2010-05-18 17:58:33 +02:00
|
|
|
/*
|
2010-09-09 14:16:39 +02:00
|
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
2010-05-18 17:58:33 +02:00
|
|
|
*
|
2010-06-18 18:39:21 +02:00
|
|
|
* Use of this source code is governed by a BSD-style license
|
2010-06-04 22:19:40 +02:00
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
2010-06-18 18:39:21 +02:00
|
|
|
* in the file PATENTS. All contributing project authors may
|
2010-06-04 22:19:40 +02:00
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
2010-05-18 17:58:33 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
2011-02-10 20:41:38 +01:00
|
|
|
#include "vp8/common/common.h"
|
2010-05-18 17:58:33 +02:00
|
|
|
#include "encodemv.h"
|
2011-02-10 20:41:38 +01:00
|
|
|
#include "vp8/common/entropymode.h"
|
|
|
|
#include "vp8/common/systemdependent.h"
|
2010-05-18 17:58:33 +02:00
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
|
|
extern unsigned int active_section;
|
|
|
|
#endif
|
|
|
|
|
2012-07-26 22:42:07 +02:00
|
|
|
//extern int final_packing;
|
|
|
|
|
|
|
|
#if CONFIG_NEWMVENTROPY
|
|
|
|
|
|
|
|
#ifdef NMV_STATS
|
|
|
|
nmv_context_counts tnmvcounts;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void encode_nmv_component(vp8_writer *w,
|
|
|
|
int v,
|
|
|
|
int r,
|
|
|
|
const nmv_component *mvcomp) {
|
|
|
|
int s, z, c, o, d;
|
|
|
|
assert (v != 0); /* should not be zero */
|
|
|
|
s = v < 0;
|
|
|
|
vp8_write(w, s, mvcomp->sign);
|
|
|
|
z = (s ? -v : v) - 1; /* magnitude - 1 */
|
|
|
|
|
|
|
|
c = vp8_get_mv_class(z, &o);
|
|
|
|
|
|
|
|
vp8_write_token(w, vp8_mv_class_tree, mvcomp->classes,
|
|
|
|
vp8_mv_class_encodings + c);
|
|
|
|
|
|
|
|
d = (o >> 3); /* int mv data */
|
|
|
|
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
vp8_write_token(w, vp8_mv_class0_tree, mvcomp->class0,
|
|
|
|
vp8_mv_class0_encodings + d);
|
|
|
|
} else {
|
|
|
|
int i, b;
|
|
|
|
b = c + CLASS0_BITS - 1; /* number of bits */
|
|
|
|
for (i = 0; i < b; ++i)
|
|
|
|
vp8_write(w, ((d >> i) & 1), mvcomp->bits[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void encode_nmv_component_fp(vp8_writer *w,
|
|
|
|
int v,
|
|
|
|
int r,
|
|
|
|
const nmv_component *mvcomp,
|
|
|
|
int usehp) {
|
|
|
|
int s, z, c, o, d, f, e;
|
|
|
|
assert (v != 0); /* should not be zero */
|
|
|
|
s = v < 0;
|
|
|
|
z = (s ? -v : v) - 1; /* magnitude - 1 */
|
|
|
|
|
|
|
|
c = vp8_get_mv_class(z, &o);
|
|
|
|
|
|
|
|
d = (o >> 3); /* int mv data */
|
|
|
|
f = (o >> 1) & 3; /* fractional pel mv data */
|
|
|
|
e = (o & 1); /* high precision mv data */
|
|
|
|
|
|
|
|
/* Code the fractional pel bits */
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
vp8_write_token(w, vp8_mv_fp_tree, mvcomp->class0_fp[d],
|
|
|
|
vp8_mv_fp_encodings + f);
|
|
|
|
} else {
|
|
|
|
vp8_write_token(w, vp8_mv_fp_tree, mvcomp->fp,
|
|
|
|
vp8_mv_fp_encodings + f);
|
|
|
|
}
|
|
|
|
/* Code the high precision bit */
|
|
|
|
if (usehp) {
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
vp8_write(w, e, mvcomp->class0_hp);
|
|
|
|
} else {
|
|
|
|
vp8_write(w, e, mvcomp->hp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void build_nmv_component_cost_table(int *mvcost,
|
|
|
|
const nmv_component *mvcomp,
|
|
|
|
int usehp) {
|
|
|
|
int i, v;
|
|
|
|
int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE];
|
|
|
|
int bits_cost[MV_OFFSET_BITS][2];
|
|
|
|
int class0_fp_cost[CLASS0_SIZE][4], fp_cost[4];
|
|
|
|
int class0_hp_cost[2], hp_cost[2];
|
|
|
|
|
|
|
|
sign_cost[0] = vp8_cost_zero(mvcomp->sign);
|
|
|
|
sign_cost[1] = vp8_cost_one(mvcomp->sign);
|
|
|
|
vp8_cost_tokens(class_cost, mvcomp->classes, vp8_mv_class_tree);
|
|
|
|
vp8_cost_tokens(class0_cost, mvcomp->class0, vp8_mv_class0_tree);
|
|
|
|
for (i = 0; i < MV_OFFSET_BITS; ++i) {
|
|
|
|
bits_cost[i][0] = vp8_cost_zero(mvcomp->bits[i]);
|
|
|
|
bits_cost[i][1] = vp8_cost_one(mvcomp->bits[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < CLASS0_SIZE; ++i)
|
|
|
|
vp8_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], vp8_mv_fp_tree);
|
|
|
|
vp8_cost_tokens(fp_cost, mvcomp->fp, vp8_mv_fp_tree);
|
|
|
|
|
|
|
|
if (usehp) {
|
|
|
|
class0_hp_cost[0] = vp8_cost_zero(mvcomp->class0_hp);
|
|
|
|
class0_hp_cost[1] = vp8_cost_one(mvcomp->class0_hp);
|
|
|
|
hp_cost[0] = vp8_cost_zero(mvcomp->hp);
|
|
|
|
hp_cost[1] = vp8_cost_one(mvcomp->hp);
|
|
|
|
}
|
|
|
|
mvcost[0] = 0;
|
|
|
|
for (v = 1; v <= MV_MAX; ++v) {
|
|
|
|
int z, c, o, d, e, f, cost = 0;
|
|
|
|
z = v - 1;
|
|
|
|
c = vp8_get_mv_class(z, &o);
|
|
|
|
cost += class_cost[c];
|
|
|
|
d = (o >> 3); /* int mv data */
|
|
|
|
f = (o >> 1) & 3; /* fractional pel mv data */
|
|
|
