DownshiftMultiply(step2[21] / (2*C11));
|
|
|
|
step2[22] = DownshiftMultiply(step2[22] / (2*C13));
|
|
|
|
step2[23] = DownshiftMultiply(step2[23] / (2*C15));
|
|
|
|
step2[24] = DownshiftMultiply(step2[24] / (2*C17));
|
|
|
|
step2[25] = DownshiftMultiply(step2[25] / (2*C19));
|
|
|
|
step2[26] = DownshiftMultiply(step2[26] / (2*C21));
|
|
|
|
step2[27] = DownshiftMultiply(step2[27] / (2*C23));
|
|
|
|
step2[28] = DownshiftMultiply(step2[28] / (2*C25));
|
|
|
|
step2[29] = DownshiftMultiply(step2[29] / (2*C27));
|
|
|
|
step2[30] = DownshiftMultiply(step2[30] / (2*C29));
|
|
|
|
step2[31] = DownshiftMultiply(step2[31] / (2*C31));
|
|
|
|
|
|
|
|
output[stride* 0] = step2[ 0] + step2[16];
|
|
|
|
output[stride* 1] = step2[ 1] + step2[17];
|
|
|
|
output[stride* 2] = step2[ 2] + step2[18];
|
|
|
|
output[stride* 3] = step2[ 3] + step2[19];
|
|
|
|
output[stride* 4] = step2[ 4] + step2[20];
|
|
|
|
output[stride* 5] = step2[ 5] + step2[21];
|
|
|
|
output[stride* 6] = step2[ 6] + step2[22];
|
|
|
|
output[stride* 7] = step2[ 7] + step2[23];
|
|
|
|
output[stride* 8] = step2[ 8] + step2[24];
|
|
|
|
output[stride* 9] = step2[ 9] + step2[25];
|
|
|
|
output[stride*10] = step2[10] + step2[26];
|
|
|
|
output[stride*11] = step2[11] + step2[27];
|
|
|
|
output[stride*12] = step2[12] + step2[28];
|
|
|
|
output[stride*13] = step2[13] + step2[29];
|
|
|
|
output[stride*14] = step2[14] + step2[30];
|
|
|
|
output[stride*15] = step2[15] + step2[31];
|
|
|
|
output[stride*16] = step2[15] - step2[(31 - 0)];
|
|
|
|
output[stride*17] = step2[14] - step2[(31 - 1)];
|
|
|
|
output[stride*18] = step2[13] - step2[(31 - 2)];
|
|
|
|
output[stride*19] = step2[12] - step2[(31 - 3)];
|
|
|
|
output[stride*20] = step2[11] - step2[(31 - 4)];
|
|
|
|
output[stride*21] = step2[10] - step2[(31 - 5)];
|
|
|
|
output[stride*22] = step2[ 9] - step2[(31 - 6)];
|
|
|
|
output[stride*23] = step2[ 8] - step2[(31 - 7)];
|
|
|
|
output[stride*24] = step2[ 7] - step2[(31 - 8)];
|
|
|
|
output[stride*25] = step2[ 6] - step2[(31 - 9)];
|
|
|
|
output[stride*26] = step2[ 5] - step2[(31 - 10)];
|
|
|
|
output[stride*27] = step2[ 4] - step2[(31 - 11)];
|
|
|
|
output[stride*28] = step2[ 3] - step2[(31 - 12)];
|
|
|
|
output[stride*29] = step2[ 2] - step2[(31 - 13)];
|
|
|
|
output[stride*30] = step2[ 1] - step2[(31 - 14)];
|
|
|
|
output[stride*31] = step2[ 0] - step2[(31 - 15)];
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_idct32x32_c(short *input, short *output, int pitch) {
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
{
|
|
|
|
double out[32*32], out2[32*32];
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i, j;
|
|
|
|
// First transform rows
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
|
|
double temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
temp_in[j] = input[j + i*short_pitch];
|
|
|
|
butterfly_32_idct_1d(temp_in, temp_out, 1);
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
out[j + i*32] = temp_out[j];
|
|
|
|
}
|
|
|
|
// Then transform columns
|
|
|
|
for (i = 0; i < 32; ++i) {
|
|
|
|
double temp_in[32], temp_out[32];
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
temp_in[j] = out[j*32 + i];
|
|
|
|
butterfly_32_idct_1d(temp_in, temp_out, 1);
|
|
|
|
for (j = 0; j < 32; ++j)
|
|
|
|
out2[j*32 + i] = temp_out[j];
|
|
|
|
}
|
|
|
|
for (i = 0; i < 32*32; ++i)
|
|
|
|
output[i] = round(out2[i]/128);
|
|
|
|
}
|
|
|
|
vp9_clear_system_state(); // Make it simd safe : __asm emms;
|
|
|
|
}
|
|
|
|
#else // CONFIG_DWT32X32HYBRID
|
|
|
|
|
|
|
|
#define MAX_BLOCK_LENGTH 64
|
|
|
|
