vpx/vp8/encoder/rdopt.c

2542 lines
84 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "pragmas.h"
#include "tokenize.h"
#include "treewriter.h"
#include "onyx_int.h"
#include "modecosts.h"
#include "encodeintra.h"
#include "entropymode.h"
#include "reconinter.h"
#include "reconintra.h"
#include "reconintra4x4.h"
#include "findnearmv.h"
#include "encodemb.h"
#include "quantize.h"
#include "idct.h"
#include "g_common.h"
#include "variance.h"
#include "mcomp.h"
#include "vpx_mem/vpx_mem.h"
#include "dct.h"
#include "systemdependent.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x);
extern void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x);
2010-05-18 17:58:33 +02:00
#define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
const int vp8_auto_speed_thresh[17] =
{
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] =
{
ZEROMV,
DC_PRED,
NEARESTMV,
NEARMV,
ZEROMV,
NEARESTMV,
ZEROMV,
NEARESTMV,
NEARMV,
NEARMV,
V_PRED,
H_PRED,
TM_PRED,
NEWMV,
NEWMV,
NEWMV,
SPLITMV,
SPLITMV,
SPLITMV,
B_PRED,
};
const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES] =
{
LAST_FRAME,
INTRA_FRAME,
LAST_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
ALTREF_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
INTRA_FRAME,
INTRA_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
};
static void fill_token_costs(
unsigned int c [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens],
const vp8_prob p [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1]
)
{
int i, j, k;
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree);
}
2010-06-07 18:34:46 +02:00
static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0,
2010-05-18 17:58:33 +02:00
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
// 3* dc_qlookup[Q]*dc_qlookup[Q];
#if !CONFIG_EXTEND_QRANGE
static int rdmult_lut[QINDEX_RANGE]=
{
48,75,108,147,192,243,300,300,
363,432,507,588,675,768,867,867,
972,1083,1200,1200,1323,1323,1452,1452,
1587,1587,1728,1875,1875,2028,2187,2352,
2523,2700,2883,3072,3267,3468,3675,3888,
4107,4107,4332,4563,4800,5043,5292,5547,
5808,6075,6348,6348,6627,6912,7203,7500,
7803,8112,8427,8748,9075,9408,9747,10092,
10443,10800,11163,11532,11907,12288,12675,13068,
13467,13872,14283,14700,15123,15552,15987,16428,
16875,17328,17328,17787,18252,18723,19200,19683,
20172,20667,21168,21675,22188,22707,23232,23763,
24843,25947,27075,27648,28812,30000,30603,31212,
32448,33708,34992,36300,37632,38988,40368,41772,
44652,46128,47628,49152,50700,52272,53868,55488,
57132,58800,61347,63075,65712,68403,71148,73947,
};
#else
static int rdmult_lut[QINDEX_RANGE]=
{
3,5,7,9,12,15,19,23,
27,32,37,42,48,54,61,68,
75,83,91,99,108,117,127,137,
147,169,192,217,243,271,300,331,
363,397,450,507,567,631,698,768,
842,919,999,1083,1170,1261,1355,1452,
1587,1728,1875,2028,2187,2352,2523,2700,
2883,3072,3267,3468,3675,3888,4107,4332,
4563,4800,5043,5292,5547,5808,6075,6348,
6627,6912,7203,7500,7880,8269,8667,9075,
9492,9919,10355,10800,11255,11719,12192,12675,
13167,13669,14180,14700,15230,15769,16317,16875,
18019,19200,20419,21675,22969,24300,25669,27075,
28519,30000,31519,33075,34669,36300,37969,39675,
41772,43923,46128,48387,50700,53067,55488,57963,
61347,64827,69312,73947,78732,83667,89787,97200,
};
#endif
2010-05-18 17:58:33 +02:00
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE] =
2010-05-18 17:58:33 +02:00
{
5, 5, 5, 5, 5, 5, 6, 6,
6, 6, 6, 6, 6, 7, 7, 7,
7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 9, 9,
9, 9, 9, 9, 10, 10, 10, 10,
10, 10, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 12, 13,
13, 13, 13, 13, 13, 14, 14, 14,
14, 14, 15, 15, 15, 15, 15, 15,
16, 16, 16, 16, 16, 16, 17, 17,
17, 17, 17, 17, 17, 18, 18, 18,
18, 18, 19, 19, 19, 19, 19, 19,
20, 20, 20, 21, 21, 21, 21, 22,
22, 22, 23, 23, 23, 24, 24, 24,
25, 25, 26, 26, 27, 27, 27, 28,
28, 28, 29, 29, 30, 30, 31, 31
2010-05-18 17:58:33 +02:00
};
static int sad_per_bit4lut[QINDEX_RANGE] =
2010-05-18 17:58:33 +02:00
{
5, 5, 5, 5, 5, 5, 7, 7,
7, 7, 7, 7, 7, 8, 8, 8,
8, 8, 8, 8, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 11, 11,
11, 11, 11, 11, 13, 13, 13, 13,
13, 13, 14, 14, 14, 14, 14, 14,
16, 16, 16, 16, 16, 16, 16, 17,
17, 17, 17, 17, 17, 19, 19, 19,
19, 19, 20, 20, 20, 20, 20, 20,
22, 22, 22, 22, 22, 22, 23, 23,
23, 23, 23, 23, 23, 25, 25, 25,
25, 25, 26, 26, 26, 26, 26, 26,
28, 28, 28, 29, 29, 29, 29, 31,
31, 31, 32, 32, 32, 34, 34, 34,
35, 35, 37, 37, 38, 38, 38, 40,
40, 40, 41, 41, 43, 43, 44, 44,
2010-05-18 17:58:33 +02:00
};
void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex)
{
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
void vp8_initialize_rd_consts(VP8_COMP *cpi, int QIndex)
2010-05-18 17:58:33 +02:00
{
int q;
int i;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
int *thresh;
int threshmult;
2010-05-18 17:58:33 +02:00
vp8_clear_system_state(); //__asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
QIndex=(QIndex<0)? 0 : ((QIndex>127)?127 : QIndex);
cpi->RDMULT = rdmult_lut[QIndex];
2010-05-18 17:58:33 +02:00
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0)
{
double oq_factor;
double modq;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
cpi->RDMULT = (int)((double)cpi->RDMULT * oq_factor * oq_factor);
}
2010-05-18 17:58:33 +02:00
2010-06-07 18:34:46 +02:00
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME))
2010-05-18 17:58:33 +02:00
{
2010-06-07 18:34:46 +02:00
