vpx/vp9/encoder/arm/neon/vp9_frame_scale_neon.c

288 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vpx_dsp/arm/transpose_neon.h"
#include "vpx_dsp/arm/vpx_convolve8_neon.h"
#include "vpx_dsp/vpx_filter.h"
#include "vpx_scale/yv12config.h"
// Note: The scaling functions could write extra rows and columns in dst, which
// exceed the right and bottom boundaries of the destination frame. We rely on
// the following frame extension function to fix these rows and columns.
static INLINE void scale_plane_2_to_1_phase_0_neon(const uint8_t *src,
const int src_stride,
uint8_t *dst,
const int dst_stride,
const int w, const int h) {
const int max_width = (w + 15) & ~15;
int y = h;
assert(w && h);
do {
int x = max_width;
do {
const uint8x16x2_t s = vld2q_u8(src);
vst1q_u8(dst, s.val[0]);
src += 32;
dst += 16;
x -= 16;
} while (x);
src += 2 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static INLINE void scale_plane_2_to_1_bilinear_phase_non_0_neon(
const uint8_t *const src, const int src_stride, uint8_t *dst,
const int dst_stride, const int w, const int h, const int16_t c0,
const int16_t c1) {
const int max_width = (w + 7) & ~7;
const uint8_t *src0 = src;
const uint8_t *src1 = src + src_stride;
const uint8x8_t coef0 = vdup_n_u8(c0);
const uint8x8_t coef1 = vdup_n_u8(c1);
int y = h;
assert(w && h);
do {
int x = max_width;
do {
// 00 02 04 06 08 0A 0C 0E 01 03 05 07 09 0B 0D 0F
const uint8x8x2_t s0 = vld2_u8(src0);
// 10 12 14 16 18 1A 1C 1E 11 13 15 17 19 1B 1D 1F
const uint8x8x2_t s1 = vld2_u8(src1);
const uint16x8_t h0 = vmull_u8(s0.val[0], coef0);
const uint16x8_t h1 = vmull_u8(s1.val[0], coef0);
const uint16x8_t h2 = vmlal_u8(h0, s0.val[1], coef1);
const uint16x8_t h3 = vmlal_u8(h1, s1.val[1], coef1);
const uint8x8_t hor0 = vrshrn_n_u16(h2, 7); // 00 01 02 03 04 05 06 07
const uint8x8_t hor1 = vrshrn_n_u16(h3, 7); // 10 11 12 13 14 15 16 17
const uint16x8_t v0 = vmull_u8(hor0, coef0);
const uint16x8_t v1 = vmlal_u8(v0, hor1, coef1);
const uint8x8_t d = vrshrn_n_u16(v1, 7); // 00 01 02 03 04 05 06 07
vst1_u8(dst, d);
src0 += 16;
src1 += 16;
dst += 8;
x -= 8;
} while (x);
src0 += 2 * (src_stride - max_width);
src1 += 2 * (src_stride - max_width);
dst += dst_stride - max_width;
} while (--y);
}
static INLINE uint8x8_t scale_filter(const uint8x8_t *const s,
const int16x8_t filters) {
const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3);
const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0);
int16x8_t ss[8];
ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
ss[4] = vreinterpretq_s16_u16(vmovl_u8(s[4]));
ss[5] = vreinterpretq_s16_u16(vmovl_u8(s[5]));
ss[6] = vreinterpretq_s16_u16(vmovl_u8(s[6]));
ss[7] = vreinterpretq_s16_u16(vmovl_u8(s[7]));
return convolve8_8(ss[0], ss[1], ss[2], ss[3], ss[4], ss[5], ss[6], ss[7],
filters, filter3, filter4);
}
static void scale_plane_2_to_1_general_neon(const uint8_t *src,
const int src_stride, uint8_t *dst,
const int dst_stride, const int w,
const int h,
const int16_t *const coef,
uint8_t *const temp_buffer) {
const int max_width_hor = (w + 3) & ~3;
const int max_width_ver = (w + 7) & ~7;
const int max_height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7;
const int max_height_ver = (h + 3) & ~3;
const int16x8_t filters = vld1q_s16(coef);
int x, y = max_height_hor;
uint8_t *t = temp_buffer;
uint8x8_t s[14], d[4];
assert(w && h);
src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1;
// horizontal
// Note: processing 8x8 is about 20% faster than processing row by row using
// vld4_u8().