|
e = (o & 1); /* high precision mv data */
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
cost += class0_cost[d];
|
|
|
|
} else {
|
|
|
|
int i, b;
|
|
|
|
b = c + CLASS0_BITS - 1; /* number of bits */
|
|
|
|
for (i = 0; i < b; ++i)
|
|
|
|
cost += bits_cost[i][((d >> i) & 1)];
|
|
|
|
}
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
cost += class0_fp_cost[d][f];
|
|
|
|
} else {
|
|
|
|
cost += fp_cost[f];
|
|
|
|
}
|
|
|
|
if (usehp) {
|
|
|
|
if (c == MV_CLASS_0) {
|
|
|
|
cost += class0_hp_cost[e];
|
|
|
|
} else {
|
|
|
|
cost += hp_cost[e];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mvcost[v] = cost + sign_cost[0];
|
|
|
|
mvcost[-v] = cost + sign_cost[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int update_nmv_savings(const unsigned int ct[2],
|
|
|
|
const vp8_prob cur_p,
|
|
|
|
const vp8_prob new_p,
|
|
|
|
const vp8_prob upd_p) {
|
|
|
|
|
|
|
|
#ifdef LOW_PRECISION_MV_UPDATE
|
|
|
|
vp8_prob mod_p = new_p | 1;
|
|
|
|
#else
|
|
|
|
vp8_prob mod_p = new_p;
|
|
|
|
#endif
|
|
|
|
const int cur_b = vp8_cost_branch256(ct, cur_p);
|
|
|
|
const int mod_b = vp8_cost_branch256(ct, mod_p);
|
|
|
|
const int cost = 7 * 256 +
|
|
|
|
#ifndef LOW_PRECISION_MV_UPDATE
|
|
|
|
256 +
|
|
|
|
#endif
|
|
|
|
(vp8_cost_one(upd_p) - vp8_cost_zero(upd_p));
|
|
|
|
if (cur_b - mod_b - cost > 0) {
|
|
|
|
return cur_b - mod_b - cost;
|
|
|
|
} else {
|
|
|
|
return -vp8_cost_zero(upd_p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int update_nmv(
|
|
|
|
vp8_writer *const w,
|
|
|
|
const unsigned int ct[2],
|
|
|
|
vp8_prob *const cur_p,
|
|
|
|
const vp8_prob new_p,
|
|
|
|
const vp8_prob upd_p) {
|
|
|
|
|
|
|
|
#ifdef LOW_PRECISION_MV_UPDATE
|
|
|
|
vp8_prob mod_p = new_p | 1;
|
|
|
|
#else
|
|
|
|
vp8_prob mod_p = new_p;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const int cur_b = vp8_cost_branch256(ct, *cur_p);
|
|
|
|
const int mod_b = vp8_cost_branch256(ct, mod_p);
|
|
|
|
const int cost = 7 * 256 +
|
|
|
|
#ifndef LOW_PRECISION_MV_UPDATE
|
|
|
|
256 +
|
|
|
|
#endif
|
|
|
|
(vp8_cost_one(upd_p) - vp8_cost_zero(upd_p));
|
|
|
|
|
|
|
|
if (cur_b - mod_b > cost) {
|
|
|
|
*cur_p = mod_p;
|
|
|
|
vp8_write(w, 1, upd_p);
|
|
|
|
#ifdef LOW_PRECISION_MV_UPDATE
|
|
|
|
vp8_write_literal(w, mod_p >> 1, 7);
|
|
|
|
#else
|
|
|
|
vp8_write_literal(w, mod_p, 8);
|
|
|
|
#endif
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
vp8_write(w, 0, upd_p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef NMV_STATS
|
|
|
|
void init_nmvstats() {
|
|
|
|
vp8_zero(tnmvcounts);
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_nmvstats() {
|
|
|
|
nmv_context prob;
|
|
|
|
unsigned int branch_ct_joint[MV_JOINTS - 1][2];
|
|
|
|
unsigned int branch_ct_sign[2][2];
|
|
|
|
unsigned int branch_ct_classes[2][MV_CLASSES - 1][2];
|
|
|
|
unsigned int branch_ct_class0[2][CLASS0_SIZE - 1][2];
|
|
|
|
unsigned int branch_ct_bits[2][MV_OFFSET_BITS][2];
|
|
|
|
unsigned int branch_ct_class0_fp[2][CLASS0_SIZE][4 - 1][2];
|
|
|
|
unsigned int branch_ct_fp[2][4 - 1][2];
|
|
|
|
unsigned int branch_ct_class0_hp[2][2];
|
|
|
|
unsigned int branch_ct_hp[2][2];
|
|
|
|
int i, j, k;
|
|
|
|
vp8_counts_to_nmv_context(&tnmvcounts, &prob, 1,
|
|
|
|
branch_ct_joint, branch_ct_sign, branch_ct_classes,
|
|
|
|
branch_ct_class0, branch_ct_bits,
|
|
|
|
branch_ct_class0_fp, branch_ct_fp,
|
|
|
|
branch_ct_class0_hp, branch_ct_hp);
|
|
|
|
|
|
|
|
printf("\nCounts =\n { ");
|
|
|
|
for (j = 0; j < MV_JOINTS; ++j)
|
|
|
|
printf("%d, ", tnmvcounts.joints[j]);
|
|
|
|
printf("},\n");
|
|
|
|
for (i=0; i< 2; ++i) {
|
|
|
|
printf(" {\n");
|
|
|
|
printf(" %d/%d,\n", tnmvcounts.comps[i].sign[0],
|
|
|
|
tnmvcounts.comps[i].sign[1]);
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < MV_CLASSES; ++j)
|
|
|
|
printf("%d, ", tnmvcounts.comps[i].classes[j]);
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j)
|
|
|
|
printf("%d, ", tnmvcounts.comps[i].class0[j]);
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j)
|
|
|
|
printf("%d/%d, ", tnmvcounts.comps[i].bits[j][0],
|
|
|
|
tnmvcounts.comps[i].bits[j][1]);
|
|
|
|
printf("},\n");
|
|
|
|
|
|
|
|
printf(" {");
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
printf("{");
|
|
|
|
for (k = 0; k < 4; ++k)
|
|
|
|
printf("%d, ", tnmvcounts.comps[i].class0_fp[j][k]);
|
|
|
|
printf("}, ");
|
|
|
|
}
|
|
|
|
printf("},\n");
|
|
|
|
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < 4; ++j)
|
|
|
|
printf("%d, ", tnmvcounts.comps[i].fp[j]);
|
|
|
|
printf("},\n");
|
|
|
|
|
|
|
|
printf(" %d/%d,\n",
|
|
|
|
tnmvcounts.comps[i].class0_hp[0],
|
|
|
|
tnmvcounts.comps[i].class0_hp[1]);