if (cpi->next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
2010-05-18 17:58:33 +02:00
else
2010-06-07 18:34:46 +02:00
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->next_iiratio]) >> 4;
2010-05-18 17:58:33 +02:00
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#if !CONFIG_EXTEND_QRANGE
#else
if (cpi->RDMULT < 7)
cpi->RDMULT = 7;
#endif
2010-05-18 17:58:33 +02:00
cpi->mb.errorperbit = (cpi->RDMULT / 100);
cpi->mb.errorperbit += (cpi->mb.errorperbit==0);
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#if CONFIG_EXTEND_QRANGE
if(cpi->mb.errorperbit<1)
cpi->mb.errorperbit=1;
#endif
2010-05-18 17:58:33 +02:00
vp8_set_speed_features(cpi);
if (cpi->common.simpler_lpf)
cpi->common.filter_type = SIMPLE_LOOPFILTER;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
q = (int)pow(vp8_dc_quant(QIndex,0), 1.25);
2010-05-18 17:58:33 +02:00
if (q < 8)
q = 8;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#if CONFIG_EXTEND_QRANGE
cpi->RDMULT *= 16;
#endif
2010-05-18 17:58:33 +02:00
if (cpi->RDMULT > 1000)
{
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < INT_MAX)
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
else
{
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < (INT_MAX / q))
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(
cpi->mb.token_costs,
(const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs
);
vp8_init_mode_costs(cpi);
}
void vp8_auto_select_speed(VP8_COMP *cpi)
{
int used = cpi->oxcf.cpu_used;
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16;
#if 0
if (0)
{
FILE *f;
f = fopen("speed.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time);
fclose(f);
}
#endif
/*
// this is done during parameter valid check
if( used > 16)
used = 16;
if( used < -16)
used = -16;
*/
if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress)
{
if (cpi->avg_pick_mode_time == 0)
{
cpi->Speed = 4;
}
else
{
if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95)
{
cpi->Speed += 2;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
if (cpi->Speed > 16)
{
cpi->Speed = 16;
}
}
if (milliseconds_for_compress * 100 > cpi->avg_encode_time * vp8_auto_speed_thresh[cpi->Speed])
{
cpi->Speed -= 1;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
// In real-time mode, cpi->speed is in [4, 16].
if (cpi->Speed < 4) //if ( cpi->Speed < 0 )
{
cpi->Speed = 4; //cpi->Speed = 0;
}
}
}
}
else
{
cpi->Speed += 4;
if (cpi->Speed > 16)
cpi->Speed = 16;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
}
}
int vp8_block_error_c(short *coeff, short *dqcoeff)
{
int i;
int error = 0;
for (i = 0; i < 16; i++)
{
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
int vp8_mbblock_error_c(MACROBLOCK *mb, int dc)
{
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++)
{
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp8_mbuverror_c(MACROBLOCK *mb)
{
BLOCK *be;
BLOCKD *bd;
int i;
int error = 0;
for (i = 16; i < 24; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff);
}
return error;
}
int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row;
int mv_col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
vp8_build_uvmvs(&x->e_mbd, 0);
mv_row = x->e_mbd.block[16].bmi.mv.as_mv.row;
mv_col = x->e_mbd.block[16].bmi.mv.as_mv.col;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
else
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
}
#if !(CONFIG_REALTIME_ONLY)
static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int c = !type; /* start at coef 0, unless Y with Y2 */
int eob = b->eob;
int pt ; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
# define QC( I) ( qcoeff_ptr [vp8_default_zig_zag1d[I]] )
for (; c < eob; c++)
{
int v = QC(c);
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
# undef QC
if (c < 16)
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int vp8_rdcost_mby(MACROBLOCK *mb)
2010-05-18 17:58:33 +02:00
{
int cost = 0;
int b;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
2010-05-18 17:58:33 +02:00
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, x->block + b, 0,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
2010-05-18 17:58:33 +02:00
cost += cost_coeffs(mb, x->block + 24, 1,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
2010-05-18 17:58:33 +02:00
return cost;
}
static void macro_block_yrd( MACROBLOCK *mb,
int *Rate,
int *Distortion,
const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int b;
MACROBLOCKD *const x = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = x->block + 24;
short *Y2DCPtr = mb_y2->src_diff;
BLOCK *beptr;
int d;
ENCODEMB_INVOKE(rtcd, submby)( mb->src_diff, mb->src.y_buffer,
mb->e_mbd.predictor, mb->src.y_stride );
// Fdct and building the 2nd order block
for (beptr = mb->block; beptr < mb->block + 16; beptr += 2)
{
mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32);
*Y2DCPtr++ = beptr->coeff[0];
*Y2DCPtr++ = beptr->coeff[16];
}
// 2nd order fdct
mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8);
// Quantization
for (b = 0; b < 16; b++)
{
mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]);
}
// DC predication and Quantization of 2nd Order block
mb->quantize_b(mb_y2, x_y2);
// Distortion
d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2;
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff);
*Distortion = (d >> 4);
// rate
*Rate = vp8_rdcost_mby(mb);
}
2010-05-18 17:58:33 +02:00
static void rd_pick_intra4x4block(
VP8_COMP *cpi,
MACROBLOCK *x,
BLOCK *be,