#define ENH_PRECISION_BITS 1
|
|
|
|
#define ENH_PRECISION_RND ((1 << ENH_PRECISION_BITS) / 2)
|
|
|
|
|
|
|
|
// Note: block length must be even for this implementation
|
|
|
|
static void synthesis_53_row(int length, short *lowpass, short *highpass,
|
|
|
|
short *x) {
|
|
|
|
short r, * a, * b;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
r = *highpass;
|
|
|
|
while (n--) {
|
|
|
|
*a++ -= (r + (*b) + 1) >> 1;
|
|
|
|
r = *b++;
|
|
|
|
}
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*x++ = ((r = *a++) + 1) >> 1;
|
|
|
|
*x++ = *b++ + ((r + (*a) + 2) >> 2);
|
|
|
|
}
|
|
|
|
*x++ = ((r = *a) + 1)>>1;
|
|
|
|
*x++ = *b + ((r+1)>>1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void synthesis_53_col(int length, short *lowpass, short *highpass,
|
|
|
|
short *x) {
|
|
|
|
short r, * a, * b;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
r = *highpass;
|
|
|
|
while (n--) {
|
|
|
|
*a++ -= (r + (*b) + 1) >> 1;
|
|
|
|
r = *b++;
|
|
|
|
}
|
|
|
|
|
|
|
|
n = length >> 1;
|
|
|
|
b = highpass;
|
|
|
|
a = lowpass;
|
|
|
|
while (--n) {
|
|
|
|
*x++ = r = *a++;
|
|
|
|
*x++ = ((*b++) << 1) + ((r + (*a) + 1) >> 1);
|
|
|
|
}
|
|
|
|
*x++ = r = *a;
|
|
|
|
*x++ = ((*b) << 1) + r;
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOTE: Using a 5/3 integer wavelet for now. Explore using a wavelet
|
|
|
|
// with a better response later
|
|
|
|
void dyadic_synthesize(int levels, int width, int height, short *c, int pitch_c,
|
|
|
|
short *x, int pitch_x) {
|
|
|
|
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
|
|
|
|
short buffer[2 * MAX_BLOCK_LENGTH];
|
|
|
|
|
|
|
|
th[0] = hh;
|
|
|
|
tw[0] = hw;
|
|
|
|
for (i = 1; i <= levels; i++) {
|
|
|
|
th[i] = (th[i - 1] + 1) >> 1;
|
|
|
|
tw[i] = (tw[i - 1] + 1) >> 1;
|
|
|
|
}
|
|
|
|
for (lv = levels - 1; lv >= 0; lv--) {
|
|
|
|
nh = th[lv];
|
|
|
|
nw = tw[lv];
|
|
|
|
hh = th[lv + 1];
|
|
|
|
hw = tw[lv + 1];
|
|
|
|
if ((nh < 2) || (nw < 2)) continue;
|
|
|
|
for (j = 0; j < nw; j++) {
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
buffer[i] = c[i * pitch_c + j];
|
|
|
|
synthesis_53_col(nh, buffer, buffer + hh, buffer + nh);
|
|
|
|
for (i = 0; i < nh; i++)
|
|
|
|
c[i * pitch_c + j] = buffer[i + nh];
|
|
|
|
}
|
|
|
|
for (i = 0; i < nh; i++) {
|
|
|
|
memcpy(buffer, &c[i * pitch_c], nw * sizeof(short));
|
|
|
|
synthesis_53_row(nw, buffer, buffer + hw, &c[i * pitch_c]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < height; i++)
|
|
|
|
for (j = 0; j < width; j++)
|
|
|
|
x[i * pitch_x + j] = (c[i * pitch_c + j] + ENH_PRECISION_RND) >>
|
|
|
|
ENH_PRECISION_BITS;
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_short_idct32x32_c(short *input, short *output, int pitch) {
|
|
|
|
// assume out is a 32x32 buffer
|
|
|
|
short buffer[16 * 16];
|
|
|
|
short buffer2[32 * 32];
|
|
|
|
const int short_pitch = pitch >> 1;
|
|
|
|
int i;
|
|
|
|
// TODO(debargha): Implement more efficiently by adding output pitch
|
|
|
|
// argument to the idct16x16 function
|
|
|
|
vp9_short_idct16x16_c(input, buffer, pitch);
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
|
|
vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(short) * 16);
|
|
|
|
vpx_memcpy(buffer2 + i * 32 + 16, input + i * short_pitch + 16,
|
|
|
|
sizeof(short) * 16);
|
|
|
|
}
|
|
|
|
for (; i < 32; ++i) {
|
|
|
|
vpx_memcpy(buffer2 + i * 32, input + i * short_pitch,
|
|
|
|
sizeof(short) * 32);
|
|
|
|
}
|
|
|
|
dyadic_synthesize(1, 32, 32, buffer2, 32, output, 32);
|
|
|
|
}
|
|
|
|
#endif // CONFIG_DWT32X32HYBRID
|
|
|
|
#endif // CONFIG_TX32X32
|