do {
load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]);
x = max_width_hor;
do {
src += 8;
load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11],
&s[12], &s[13]);
transpose_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12],
&s[13]);
d[0] = scale_filter(&s[0], filters);
d[1] = scale_filter(&s[2], filters);
d[2] = scale_filter(&s[4], filters);
d[3] = scale_filter(&s[6], filters);
transpose_u8_8x4(&d[0], &d[1], &d[2], &d[3]);
vst1_lane_u32((uint32_t *)(t + 0 * max_width_hor),
vreinterpret_u32_u8(d[0]), 0);
vst1_lane_u32((uint32_t *)(t + 1 * max_width_hor),
vreinterpret_u32_u8(d[1]), 0);
vst1_lane_u32((uint32_t *)(t + 2 * max_width_hor),
vreinterpret_u32_u8(d[2]), 0);
vst1_lane_u32((uint32_t *)(t + 3 * max_width_hor),
vreinterpret_u32_u8(d[3]), 0);
vst1_lane_u32((uint32_t *)(t + 4 * max_width_hor),
vreinterpret_u32_u8(d[0]), 1);
vst1_lane_u32((uint32_t *)(t + 5 * max_width_hor),
vreinterpret_u32_u8(d[1]), 1);
vst1_lane_u32((uint32_t *)(t + 6 * max_width_hor),
vreinterpret_u32_u8(d[2]), 1);
vst1_lane_u32((uint32_t *)(t + 7 * max_width_hor),
vreinterpret_u32_u8(d[3]), 1);
s[0] = s[8];
s[1] = s[9];
s[2] = s[10];
s[3] = s[11];
s[4] = s[12];
s[5] = s[13];
t += 4;
x -= 4;
} while (x);
src += 8 * src_stride - 2 * max_width_hor;
t += 7 * max_width_hor;
y -= 8;
} while (y);
// vertical
x = max_width_ver;
t = temp_buffer;
do {
load_u8_8x8(t, max_width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
t += 6 * max_width_hor;
y = max_height_ver;
do {
load_u8_8x8(t, max_width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11],
&s[12], &s[13]);
t += 8 * max_width_hor;
d[0] = scale_filter(&s[0], filters);
d[1] = scale_filter(&s[2], filters);
d[2] = scale_filter(&s[4], filters);
d[3] = scale_filter(&s[6], filters);
vst1_u8(dst + 0 * dst_stride, d[0]);
vst1_u8(dst + 1 * dst_stride, d[1]);
vst1_u8(dst + 2 * dst_stride, d[2]);
vst1_u8(dst + 3 * dst_stride, d[3]);
s[0] = s[8];
s[1] = s[9];
s[2] = s[10];
s[3] = s[11];
s[4] = s[12];
s[5] = s[13];
dst += 4 * dst_stride;
y -= 4;
} while (y);
t -= max_width_hor * (2 * max_height_ver + 6);
t += 8;
dst -= max_height_ver * dst_stride;
dst += 8;
x -= 8;
} while (x);
}
void vp9_scale_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
INTERP_FILTER filter_type,
int phase_scaler) {
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const int dst_uv_w = dst_w / 2;
const int dst_uv_h = dst_h / 2;
int scaled = 0;
if (2 * dst_w == src_w && 2 * dst_h == src_h) {
scaled = 1;
if (phase_scaler == 0) {
scale_plane_2_to_1_phase_0_neon(src->y_buffer, src->y_stride,
dst->y_buffer, dst->y_stride, dst_w,
dst_h);
scale_plane_2_to_1_phase_0_neon(src->u_buffer, src->uv_stride,
dst->u_buffer, dst->uv_stride, dst_uv_w,
dst_uv_h);
scale_plane_2_to_1_phase_0_neon(src->v_buffer, src->uv_stride,
dst->v_buffer, dst->uv_stride, dst_uv_w,
dst_uv_h);
} else if (filter_type == BILINEAR) {
const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3];
const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4];
scale_plane_2_to_1_bilinear_phase_non_0_neon(src->y_buffer, src->y_stride,
dst->y_buffer, dst->y_stride,
dst_w, dst_h, c0, c1);
scale_plane_2_to_1_bilinear_phase_non_0_neon(
src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride,
dst_uv_w, dst_uv_h, c0, c1);
scale_plane_2_to_1_bilinear_phase_non_0_neon(
src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride,
dst_uv_w, dst_uv_h, c0, c1);
} else {
const int buffer_max_width = (dst_w + 3) & ~3;
const int buffer_max_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7;
uint8_t *const temp_buffer =
(uint8_t *)malloc(buffer_max_width * buffer_max_height);
if (temp_buffer) {
scale_plane_2_to_1_general_neon(
src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w,
dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer);
scale_plane_2_to_1_general_neon(
src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride,
dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler],
temp_buffer);
scale_plane_2_to_1_general_neon(
src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride,
dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler],
temp_buffer);
free(temp_buffer);
} else {
scaled = 0;
}
}
}
if (scaled) {
vpx_extend_frame_borders(dst);
} else {
vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler);
}
}