BLOCKD *b,
B_PREDICTION_MODE *best_mode,
B_PREDICTION_MODE above,
B_PREDICTION_MODE left,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
int *bestrate,
int *bestratey,
int *bestdistortion)
{
B_PREDICTION_MODE mode;
int best_rd = INT_MAX; // 1<<30
int rate = 0;
int distortion;
unsigned int *mode_costs;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
if (x->e_mbd.frame_type == KEY_FRAME)
{
mode_costs = x->bmode_costs[above][left];
}
else
{
mode_costs = x->inter_bmode_costs;
}
for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++)
{
int this_rd;
int ratey;
rate = mode_costs[mode];
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, mode);
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, 3, &tempa, &templ);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
*a = tempa;
*l = templ;
}
}
b->bmi.mode = (B_PREDICTION_MODE)(*best_mode);
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, b->bmi.mode);
}
int vp8_rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion)
{
MACROBLOCKD *const xd = &mb->e_mbd;
int i;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
2010-05-18 17:58:33 +02:00
vp8_intra_prediction_down_copy(xd);
for (i = 0; i < 16; i++)
{
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode;
const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode, A, L,
ta + vp8_block2above[i],
tl + vp8_block2left[i], &r, &ry, &d);
2010-05-18 17:58:33 +02:00
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode;
}
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
int vp8_rd_pick_intra16x16mby_mode(VP8_COMP *cpi,
MACROBLOCK *x,
int *Rate,
int *rate_y,
int *Distortion)
2010-05-18 17:58:33 +02:00
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int rate, ratey;
int distortion;
2010-05-18 17:58:33 +02:00
int best_rd = INT_MAX;
int this_rd;
int i;
2010-05-18 17:58:33 +02:00
//Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
2010-05-18 17:58:33 +02:00
x->e_mbd.mode_info_context->mbmi.mode = mode;
2010-05-18 17:58:33 +02:00
vp8_build_intra_predictors_mby_ptr(&x->e_mbd);
2010-05-18 17:58:33 +02:00
macro_block_yrd(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd.encodemb));
rate = ratey + x->mbmode_cost[x->e_mbd.frame_type]
[x->e_mbd.mode_info_context->mbmi.mode];
2010-05-18 17:58:33 +02:00
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
mode_selected = mode;
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = distortion;
2010-05-18 17:58:33 +02:00
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
2010-05-18 17:58:33 +02:00
return best_rd;
}
static int rd_cost_mbuv(MACROBLOCK *mb)
{
int b;
int cost = 0;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
2010-05-18 17:58:33 +02:00
for (b = 16; b < 20; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
2010-05-18 17:58:33 +02:00
for (b = 20; b < 24; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
2010-05-18 17:58:33 +02:00
return cost;
}
unsigned int vp8_get_mbuvrecon_error(const vp8_variance_rtcd_vtable_t *rtcd, const MACROBLOCK *x) // sum of squares
{
unsigned int sse0, sse1;
int sum0, sum1;
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.u_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.uv_stride, &sse0, &sum0);
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride, &sse1, &sum1);
return (sse0 + sse1);
}
static int vp8_rd_inter_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel)
{
vp8_build_uvmvs(&x->e_mbd, fullpixel);
vp8_encode_inter16x16uvrd(IF_RTCD(&cpi->rtcd), x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
2010-05-18 17:58:33 +02:00
}
int vp8_rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion)
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int best_rd = INT_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to;
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
int rate;
int distortion;
int this_rd;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
2010-05-18 17:58:33 +02:00
vp8_encode_intra16x16mbuvrd(IF_RTCD(&cpi->rtcd), x);
rate_to = rd_cost_mbuv(x);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.uv_mode];
2010-05-18 17:58:33 +02:00
distortion = vp8_get_mbuvrecon_error(IF_RTCD(&cpi->rtcd.variance), x);
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
2010-05-18 17:58:33 +02:00
if (this_rd < best_rd)
{
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
2010-05-18 17:58:33 +02:00
return best_rd;
}
#endif
int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4])
{
vp8_prob p [VP8_MVREFS-1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp8_mv_ref_probs(p, near_mv_ref_ct);
return vp8_cost_token(vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
2010-05-18 17:58:33 +02:00
}
void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv)
{
int i;
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.row = mv->row;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.col = mv->col;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
B_MODE_INFO *bmi = &x->e_mbd.block[i].bmi;
bmi->mode = (B_PREDICTION_MODE) mb;
bmi->mv.as_mv.row = mv->row;
bmi->mv.as_mv.col = mv->col;
}
}
#if !(CONFIG_REALTIME_ONLY)
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
MV *this_mv, MV *best_ref_mv,
int *mvcost[2]
)
{
MACROBLOCKD *const xd = & x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
int cost = 0;
int thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
int i = 0;
do
{