|
|
|
|
printf(" %d/%d,\n",
|
|
|
|
tnmvcounts.comps[i].hp[0],
|
|
|
|
tnmvcounts.comps[i].hp[1]);
|
|
|
|
printf(" },\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\nProbs =\n { ");
|
|
|
|
for (j = 0; j < MV_JOINTS - 1; ++j)
|
|
|
|
printf("%d, ", prob.joints[j]);
|
|
|
|
printf("},\n");
|
|
|
|
for (i=0; i< 2; ++i) {
|
|
|
|
printf(" {\n");
|
|
|
|
printf(" %d,\n", prob.comps[i].sign);
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < MV_CLASSES - 1; ++j)
|
|
|
|
printf("%d, ", prob.comps[i].classes[j]);
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < CLASS0_SIZE - 1; ++j)
|
|
|
|
printf("%d, ", prob.comps[i].class0[j]);
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j)
|
|
|
|
printf("%d, ", prob.comps[i].bits[j]);
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
printf("{");
|
|
|
|
for (k = 0; k < 3; ++k)
|
|
|
|
printf("%d, ", prob.comps[i].class0_fp[j][k]);
|
|
|
|
printf("}, ");
|
|
|
|
}
|
|
|
|
printf("},\n");
|
|
|
|
printf(" { ");
|
|
|
|
for (j = 0; j < 3; ++j)
|
|
|
|
printf("%d, ", prob.comps[i].fp[j]);
|
|
|
|
printf("},\n");
|
|
|
|
|
|
|
|
printf(" %d,\n", prob.comps[i].class0_hp);
|
|
|
|
printf(" %d,\n", prob.comps[i].hp);
|
|
|
|
printf(" },\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_nmvcount(nmv_context_counts *dst, nmv_context_counts *src) {
|
|
|
|
int i, j, k;
|
|
|
|
for (j = 0; j < MV_JOINTS; ++j) {
|
|
|
|
dst->joints[j] += src->joints[j];
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
for (j = 0; j < MV_VALS; ++j) {
|
|
|
|
dst->comps[i].mvcount[j] += src->comps[i].mvcount[j];
|
|
|
|
}
|
|
|
|
dst->comps[i].sign[0] += src->comps[i].sign[0];
|
|
|
|
dst->comps[i].sign[1] += src->comps[i].sign[1];
|
|
|
|
for (j = 0; j < MV_CLASSES; ++j) {
|
|
|
|
dst->comps[i].classes[j] += src->comps[i].classes[j];
|
|
|
|
}
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
dst->comps[i].class0[j] += src->comps[i].class0[j];
|
|
|
|
}
|
|
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j) {
|
|
|
|
dst->comps[i].bits[j][0] += src->comps[i].bits[j][0];
|
|
|
|
dst->comps[i].bits[j][1] += src->comps[i].bits[j][1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
for (k = 0; k < 4; ++k) {
|
|
|
|
dst->comps[i].class0_fp[j][k] += src->comps[i].class0_fp[j][k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j = 0; j < 4; ++j) {
|
|
|
|
dst->comps[i].fp[j] += src->comps[i].fp[j];
|
|
|
|
}
|
|
|
|
dst->comps[i].class0_hp[0] += src->comps[i].class0_hp[0];
|
|
|
|
dst->comps[i].class0_hp[1] += src->comps[i].class0_hp[1];
|
|
|
|
dst->comps[i].hp[0] += src->comps[i].hp[0];
|
|
|
|
dst->comps[i].hp[1] += src->comps[i].hp[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void vp8_write_nmvprobs(VP8_COMP * cpi, int usehp) {
|
2012-10-17 23:51:27 +02:00
|
|
|
vp8_writer *const w = &cpi->bc;
|
2012-07-26 22:42:07 +02:00
|
|
|
int i, j;
|
|
|
|
nmv_context prob;
|
|
|
|
unsigned int branch_ct_joint[MV_JOINTS - 1][2];
|
|
|
|
unsigned int branch_ct_sign[2][2];
|
|
|
|
unsigned int branch_ct_classes[2][MV_CLASSES - 1][2];
|
|
|
|
unsigned int branch_ct_class0[2][CLASS0_SIZE - 1][2];
|
|
|
|
unsigned int branch_ct_bits[2][MV_OFFSET_BITS][2];
|
|
|
|
unsigned int branch_ct_class0_fp[2][CLASS0_SIZE][4 - 1][2];
|
|
|
|
unsigned int branch_ct_fp[2][4 - 1][2];
|
|
|
|
unsigned int branch_ct_class0_hp[2][2];
|
|
|
|
unsigned int branch_ct_hp[2][2];
|
|
|
|
int savings = 0;
|
|
|
|
|
|
|
|
#ifdef NMV_STATS
|
|
|
|
if (!cpi->dummy_packing)
|
|
|
|
add_nmvcount(&tnmvcounts, &cpi->NMVcount);
|
|
|
|
#endif
|
|
|
|
vp8_counts_to_nmv_context(&cpi->NMVcount, &prob, usehp,
|
|
|
|
branch_ct_joint, branch_ct_sign, branch_ct_classes,
|
|
|
|
branch_ct_class0, branch_ct_bits,
|
|
|
|
branch_ct_class0_fp, branch_ct_fp,
|
|
|
|
branch_ct_class0_hp, branch_ct_hp);
|
|
|
|
/* write updates if they help */
|
|
|
|
#ifdef MV_GROUP_UPDATE
|
|
|
|
for (j = 0; j < MV_JOINTS - 1; ++j) {
|
|
|
|
savings += update_nmv_savings(branch_ct_joint[j],
|
|
|
|
cpi->common.fc.nmvc.joints[j],
|
|
|
|
prob.joints[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
savings += update_nmv_savings(branch_ct_sign[i],
|
|
|
|
cpi->common.fc.nmvc.comps[i].sign,
|
|
|
|
prob.comps[i].sign,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
for (j = 0; j < MV_CLASSES - 1; ++j) {
|
|
|
|
savings += update_nmv_savings(branch_ct_classes[i][j],
|
|
|
|
cpi->common.fc.nmvc.comps[i].classes[j],
|
|
|
|
prob.comps[i].classes[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
|
|
|
|
savings += update_nmv_savings(branch_ct_class0[i][j],
|
|
|
|
cpi->common.fc.nmvc.comps[i].class0[j],
|
|
|
|
prob.comps[i].class0[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j) {