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i-1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i-4])
m = ABOVE4X4;
else
{
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode)
{
case NEW4X4 :
thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102);
break;
case LEFT4X4:
*this_mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
break;
case ABOVE4X4:
*this_mv = row ? d[-4].bmi.mv.as_mv : vp8_above_bmi(mic, i, mis)->mv.as_mv;
break;
case ZERO4X4:
this_mv->row = this_mv->col = 0;
break;
default:
break;
}
if (m == ABOVE4X4) // replace above with left if same
{
const MV mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
if (mv.row == this_mv->row && mv.col == this_mv->col)
m = LEFT4X4;
}
cost = x->inter_bmode_costs[ m];
}
d->bmi.mode = m;
d->bmi.mv.as_mv = *this_mv;
}
while (++i < 16);
cost += thismvcost ;
return cost;
}
static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels,
int which_label, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl)
2010-05-18 17:58:33 +02:00
{
int cost = 0;
int b;
MACROBLOCKD *x = &mb->e_mbd;
for (b = 0; b < 16; b++)
if (labels[ b] == which_label)
cost += cost_coeffs(mb, x->block + b, 3,
ta + vp8_block2above[b],
tl + vp8_block2left[b]);
2010-05-18 17:58:33 +02:00
return cost;
}
static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int i;
unsigned int distortion = 0;
for (i = 0; i < 16; i++)
{
if (labels[i] == which_label)
{
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict);
ENCODEMB_INVOKE(rtcd, subb)(be, bd, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
2010-05-18 17:58:33 +02:00
// set to 0 no way to account for 2nd order DC so discount
//be->coeff[0] = 0;
x->quantize_b(be, bd);
2010-05-18 17:58:33 +02:00
distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff);
}
}
return distortion;
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#if CONFIG_EXTEND_QRANGE
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff)<<2;
#else
#endif
unsigned char vp8_mbsplit_offset2[4][16] = {
{ 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct
2010-05-18 17:58:33 +02:00
{
MV *ref_mv;
MV *mvp;
int segment_rd;
int segment_num;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
int_mv mvs[16];
unsigned char eobs[16];
int mvthresh;
int *mdcounts;
MV sv_mvp[4]; // save 4 mvp from 8x8
int sv_istep[2]; // save 2 initial step_param for 16x8/8x16
} BEST_SEG_INFO;
void vp8_rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi,
unsigned int segmentation)
{
int i;
2010-05-18 17:58:33 +02:00
int const *labels;
int br = 0;
int bd = 0;
B_PREDICTION_MODE this_mode;
2010-05-18 17:58:33 +02:00
int label_count;
int this_segment_rd = 0;
int label_mv_thresh;
int rate = 0;
int sbr = 0;
int sbd = 0;
int segmentyrate = 0;
vp8_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b;
ENTROPY_CONTEXT *tl_b;
2010-05-18 17:58:33 +02:00
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
br = 0;
bd = 0;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp8_mbsplits[segmentation];
label_count = vp8_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count ;
// Segmentation method overheads
rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation);
rate += vp8_cost_mv_ref(SPLITMV, bsi->mdcounts);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
for (i = 0; i < label_count; i++)
2010-05-18 17:58:33 +02:00
{
MV mode_mv[B_MODE_COUNT];
int best_label_rd = INT_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
2010-05-18 17:58:33 +02:00
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4 ; this_mode ++)
{
int this_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
2010-05-18 17:58:33 +02:00
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
2010-05-18 17:58:33 +02:00
if (this_mode == NEW4X4)
2010-05-18 17:58:33 +02:00
{
int sseshift;
2010-05-18 17:58:33 +02:00
int num00;
int step_param = 0;
int further_steps;
int n;
int thissme;
int bestsme = INT_MAX;
MV temp_mv;
BLOCK *c;
BLOCKD *e;
// Is the best so far sufficiently good that we cant justify doing and new motion search.
if (best_label_rd < label_mv_thresh)
break;
2010-05-18 17:58:33 +02:00
if(cpi->compressor_speed)
{
if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8)
{
bsi->mvp = &bsi->sv_mvp[i];
if (i==1 && segmentation == BLOCK_16X8) bsi->mvp = &bsi->sv_mvp[2];
step_param = bsi->sv_istep[i];
}
// use previous block's result as next block's MV predictor.
if (segmentation == BLOCK_4X4 && i>0)
{
bsi->mvp = &(x->e_mbd.block[i-1].bmi.mv.as_mv);
if (i==4 || i==8 || i==12) bsi->mvp = &(x->e_mbd.block[i-4].bmi.mv.as_mv);
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
2010-05-18 17:58:33 +02:00
{
int sadpb = x->sadperbit4;
2010-05-18 17:58:33 +02:00
// find first label
n = vp8_mbsplit_offset2[segmentation][i];
2010-05-18 17:58:33 +02:00
c = &x->block[n];
e = &x->e_mbd.block[n];
2010-05-18 17:58:33 +02:00
if (cpi->sf.search_method == HEX)
bestsme = vp8_hex_search(x, c, e, bsi->ref_mv,
&mode_mv[NEW4X4], step_param, sadpb, &num00, v_fn_ptr, x->mvsadcost, x->mvcost);
2010-05-18 17:58:33 +02:00
else
{
bestsme = cpi->diamond_search_sad(x, c, e, bsi->mvp,
&mode_mv[NEW4X4], step_param,
sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv);
2010-05-18 17:58:33 +02:00
n = num00;
num00 = 0;
2010-05-18 17:58:33 +02:00
while (n < further_steps)
2010-05-18 17:58:33 +02:00
{
n++;
2010-05-18 17:58:33 +02:00
if (num00)
num00--;
2010-05-18 17:58:33 +02:00
else
{
thissme = cpi->diamond_search_sad(x, c, e, bsi->mvp,
&temp_mv, step_param + n,
sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4].row = temp_mv.row;
mode_mv[NEW4X4].col = temp_mv.col;
}
2010-05-18 17:58:33 +02:00
}
}
}
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000)
2010-05-18 17:58:33 +02:00
{
thissme = cpi->full_search_sad(x, c, e, bsi->mvp,
sadpb / 4, 16, v_fn_ptr, x->mvcost, x->mvsadcost,bsi->ref_mv);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4] = e->bmi.mv.as_mv;
}
2010-05-18 17:58:33 +02:00
else
{
// The full search result is actually worse so re-instate the previous best vector
e->bmi.mv.as_mv = mode_mv[NEW4X4];
}
2010-05-18 17:58:33 +02:00
}
}
if (bestsme < INT_MAX)
2010-05-18 17:58:33 +02:00
{
if (!cpi->common.full_pixel)
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit / 2, v_fn_ptr, x->mvcost);
else
vp8_skip_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr, x->mvcost);
2010-05-18 17:58:33 +02:00
}
} /* NEW4X4 */
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
bsi->ref_mv, x->mvcost);
2010-05-18 17:58:33 +02:00
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
{
continue;
}
2010-05-18 17:58:33 +02:00
distortion = vp8_encode_inter_mb_segment(x, labels, i, IF_RTCD(&cpi->rtcd.encodemb)) / 4;
2010-05-18 17:58:33 +02:00
labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s);
rate += labelyrate;
2010-05-18 17:58:33 +02:00
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_label_rd)
{
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
}
} /*for each 4x4 mode*/
2010-05-18 17:58:33 +02:00
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
bsi->ref_mv, x->mvcost);
2010-05-18 17:58:33 +02:00
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
2010-05-18 17:58:33 +02:00
if (this_segment_rd >= bsi->segment_rd)
break;
} /* for each label */
2010-05-18 17:58:33 +02:00
if (this_segment_rd < bsi->segment_rd)
{
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++)
2010-05-18 17:58:33 +02:00
{
BLOCKD *bd = &x->e_mbd.block[i];
2010-05-18 17:58:33 +02:00
bsi->mvs[i].as_mv = bd->bmi.mv.as_mv;
bsi->modes[i] = bd->bmi.mode;
bsi->eobs[i] = bd->eob;
2010-05-18 17:58:33 +02:00
}
}
}
static __inline
void vp8_cal_step_param(int sr, int *sp)
{
int step = 0;
if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP;
else if (sr < 1) sr = 1;
while (sr>>=1)
step++;
*sp = MAX_MVSEARCH_STEPS - 1 - step;
}
static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x,
MV *best_ref_mv, int best_rd,
int *mdcounts, int *returntotrate,
int *returnyrate, int *returndistortion,
int mvthresh)
{
int i;
BEST_SEG_INFO bsi;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.mvp = best_ref_mv;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
for(i = 0; i < 16; i++)
{
bsi.modes[i] = ZERO4X4;
}
if(cpi->compressor_speed == 0)
{
/* for now, we will keep the original segmentation order
when in best quality mode */
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_16X8);
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X16);
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X8);
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_4X4);
}
else
{
int sr;
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X8);
if (bsi.segment_rd < best_rd)
{
int col_min = (best_ref_mv->col - MAX_FULL_PEL_VAL) >>3;
int col_max = (best_ref_mv->col + MAX_FULL_PEL_VAL) >>3;
int row_min = (best_ref_mv->row - MAX_FULL_PEL_VAL) >>3;
int row_max = (best_ref_mv->row + MAX_FULL_PEL_VAL) >>3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
/* Get intersection of UMV window and valid MV window to reduce # of checks in diamond search. */
if (x->mv_col_min < col_min )
x->mv_col_min = col_min;
if (x->mv_col_max > col_max )
x->mv_col_max = col_max;
if (x->mv_row_min < row_min )
x->mv_row_min = row_min;
if (x->mv_row_max > row_max )
x->mv_row_max = row_max;
/* Get 8x8 result */
bsi.sv_mvp[0] = bsi.mvs[0].as_mv;
bsi.sv_mvp[1] = bsi.mvs[2].as_mv;
bsi.sv_mvp[2] = bsi.mvs[8].as_mv;
bsi.sv_mvp[3] = bsi.mvs[10].as_mv;
/* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range according to the closeness of 2 MV. */
/* block 8X16 */
{
sr = MAXF((abs(bsi.sv_mvp[0].row - bsi.sv_mvp[2].row))>>3, (abs(bsi.sv_mvp[0].col - bsi.sv_mvp[2].col))>>3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[1].row - bsi.sv_mvp[3].row))>>3, (abs(bsi.sv_mvp[1].col - bsi.sv_mvp[3].col))>>3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_8X16);
}
/* block 16X8 */
{
sr = MAXF((abs(bsi.sv_mvp[0].row - bsi.sv_mvp[1].row))>>3, (abs(bsi.sv_mvp[0].col - bsi.sv_mvp[1].col))>>3);
vp8_cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[2].row - bsi.sv_mvp[3].row))>>3, (abs(bsi.sv_mvp[2].col - bsi.sv_mvp[3].col))>>3);
vp8_cal_step_param(sr, &bsi.sv_istep[1]);
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_16X8);
}
/* If 8x8 is better than 16x8/8x16, then do 4x4 search */
/* Not skip 4x4 if speed=0 (good quality) */
if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */
{
bsi.mvp = &bsi.sv_mvp[0];
vp8_rd_check_segment(cpi, x, &bsi, BLOCK_4X4);
}
/* restore UMV window */
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
}
}
/* set it to the best */
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.mv.as_mv = bsi.mvs[i].as_mv;
bd->bmi.mode = bsi.modes[i];
bd->eob = bsi.eobs[i];
2010-05-18 17:58:33 +02:00
}
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
2010-05-18 17:58:33 +02:00
/* save partitions */
x->e_mbd.mode_info_context->mbmi.partitioning = bsi.segment_num;