|
|
|
|
savings += update_nmv_savings(branch_ct_bits[i][j],
|
|
|
|
cpi->common.fc.nmvc.comps[i].bits[j],
|
|
|
|
prob.comps[i].bits[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
int k;
|
|
|
|
for (k = 0; k < 3; ++k) {
|
|
|
|
savings += update_nmv_savings(branch_ct_class0_fp[i][j][k],
|
|
|
|
cpi->common.fc.nmvc.comps[i].class0_fp[j][k],
|
|
|
|
prob.comps[i].class0_fp[j][k],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j = 0; j < 3; ++j) {
|
|
|
|
savings += update_nmv_savings(branch_ct_fp[i][j],
|
|
|
|
cpi->common.fc.nmvc.comps[i].fp[j],
|
|
|
|
prob.comps[i].fp[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (usehp) {
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
savings += update_nmv_savings(branch_ct_class0_hp[i],
|
|
|
|
cpi->common.fc.nmvc.comps[i].class0_hp,
|
|
|
|
prob.comps[i].class0_hp,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
savings += update_nmv_savings(branch_ct_hp[i],
|
|
|
|
cpi->common.fc.nmvc.comps[i].hp,
|
|
|
|
prob.comps[i].hp,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (savings <= 0) {
|
|
|
|
vp8_write_bit(w, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
vp8_write_bit(w, 1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (j = 0; j < MV_JOINTS - 1; ++j) {
|
|
|
|
update_nmv(w, branch_ct_joint[j],
|
|
|
|
&cpi->common.fc.nmvc.joints[j],
|
|
|
|
prob.joints[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
update_nmv(w, branch_ct_sign[i],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].sign,
|
|
|
|
prob.comps[i].sign,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
for (j = 0; j < MV_CLASSES - 1; ++j) {
|
|
|
|
update_nmv(w, branch_ct_classes[i][j],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].classes[j],
|
|
|
|
prob.comps[i].classes[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
|
|
|
|
update_nmv(w, branch_ct_class0[i][j],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].class0[j],
|
|
|
|
prob.comps[i].class0[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j) {
|
|
|
|
update_nmv(w, branch_ct_bits[i][j],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].bits[j],
|
|
|
|
prob.comps[i].bits[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
|
|
int k;
|
|
|
|
for (k = 0; k < 3; ++k) {
|
|
|
|
update_nmv(w, branch_ct_class0_fp[i][j][k],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].class0_fp[j][k],
|
|
|
|
prob.comps[i].class0_fp[j][k],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (j = 0; j < 3; ++j) {
|
|
|
|
update_nmv(w, branch_ct_fp[i][j],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].fp[j],
|
|
|
|
prob.comps[i].fp[j],
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (usehp) {
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
|
|
update_nmv(w, branch_ct_class0_hp[i],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].class0_hp,
|
|
|
|
prob.comps[i].class0_hp,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
update_nmv(w, branch_ct_hp[i],
|
|
|
|
&cpi->common.fc.nmvc.comps[i].hp,
|
|
|
|
prob.comps[i].hp,
|
|
|
|
VP8_NMV_UPDATE_PROB);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp8_encode_nmv(vp8_writer *w, const MV *mv, const MV *ref,
|
|
|
|
const nmv_context *mvctx) {
|
|
|
|
MV_JOINT_TYPE j = vp8_get_mv_joint(*mv);
|
|
|
|
vp8_write_token(w, vp8_mv_joint_tree, mvctx->joints,
|
|
|
|
vp8_mv_joint_encodings + j);
|
|
|
|
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
|
|
|
|
encode_nmv_component(w, mv->row, ref->col, &mvctx->comps[0]);
|
|
|
|
}
|
|
|
|
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
|
|
|
|
encode_nmv_component(w, mv->col, ref->col, &mvctx->comps[1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp8_encode_nmv_fp(vp8_writer *w, const MV *mv, const MV *ref,
|
|
|
|
const nmv_context *mvctx, int usehp) {
|
|
|
|
MV_JOINT_TYPE j = vp8_get_mv_joint(*mv);
|
2012-09-06 18:07:42 +02:00
|
|
|
usehp = usehp && vp8_use_nmv_hp(ref);
|
2012-07-26 22:42:07 +02:00
|
|
|
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
|
|
|
|
encode_nmv_component_fp(w, mv->row, ref->row, &mvctx->comps[0], usehp);
|
|
|
|
}
|
|
|
|
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
|
|
|
|
encode_nmv_component_fp(w, mv->col, ref->col, &mvctx->comps[1], usehp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp8_build_nmv_cost_table(int *mvjoint,
|
|
|
|
int *mvcost[2],
|
|
|
|
const nmv_context *mvctx,
|
|
|
|
int usehp,
|
|
|
|
int mvc_flag_v,
|
|
|
|
int mvc_flag_h) {
|
|
|
|
vp8_clear_system_state();
|
|
|
|
vp8_cost_tokens(mvjoint, mvctx->joints, vp8_mv_joint_tree);
|
|
|
|
if (mvc_flag_v)
|
|
|
|