x->partition_info->count = vp8_mbsplit_count[bsi.segment_num];
2010-05-18 17:58:33 +02:00
for (i = 0; i < x->partition_info->count; i++)
2010-05-18 17:58:33 +02:00
{
int j;
j = vp8_mbsplit_offset2[bsi.segment_num][i];
2010-05-18 17:58:33 +02:00
x->partition_info->bmi[i].mode = x->e_mbd.block[j].bmi.mode;
x->partition_info->bmi[i].mv.as_mv = x->e_mbd.block[j].bmi.mv.as_mv;
2010-05-18 17:58:33 +02:00
}
return bsi.segment_rd;
2010-05-18 17:58:33 +02:00
}
static void swap(int *x,int *y)
{
int tmp;
tmp = *x;
*x = *y;
*y = tmp;
}
static void quicksortmv(int arr[],int left, int right)
{
int lidx,ridx,pivot;
lidx = left;
ridx = right;
if( left < right)
{
pivot = (left + right)/2;
while(lidx <=pivot && ridx >=pivot)
{
while(arr[lidx] < arr[pivot] && lidx <= pivot)
lidx++;
while(arr[ridx] > arr[pivot] && ridx >= pivot)
ridx--;
swap(&arr[lidx], &arr[ridx]);
lidx++;
ridx--;
if(lidx-1 == pivot)
{
ridx++;
pivot = ridx;
}
else if(ridx+1 == pivot)
{
lidx--;
pivot = lidx;
}
}
quicksortmv(arr, left, pivot - 1);
quicksortmv(arr, pivot + 1, right);
}
}
static void quicksortsad(int arr[],int idx[], int left, int right)
{
int lidx,ridx,pivot;
lidx = left;
ridx = right;
if( left < right)
{
pivot = (left + right)/2;
while(lidx <=pivot && ridx >=pivot)
{
while(arr[lidx] < arr[pivot] && lidx <= pivot)
lidx++;
while(arr[ridx] > arr[pivot] && ridx >= pivot)
ridx--;
swap(&arr[lidx], &arr[ridx]);
swap(&idx[lidx], &idx[ridx]);
lidx++;
ridx--;
if(lidx-1 == pivot)
{
ridx++;
pivot = ridx;
}
else if(ridx+1 == pivot)
{
lidx--;
pivot = lidx;
}
}
quicksortsad(arr, idx, left, pivot - 1);
quicksortsad(arr, idx, pivot + 1, right);
}
}
//The improved MV prediction
void vp8_mv_pred
(
VP8_COMP *cpi,
MACROBLOCKD *xd,
const MODE_INFO *here,
MV *mvp,
int refframe,
int *ref_frame_sign_bias,
int *sr,
int near_sadidx[]
)
{
const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1;
int_mv near_mvs[8];
int near_ref[8];
int_mv mv;
int vcnt=0;
int find=0;
int mb_offset;
int mvx[8];
int mvy[8];
int i;
mv.as_int = 0;
if(here->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = near_mvs[7].as_int = 0;
near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = near_ref[7] = 0;
// read in 3 nearby block's MVs from current frame as prediction candidates.
if (above->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = above->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = above->mbmi.ref_frame;
}
vcnt++;
if (left->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = left->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = left->mbmi.ref_frame;
}
vcnt++;
if (aboveleft->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = aboveleft->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = aboveleft->mbmi.ref_frame;
}
vcnt++;
// read in 5 nearby block's MVs from last frame.
if(cpi->common.last_frame_type != KEY_FRAME)
{
mb_offset = (-xd->mb_to_top_edge/128 + 1) * (xd->mode_info_stride +1) + (-xd->mb_to_left_edge/128 +1) ;
// current in last frame
if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset];
}
vcnt++;
// above in last frame
if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride-1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride-1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride-1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride-1];
}
vcnt++;
// left in last frame
if (cpi->lf_ref_frame[mb_offset-1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset -1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset -1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1];
}
vcnt++;
// right in last frame
if (cpi->lf_ref_frame[mb_offset +1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset +1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset +1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset +1];
}
vcnt++;
// below in last frame
if (cpi->lf_ref_frame[mb_offset + xd->mode_info_stride +1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + xd->mode_info_stride +1].as_int;
mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + xd->mode_info_stride +1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + xd->mode_info_stride +1];
}
vcnt++;
}
for(i=0; i< vcnt; i++)
{
if(near_ref[near_sadidx[i]] != INTRA_FRAME)
{
if(here->mbmi.ref_frame == near_ref[near_sadidx[i]])
{
mv.as_int = near_mvs[near_sadidx[i]].as_int;
find = 1;
if (i < 3)
*sr = 3;
else
*sr = 2;
break;
}
}
}
if(!find)
{
for(i=0; i<vcnt; i++)
{
mvx[i] = near_mvs[i].as_mv.row;
mvy[i] = near_mvs[i].as_mv.col;
}
quicksortmv (mvx, 0, vcnt-1);
quicksortmv (mvy, 0, vcnt-1);
mv.as_mv.row = mvx[vcnt/2];
mv.as_mv.col = mvy[vcnt/2];
find = 1;
//sr is set to 0 to allow calling function to decide the search range.
*sr = 0;
}
}
/* Set up return values */
*mvp = mv.as_mv;
vp8_clamp_mv(mvp, xd);
}
2010-05-18 17:58:33 +02:00
int vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MACROBLOCKD *xd = &x->e_mbd;
B_MODE_INFO best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
2010-05-18 17:58:33 +02:00
MV best_ref_mv;
MV mode_mv[MB_MODE_COUNT];
MB_PREDICTION_MODE this_mode;
int num00;
int best_mode_index = 0;
int i;
int mode_index;
int mdcounts[4];
int rate;
int distortion;
int best_rd = INT_MAX; // 1 << 30;
int ref_frame_cost[MAX_REF_FRAMES];
int rate2, distortion2;
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
int distortion_uv;
int best_yrd = INT_MAX;
2010-05-18 17:58:33 +02:00
//int all_rds[MAX_MODES]; // Experimental debug code.