build_nmv_component_cost_table(mvcost[0], &mvctx->comps[0], usehp);
|
|
|
|
if (mvc_flag_h)
|
|
|
|
build_nmv_component_cost_table(mvcost[1], &mvctx->comps[1], usehp);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* CONFIG_NEWMVENTROPY */
|
|
|
|
|
2010-05-18 17:58:33 +02:00
|
|
|
static void encode_mvcomponent(
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_writer *const w,
|
|
|
|
const int v,
|
|
|
|
const struct mv_context *mvc
|
|
|
|
) {
|
|
|
|
const vp8_prob *p = mvc->prob;
|
|
|
|
const int x = v < 0 ? -v : v;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (x < mvnum_short) { // Small
|
|
|
|
vp8_write(w, 0, p [mvpis_short]);
|
|
|
|
vp8_treed_write(w, vp8_small_mvtree, p + MVPshort, x, mvnum_short_bits);
|
|
|
|
if (!x)
|
|
|
|
return; // no sign bit
|
|
|
|
} else { // Large
|
|
|
|
int i = 0;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_write(w, 1, p [mvpis_short]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
vp8_write(w, (x >> i) & 1, p [MVPbits + i]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++i < mvnum_short_bits);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
vp8_write(w, (x >> i) & 1, p [MVPbits + i]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (--i > mvnum_short_bits);
|
|
|
|
|
|
|
|
if (x & ~((2 << mvnum_short_bits) - 1))
|
|
|
|
vp8_write(w, (x >> mvnum_short_bits) & 1, p [MVPbits + mvnum_short_bits]);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_write(w, v < 0, p [MVPsign]);
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
2012-08-03 21:17:18 +02:00
|
|
|
void vp8_encode_motion_vector(vp8_writer *w, const MV *mv, const MV_CONTEXT *mvc) {
|
2012-07-14 00:21:29 +02:00
|
|
|
encode_mvcomponent(w, mv->row >> 1, &mvc[0]);
|
|
|
|
encode_mvcomponent(w, mv->col >> 1, &mvc[1]);
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
static unsigned int cost_mvcomponent(const int v, const struct mv_context *mvc) {
|
|
|
|
const vp8_prob *p = mvc->prob;
|
|
|
|
const int x = v; // v<0? -v:v;
|
|
|
|
unsigned int cost;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (x < mvnum_short) {
|
|
|
|
cost = vp8_cost_zero(p [mvpis_short])
|
|
|
|
+ vp8_treed_cost(vp8_small_mvtree, p + MVPshort, x, mvnum_short_bits);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (!x)
|
|
|
|
return cost;
|
|
|
|
} else {
|
|
|
|
int i = 0;
|
|
|
|
cost = vp8_cost_one(p [mvpis_short]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
cost += vp8_cost_bit(p [MVPbits + i], (x >> i) & 1);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++i < mvnum_short_bits);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
cost += vp8_cost_bit(p [MVPbits + i], (x >> i) & 1);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (--i > mvnum_short_bits);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (x & ~((2 << mvnum_short_bits) - 1))
|
|
|
|
cost += vp8_cost_bit(p [MVPbits + mvnum_short_bits], (x >> mvnum_short_bits) & 1);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
return cost; // + vp8_cost_bit( p [MVPsign], v < 0);
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
void vp8_build_component_cost_table(int *mvcost[2], const MV_CONTEXT *mvc, int mvc_flag[2]) {
|
|
|
|
int i = 1; // -mv_max;
|
|
|
|
unsigned int cost0 = 0;
|
|
|
|
unsigned int cost1 = 0;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_clear_system_state();
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = 1;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (mvc_flag[0]) {
|
|
|
|
mvcost [0] [0] = cost_mvcomponent(0, &mvc[0]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do {
|
|
|
|
// mvcost [0] [i] = cost_mvcomponent( i, &mvc[0]);
|
|
|
|
cost0 = cost_mvcomponent(i, &mvc[0]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
mvcost [0] [i] = cost0 + vp8_cost_zero(mvc[0].prob[MVPsign]);
|
|
|
|
mvcost [0] [-i] = cost0 + vp8_cost_one(mvc[0].prob[MVPsign]);
|
|
|
|
} while (++i <= mv_max);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = 1;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (mvc_flag[1]) {
|
|
|
|
mvcost [1] [0] = cost_mvcomponent(0, &mvc[1]);
|
|
|
|
|
|
|
|
do {
|
|
|
|
// mvcost [1] [i] = cost_mvcomponent( i, mvc[1]);
|
|
|
|
cost1 = cost_mvcomponent(i, &mvc[1]);
|
|
|
|
|
|
|
|
mvcost [1] [i] = cost1 + vp8_cost_zero(mvc[1].prob[MVPsign]);
|
|
|
|
mvcost [1] [-i] = cost1 + vp8_cost_one(mvc[1].prob[MVPsign]);
|
|
|
|
} while (++i <= mv_max);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Motion vector probability table update depends on benefit.
|
|
|
|
// Small correction allows for the fact that an update to an MV probability
|
|
|
|
// may have benefit in subsequent frames as well as the current one.
|
|
|
|
|
|
|
|
#define MV_PROB_UPDATE_CORRECTION -1
|
|
|
|
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
__inline static void calc_prob(vp8_prob *p, const unsigned int ct[2]) {
|
|
|
|
const unsigned int tot = ct[0] + ct[1];
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (tot) {
|
|
|
|
const vp8_prob x = ((ct[0] * 255) / tot) & -2;
|
|
|
|
*p = x ? x : 1;
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void update(
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_writer *const w,
|
|
|
|
const unsigned int ct[2],
|
|
|
|
vp8_prob *const cur_p,
|
|
|
|
const vp8_prob new_p,
|
|
|
|
const vp8_prob update_p,
|
|
|
|
int *updated
|
|
|
|
) {
|
|
|
|
const int cur_b = vp8_cost_branch(ct, *cur_p);
|
|
|
|
const int new_b = vp8_cost_branch(ct, new_p);
|
|
|
|
const int cost = 7 + MV_PROB_UPDATE_CORRECTION + ((vp8_cost_one(update_p) - vp8_cost_zero(update_p) + 128) >> 8);
|
|
|
|
|
|
|
|
if (cur_b - new_b > cost) {
|
|
|
|
*cur_p = new_p;
|
|
|
|
vp8_write(w, 1, update_p);
|
|
|
|
vp8_write_literal(w, new_p >> 1, 7);
|
|
|
|
*updated = 1;
|
|
|
|
|
|
|
|
} else
|
|
|
|
vp8_write(w, 0, update_p);
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void write_component_probs(
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_writer *const w,
|
|
|
|
struct mv_context *cur_mvc,
|
|
|
|
const struct mv_context *default_mvc_,
|
|
|
|
const struct mv_context *update_mvc,
|
|
|
|
const unsigned int events [MVvals],
|
|
|
|
unsigned int rc,
|
|
|
|
int *updated
|
|
|
|
) {
|
|
|
|
vp8_prob *Pcur = cur_mvc->prob;
|
|
|
|
const vp8_prob *default_mvc = default_mvc_->prob;
|
|
|
|
const vp8_prob *Pupdate = update_mvc->prob;
|
|
|
|
unsigned int is_short_ct[2], sign_ct[2];
|
|
|
|
|
|
|
|
unsigned int bit_ct [mvlong_width] [2];
|
|
|
|
|
|
|
|
unsigned int short_ct [mvnum_short];
|
|
|
|
unsigned int short_bct [mvnum_short - 1] [2];
|
|
|
|
|
|
|
|
vp8_prob Pnew [MVPcount];
|
|
|
|
|
|
|
|
(void) rc;
|
|
|
|
vp8_copy_array(Pnew, default_mvc, MVPcount);
|
|
|
|
|
|
|
|
vp8_zero(is_short_ct)
|
|
|
|
vp8_zero(sign_ct)
|
|
|
|
vp8_zero(bit_ct)
|
|
|
|
vp8_zero(short_ct)
|
|
|
|
vp8_zero(short_bct)
|
|
|
|
|
|
|
|
|
|
|
|
// j=0
|
|
|
|
{
|
|
|
|
const int c = events [mv_max];
|
|
|
|
|
|
|
|
is_short_ct [0] += c; // Short vector
|
|
|
|
short_ct [0] += c; // Magnitude distribution
|
|
|
|
}
|
|
|
|
|
|
|
|
// j: 1 ~ mv_max (1023)
|
|
|
|
{
|
|
|
|
int j = 1;
|
|
|
|
|
|
|
|
do {
|
|
|
|
const int c1 = events [mv_max + j]; // positive
|
|
|
|
const int c2 = events [mv_max - j]; // negative
|
|
|
|
const int c = c1 + c2;
|
|
|
|
int a = j;
|
|
|
|
|
|
|
|
sign_ct [0] += c1;
|
|
|
|
sign_ct [1] += c2;
|
|
|
|
|
|
|
|
if (a < mvnum_short) {
|
|
|
|
is_short_ct [0] += c; // Short vector
|
|
|
|
short_ct [a] += c; // Magnitude distribution
|
|
|
|
} else {
|
|
|
|
int k = mvlong_width - 1;
|
|
|
|
is_short_ct [1] += c; // Long vector
|
|
|
|
|
|
|
|
/* bit 3 not always encoded. */
|
2010-05-18 17:58:33 +02:00
|
|
|
do
|
2012-07-14 00:21:29 +02:00
|
|
|
bit_ct [k] [(a >> k) & 1] += c;
|
|
|
|
|
|
|
|
while (--k >= 0);
|
|
|
|
}
|
|
|
|
} while (++j <= mv_max);
|
|
|
|
}
|
|
|
|
|
|
|
|
calc_prob(Pnew + mvpis_short, is_short_ct);
|
|
|
|
|
|
|
|
calc_prob(Pnew + MVPsign, sign_ct);
|
|
|
|
|
|
|
|
{
|
|
|
|
vp8_prob p [mvnum_short - 1]; /* actually only need branch ct */
|
|
|
|
int j = 0;
|
|
|
|
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
|
|
mvnum_short, vp8_small_mvencodings, vp8_small_mvtree,
|
|
|
|
p, short_bct, short_ct,
|
|
|
|
256, 1
|
|
|
|
);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
calc_prob(Pnew + MVPshort + j, short_bct[j]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvnum_short - 1);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
int j = 0;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
calc_prob(Pnew + MVPbits + j, bit_ct[j]);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvlong_width);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, is_short_ct, Pcur + mvpis_short, Pnew[mvpis_short], *Pupdate++, updated);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, sign_ct, Pcur + MVPsign, Pnew[MVPsign], *Pupdate++, updated);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
const vp8_prob *const new_p = Pnew + MVPshort;
|
|
|
|
vp8_prob *const cur_p = Pcur + MVPshort;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
int j = 0;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, short_bct[j], cur_p + j, new_p[j], *Pupdate++, updated);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvnum_short - 1);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
const vp8_prob *const new_p = Pnew + MVPbits;
|
|
|
|
vp8_prob *const cur_p = Pcur + MVPbits;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
int j = 0;
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, bit_ct[j], cur_p + j, new_p[j], *Pupdate++, updated);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvlong_width);
|
|
|
|
}
|
2010-05-18 17:58:33 +02:00
|
|
|
}
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
void vp8_write_mvprobs(VP8_COMP *cpi) {
|
2012-10-17 23:51:27 +02:00
|
|
|
vp8_writer *const w = &cpi->bc;
|
2012-07-14 00:21:29 +02:00
|
|
|
MV_CONTEXT *mvc = cpi->common.fc.mvc;
|
|
|
|
int flags[2] = {0, 0};
|
2010-05-18 17:58:33 +02:00
|
|
|
#ifdef ENTROPY_STATS
|
2012-07-14 00:21:29 +02:00
|
|
|
active_section = 4;
|
2010-05-18 17:58:33 +02:00
|
|
|
#endif
|
2012-07-14 00:21:29 +02:00
|
|
|
write_component_probs(
|
|
|
|
w, &mvc[0], &vp8_default_mv_context[0], &vp8_mv_update_probs[0], cpi->MVcount[0], 0, &flags[0]
|
|
|
|
);
|
|
|
|
write_component_probs(
|
|
|
|
w, &mvc[1], &vp8_default_mv_context[1], &vp8_mv_update_probs[1], cpi->MVcount[1], 1, &flags[1]
|
|
|
|
);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (flags[0] || flags[1])
|
|
|
|
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flags);
|
2010-05-18 17:58:33 +02:00
|
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
2012-07-14 00:21:29 +02:00
|
|
|
active_section = 5;
|
2010-05-18 17:58:33 +02:00
|
|
|
#endif
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
|
|
|
|
|
|
|
static void encode_mvcomponent_hp(
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_writer *const w,
|
|
|
|
const int v,
|
|
|
|
const struct mv_context_hp *mvc
|
|
|
|
) {
|
|
|
|
const vp8_prob *p = mvc->prob;
|
|
|
|
const int x = v < 0 ? -v : v;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (x < mvnum_short_hp) { // Small
|
|
|
|
vp8_write(w, 0, p [mvpis_short_hp]);
|
|
|
|
vp8_treed_write(w, vp8_small_mvtree_hp, p + MVPshort_hp, x,
|
|
|
|
mvnum_short_bits_hp);
|
|
|
|
if (!x)
|
|
|
|
return; // no sign bit
|
|
|
|
} else { // Large
|
|
|
|
int i = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_write(w, 1, p [mvpis_short_hp]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
vp8_write(w, (x >> i) & 1, p [MVPbits_hp + i]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++i < mvnum_short_bits_hp);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = mvlong_width_hp - 1; /* Skip bit 3, which is sometimes implicit */
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
vp8_write(w, (x >> i) & 1, p [MVPbits_hp + i]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (--i > mvnum_short_bits_hp);
|
|
|
|
|
|
|
|
if (x & ~((2 << mvnum_short_bits_hp) - 1))
|
|
|
|
vp8_write(w, (x >> mvnum_short_bits_hp) & 1,
|
|
|
|
p [MVPbits_hp + mvnum_short_bits_hp]);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_write(w, v < 0, p [MVPsign_hp]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
}
|
2012-08-03 21:17:18 +02:00
|
|
|
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
void vp8_encode_motion_vector_hp(vp8_writer *w, const MV *mv,
|
2012-07-14 00:21:29 +02:00
|
|
|
const MV_CONTEXT_HP *mvc) {
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
encode_mvcomponent_hp(w, mv->row, &mvc[0]);
|
|
|
|
encode_mvcomponent_hp(w, mv->col, &mvc[1]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static unsigned int cost_mvcomponent_hp(const int v,
|
2012-07-14 00:21:29 +02:00
|
|
|
const struct mv_context_hp *mvc) {
|
|
|
|
const vp8_prob *p = mvc->prob;
|
|
|
|
const int x = v; // v<0? -v:v;
|
|
|
|
unsigned int cost;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (x < mvnum_short_hp) {
|
|
|
|
cost = vp8_cost_zero(p [mvpis_short_hp])
|
|
|
|
+ vp8_treed_cost(vp8_small_mvtree_hp, p + MVPshort_hp, x,
|
|
|
|
mvnum_short_bits_hp);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (!x)
|
|
|
|
return cost;
|
|
|
|
} else {
|
|
|
|
int i = 0;
|
|
|
|
cost = vp8_cost_one(p [mvpis_short_hp]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
cost += vp8_cost_bit(p [MVPbits_hp + i], (x >> i) & 1);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++i < mvnum_short_bits_hp);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = mvlong_width_hp - 1; /* Skip bit 3, which is sometimes implicit */
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
cost += vp8_cost_bit(p [MVPbits_hp + i], (x >> i) & 1);
|
|
|
|
|
|
|
|
while (--i > mvnum_short_bits_hp);
|
|
|
|
|
|
|
|
if (x & ~((2 << mvnum_short_bits_hp) - 1))
|
|
|
|
cost += vp8_cost_bit(p [MVPbits_hp + mvnum_short_bits_hp],
|
|
|
|
(x >> mvnum_short_bits_hp) & 1);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
return cost; // + vp8_cost_bit( p [MVPsign], v < 0);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void vp8_build_component_cost_table_hp(int *mvcost[2],
|
|
|
|
const MV_CONTEXT_HP *mvc,
|
2012-07-14 00:21:29 +02:00
|
|
|
int mvc_flag[2]) {
|
|
|
|
int i = 1; // -mv_max;
|
|
|
|
unsigned int cost0 = 0;
|
|
|
|
unsigned int cost1 = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_clear_system_state();
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = 1;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (mvc_flag[0]) {
|
|
|
|
mvcost [0] [0] = cost_mvcomponent_hp(0, &mvc[0]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do {
|
|
|
|
// mvcost [0] [i] = cost_mvcomponent( i, &mvc[0]);
|
|
|
|
cost0 = cost_mvcomponent_hp(i, &mvc[0]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
mvcost [0] [i] = cost0 + vp8_cost_zero(mvc[0].prob[MVPsign_hp]);
|
|
|
|
mvcost [0] [-i] = cost0 + vp8_cost_one(mvc[0].prob[MVPsign_hp]);
|
|
|
|
} while (++i <= mv_max_hp);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
i = 1;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
if (mvc_flag[1]) {
|
|
|
|
mvcost [1] [0] = cost_mvcomponent_hp(0, &mvc[1]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do {
|
|
|
|
// mvcost [1] [i] = cost_mvcomponent( i, mvc[1]);
|
|
|
|
cost1 = cost_mvcomponent_hp(i, &mvc[1]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
mvcost [1] [i] = cost1 + vp8_cost_zero(mvc[1].prob[MVPsign_hp]);
|
|
|
|
mvcost [1] [-i] = cost1 + vp8_cost_one(mvc[1].prob[MVPsign_hp]);
|
|
|
|
} while (++i <= mv_max_hp);
|
|
|
|
}
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
static void write_component_probs_hp(
|
|
|
|
vp8_writer *const w,
|
|
|
|
struct mv_context_hp *cur_mvc,
|
|
|
|
const struct mv_context_hp *default_mvc_,
|
|
|
|
const struct mv_context_hp *update_mvc,
|
|
|
|
const unsigned int events [MVvals_hp],
|
|
|
|
unsigned int rc,
|
|
|
|
int *updated
|
|
|
|
) {
|
|
|
|
vp8_prob *Pcur = cur_mvc->prob;
|
|
|
|
const vp8_prob *default_mvc = default_mvc_->prob;
|
|
|
|
const vp8_prob *Pupdate = update_mvc->prob;
|
|
|
|
unsigned int is_short_ct[2], sign_ct[2];
|
|
|
|
|
|
|
|
unsigned int bit_ct [mvlong_width_hp] [2];
|
|
|
|
|
|
|
|
unsigned int short_ct [mvnum_short_hp];
|
|
|
|
unsigned int short_bct [mvnum_short_hp - 1] [2];
|
|
|
|
|
|
|
|
vp8_prob Pnew [MVPcount_hp];
|
|
|
|
|
|
|
|
(void) rc;
|
|
|
|
vp8_copy_array(Pnew, default_mvc, MVPcount_hp);
|
|
|
|
|
|
|
|
vp8_zero(is_short_ct)
|
|
|
|
vp8_zero(sign_ct)
|
|
|
|
vp8_zero(bit_ct)
|
|
|
|
vp8_zero(short_ct)
|
|
|
|
vp8_zero(short_bct)
|
|
|
|
|
|
|
|
|
|
|
|
// j=0
|
|
|
|
{
|
|
|
|
const int c = events [mv_max_hp];
|
|
|
|
|
|
|
|
is_short_ct [0] += c; // Short vector
|
|
|
|
short_ct [0] += c; // Magnitude distribution
|
|
|
|
}
|
|
|
|
|
|
|
|
// j: 1 ~ mv_max (1023)
|
|
|
|
{
|
|
|
|
int j = 1;
|
|
|
|
|
|
|
|
do {
|
|
|
|
const int c1 = events [mv_max_hp + j]; // positive
|
|
|
|
const int c2 = events [mv_max_hp - j]; // negative
|
|
|
|
const int c = c1 + c2;
|
|
|
|
int a = j;
|
|
|
|
|
|
|
|
sign_ct [0] += c1;
|
|
|
|
sign_ct [1] += c2;
|
|
|
|
|
|
|
|
if (a < mvnum_short_hp) {
|
|
|
|
is_short_ct [0] += c; // Short vector
|
|
|
|
short_ct [a] += c; // Magnitude distribution
|
|
|
|
} else {
|
|
|
|
int k = mvlong_width_hp - 1;
|
|
|
|
is_short_ct [1] += c; // Long vector
|
|
|
|
|
|
|
|
/* bit 3 not always encoded. */
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
do
|
2012-07-14 00:21:29 +02:00
|
|
|
bit_ct [k] [(a >> k) & 1] += c;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (--k >= 0);
|
|
|
|
}
|
|
|
|
} while (++j <= mv_max_hp);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
calc_prob(Pnew + mvpis_short_hp, is_short_ct);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
calc_prob(Pnew + MVPsign_hp, sign_ct);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
vp8_prob p [mvnum_short_hp - 1]; /* actually only need branch ct */
|
|
|
|
int j = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
vp8_tree_probs_from_distribution(
|
|
|
|
mvnum_short_hp, vp8_small_mvencodings_hp, vp8_small_mvtree_hp,
|
|
|
|
p, short_bct, short_ct,
|
|
|
|
256, 1
|
|
|
|
);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
calc_prob(Pnew + MVPshort_hp + j, short_bct[j]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvnum_short_hp - 1);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
int j = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
|
|
|
calc_prob(Pnew + MVPbits_hp + j, bit_ct[j]);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvlong_width_hp);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, is_short_ct, Pcur + mvpis_short_hp, Pnew[mvpis_short_hp],
|
|
|
|
*Pupdate++, updated);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, sign_ct, Pcur + MVPsign_hp, Pnew[MVPsign_hp], *Pupdate++,
|
|
|
|
updated);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
const vp8_prob *const new_p = Pnew + MVPshort_hp;
|
|
|
|
vp8_prob *const cur_p = Pcur + MVPshort_hp;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
int j = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, short_bct[j], cur_p + j, new_p[j], *Pupdate++, updated);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
while (++j < mvnum_short_hp - 1);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
{
|
|
|
|
const vp8_prob *const new_p = Pnew + MVPbits_hp;
|
|
|
|
vp8_prob *const cur_p = Pcur + MVPbits_hp;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
int j = 0;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
do
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
update(w, bit_ct[j], cur_p + j, new_p[j], *Pupdate++, updated);
|
|
|
|
|
|
|
|
while (++j < mvlong_width_hp);
|
|
|
|
}
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
}
|
|
|
|
|
2012-07-14 00:21:29 +02:00
|
|
|
void vp8_write_mvprobs_hp(VP8_COMP *cpi) {
|
2012-10-17 23:51:27 +02:00
|
|
|
vp8_writer *const w = &cpi->bc;
|
2012-07-14 00:21:29 +02:00
|
|
|
MV_CONTEXT_HP *mvc = cpi->common.fc.mvc_hp;
|
|
|
|
int flags[2] = {0, 0};
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
#ifdef ENTROPY_STATS
|
2012-07-14 00:21:29 +02:00
|
|
|
active_section = 4;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
#endif
|
2012-07-14 00:21:29 +02:00
|
|
|
write_component_probs_hp(
|
|
|
|
w, &mvc[0], &vp8_default_mv_context_hp[0], &vp8_mv_update_probs_hp[0],
|
|
|
|
cpi->MVcount_hp[0], 0, &flags[0]
|
|
|
|
);
|
|
|
|
write_component_probs_hp(
|
|
|
|
w, &mvc[1], &vp8_default_mv_context_hp[1], &vp8_mv_update_probs_hp[1],
|
|
|
|
cpi->MVcount_hp[1], 1, &flags[1]
|
|
|
|
);
|
|
|
|
|
|
|
|
if (flags[0] || flags[1])
|
|
|
|
vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp,
|
|
|
|
(const MV_CONTEXT_HP *)
|
|
|
|
cpi->common.fc.mvc_hp, flags);
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
#ifdef ENTROPY_STATS
|
2012-07-14 00:21:29 +02:00
|
|
|
active_section = 5;
|
WebM Experimental Codec Branch Snapshot
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
2012-03-10 02:32:50 +01:00
|
|
|
#endif
|
|
|
|
}
|
2012-07-26 22:42:07 +02:00
|
|
|
|
|
|
|
#endif /* CONFIG_NEWMVENTROPY */
|