//int all_rates[MAX_MODES];
//int all_dist[MAX_MODES];
//int intermodecost[MAX_MODES];
MB_PREDICTION_MODE uv_intra_mode;
2010-05-18 17:58:33 +02:00
int force_no_skip = 0;
MV mvp;
int near_sad[8] = {0}; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf right, 7-lf below
int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int saddone=0;
int sr=0; //search range got from mv_pred(). It uses step_param levels. (0-7)
MV frame_nearest_mv[4];
MV frame_near_mv[4];
MV frame_best_ref_mv[4];
int frame_mdcounts[4][4];
int frame_lf_or_gf[4];
unsigned char *y_buffer[4];
unsigned char *u_buffer[4];
unsigned char *v_buffer[4];
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[LAST_FRAME], &frame_near_mv[LAST_FRAME],
&frame_best_ref_mv[LAST_FRAME], frame_mdcounts[LAST_FRAME], LAST_FRAME, cpi->common.ref_frame_sign_bias);
y_buffer[LAST_FRAME] = lst_yv12->y_buffer + recon_yoffset;
u_buffer[LAST_FRAME] = lst_yv12->u_buffer + recon_uvoffset;
v_buffer[LAST_FRAME] = lst_yv12->v_buffer + recon_uvoffset;
frame_lf_or_gf[LAST_FRAME] = 0;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
YV12_BUFFER_CONFIG *gld_yv12 = &cpi->common.yv12_fb[cpi->common.gld_fb_idx];
2010-05-18 17:58:33 +02:00
vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[GOLDEN_FRAME], &frame_near_mv[GOLDEN_FRAME],
&frame_best_ref_mv[GOLDEN_FRAME], frame_mdcounts[GOLDEN_FRAME], GOLDEN_FRAME, cpi->common.ref_frame_sign_bias);
y_buffer[GOLDEN_FRAME] = gld_yv12->y_buffer + recon_yoffset;
u_buffer[GOLDEN_FRAME] = gld_yv12->u_buffer + recon_uvoffset;
v_buffer[GOLDEN_FRAME] = gld_yv12->v_buffer + recon_uvoffset;
frame_lf_or_gf[GOLDEN_FRAME] = 1;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
YV12_BUFFER_CONFIG *alt_yv12 = &cpi->common.yv12_fb[cpi->common.alt_fb_idx];
vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &frame_nearest_mv[ALTREF_FRAME], &frame_near_mv[ALTREF_FRAME],
&frame_best_ref_mv[ALTREF_FRAME], frame_mdcounts[ALTREF_FRAME], ALTREF_FRAME, cpi->common.ref_frame_sign_bias);
y_buffer[ALTREF_FRAME] = alt_yv12->y_buffer + recon_yoffset;
u_buffer[ALTREF_FRAME] = alt_yv12->u_buffer + recon_uvoffset;
v_buffer[ALTREF_FRAME] = alt_yv12->v_buffer + recon_uvoffset;
frame_lf_or_gf[ALTREF_FRAME] = 1;
}
*returnintra = INT_MAX;
2010-05-18 17:58:33 +02:00
cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame
x->skip = 0;
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded);
// Special case treatment when GF and ARF are not sensible options for reference
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(255);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_zero(128);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_one(128);
}
else
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(cpi->prob_last_coded);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_zero(cpi->prob_gf_coded);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_one(cpi->prob_gf_coded);
}
vpx_memset(mode_mv, 0, sizeof(mode_mv));
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
2010-05-18 17:58:33 +02:00
vp8_rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion);
uv_intra_mode = x->e_mbd.mode_info_context->mbmi.uv_mode;
2010-05-18 17:58:33 +02:00
for (mode_index = 0; mode_index < MAX_MODES; mode_index++)
{
int this_rd = INT_MAX;
int lf_or_gf = 0; // Lat Frame (01) or gf/arf (1)
int disable_skip = 0;
int other_cost = 0;
2010-05-18 17:58:33 +02:00
force_no_skip = 0;
// Experimental debug code.
// Record of rd values recorded for this MB. -1 indicates not measured
//all_rds[mode_index] = -1;
//all_rates[mode_index] = -1;
//all_dist[mode_index] = -1;
//intermodecost[mode_index] = -1;
2010-05-18 17:58:33 +02:00
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
this_mode = vp8_mode_order[mode_index];
x->e_mbd.mode_info_context->mbmi.mode = this_mode;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = vp8_ref_frame_order[mode_index];
2010-05-18 17:58:33 +02:00
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
2010-05-18 17:58:33 +02:00
{
if (this_mode != ZEROMV || x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME)
2010-05-18 17:58:33 +02:00
continue;
}
/* everything but intra */
if (x->e_mbd.mode_info_context->mbmi.ref_frame)
2010-05-18 17:58:33 +02:00
{
x->e_mbd.pre.y_buffer = y_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame];
x->e_mbd.pre.u_buffer = u_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame];
x->e_mbd.pre.v_buffer = v_buffer[x->e_mbd.mode_info_context->mbmi.ref_frame];
mode_mv[NEARESTMV] = frame_nearest_mv[x->e_mbd.mode_info_context->mbmi.ref_frame];
mode_mv[NEARMV] = frame_near_mv[x->e_mbd.mode_info_context->mbmi.ref_frame];
best_ref_mv = frame_best_ref_mv[x->e_mbd.mode_info_context->mbmi.ref_frame];
vpx_memcpy(mdcounts, frame_mdcounts[x->e_mbd.mode_info_context->mbmi.ref_frame], sizeof(mdcounts));
lf_or_gf = frame_lf_or_gf[x->e_mbd.mode_info_context->mbmi.ref_frame];
2010-05-18 17:58:33 +02:00
}
if(x->e_mbd.mode_info_context->mbmi.mode == NEWMV)
{
if(!saddone)
{
//calculate sad for current frame 3 nearby MBs.
if( xd->mb_to_top_edge==0 && xd->mb_to_left_edge ==0)
{
near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX;
}else if(xd->mb_to_top_edge==0)
{ //only has left MB for sad calculation.
near_sad[0] = near_sad[2] = INT_MAX;
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff);
}else if(xd->mb_to_left_edge ==0)
{ //only has left MB for sad calculation.
near_sad[1] = near_sad[2] = INT_MAX;
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff);
}else
{
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff);
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff);
near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16 -16,xd->dst.y_stride, 0x7fffffff);
}
if(cpi->common.last_frame_type != KEY_FRAME)
{
//calculate sad for last frame 5 nearby MBs.
unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset;
int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride;
if(xd->mb_to_top_edge==0) near_sad[4] = INT_MAX;
if(xd->mb_to_left_edge ==0) near_sad[5] = INT_MAX;
if(xd->mb_to_right_edge ==0) near_sad[6] = INT_MAX;
if(xd->mb_to_bottom_edge==0) near_sad[7] = INT_MAX;
if(near_sad[4] != INT_MAX)
near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16, pre_y_stride, 0x7fffffff);
if(near_sad[5] != INT_MAX)
near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff);
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
if(near_sad[6] != INT_MAX)
near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer + 16, pre_y_stride, 0x7fffffff);
if(near_sad[7] != INT_MAX)
near_sad[7] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer + pre_y_stride *16, pre_y_stride, 0x7fffffff);
}
if(cpi->common.last_frame_type != KEY_FRAME)
{
quicksortsad(near_sad, near_sadidx, 0, 7);
}else
{
quicksortsad(near_sad, near_sadidx, 0, 2);
}
saddone = 1;
}
vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp,
x->e_mbd.mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]);
/* adjust mvp to make sure it is within MV range */
if(mvp.row > best_ref_mv.row + MAX_FULL_PEL_VAL)
mvp.row = best_ref_mv.row + MAX_FULL_PEL_VAL;
else if(mvp.row < best_ref_mv.row - MAX_FULL_PEL_VAL)
mvp.row = best_ref_mv.row - MAX_FULL_PEL_VAL;
if(mvp.col > best_ref_mv.col + MAX_FULL_PEL_VAL)
mvp.col = best_ref_mv.col + MAX_FULL_PEL_VAL;
else if(mvp.col < best_ref_mv.col - MAX_FULL_PEL_VAL)
mvp.col = best_ref_mv.col - MAX_FULL_PEL_VAL;
}
2010-05-18 17:58:33 +02:00
// Check to see if the testing frequency for this mode is at its max
// If so then prevent it from being tested and increase the threshold for its testing
if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1))
{
if (cpi->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index])
{
// Increase the threshold for coding this mode to make it less likely to be chosen
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
continue;
}
}
// We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested
cpi->mode_test_hit_counts[mode_index] ++;
// Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise
if (cpi->zbin_mode_boost_enabled)
{
if ( vp8_ref_frame_order[mode_index] == INTRA_FRAME )
2010-05-18 17:58:33 +02:00
cpi->zbin_mode_boost = 0;
else
{
if (vp8_mode_order[mode_index] == ZEROMV)
{
if (vp8_ref_frame_order[mode_index] != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (vp8_ref_frame_order[mode_index] == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 17:58:33 +02:00
vp8_update_zbin_extra(cpi, x);
2010-05-18 17:58:33 +02:00
}
switch (this_mode)
{
case B_PRED:
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
2010-05-18 17:58:33 +02:00
// Note the rate value returned here includes the cost of coding the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED];
vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion);
rate2 += rate;
2010-05-18 17:58:33 +02:00
distortion2 += distortion;
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
2010-05-18 17:58:33 +02:00
break;
case SPLITMV:
{
int tmp_rd;
int this_rd_thresh;
2010-05-18 17:58:33 +02:00
this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME) ? cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ? cpi->rd_threshes[THR_NEWG]: this_rd_thresh;
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
best_yrd, mdcounts,
&rate, &rate_y, &distortion, this_rd_thresh) ;
2010-05-18 17:58:33 +02:00
rate2 += rate;
distortion2 += distortion;
// If even the 'Y' rd value of split is higher than best so far then dont bother looking at UV
if (tmp_rd < best_yrd)
2010-05-18 17:58:33 +02:00
{
// Now work out UV cost and add it in
vp8_rd_inter_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel);
rate2 += rate_uv;
distortion2 += distortion_uv;
2010-05-18 17:58:33 +02:00
}
else
{
this_rd = INT_MAX;
disable_skip = 1;
}
}
break;
case DC_PRED:
case V_PRED:
case H_PRED:
case TM_PRED:
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
2010-05-18 17:58:33 +02:00
vp8_build_intra_predictors_mby_ptr(&x->e_mbd);
{
macro_block_yrd(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd.encodemb)) ;
rate2 += rate_y;
2010-05-18 17:58:33 +02:00
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode];
2010-05-18 17:58:33 +02:00
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
2010-05-18 17:58:33 +02:00
}
break;
case NEWMV:
// Decrement full search counter
if (cpi->check_freq[lf_or_gf] > 0)
cpi->check_freq[lf_or_gf] --;
{
int thissme;
int bestsme = INT_MAX;
int step_param = cpi->sf.first_step;
int search_range;
int further_steps;
int n;
int col_min = (best_ref_mv.col - MAX_FULL_PEL_VAL) >>3;
int col_max = (best_ref_mv.col + MAX_FULL_PEL_VAL) >>3;
int row_min = (best_ref_mv.row - MAX_FULL_PEL_VAL) >>3;
int row_max = (best_ref_mv.row + MAX_FULL_PEL_VAL) >>3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
// Get intersection of UMV window and valid MV window to reduce # of checks in diamond search.
if (x->mv_col_min < col_min )
x->mv_col_min = col_min;
if (x->mv_col_max > col_max )
x->mv_col_max = col_max;
if (x->mv_row_min < row_min )
x->mv_row_min = row_min;
if (x->mv_row_max > row_max )
x->mv_row_max = row_max;
//adjust search range according to sr from mv prediction
if(sr > step_param)
step_param = sr;
2010-05-18 17:58:33 +02:00
// Work out how long a search we should do
search_range = MAXF(abs(best_ref_mv.col), abs(best_ref_mv.row)) >> 3;
if (search_range >= x->vector_range)
x->vector_range = search_range;
else if (x->vector_range > cpi->sf.min_fs_radius)
x->vector_range--;
// Initial step/diamond search
{
int sadpb = x->sadperbit16;
if (cpi->sf.search_method == HEX)
{
bestsme = vp8_hex_search(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost);
2010-05-18 17:58:33 +02:00
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
bestsme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb < 9
2010-05-18 17:58:33 +02:00
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Further step/diamond searches as necessary
n = 0;
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
thissme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb = 9
2010-05-18 17:58:33 +02:00
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
}
}
}
// Should we do a full search
if (!cpi->check_freq[lf_or_gf] || cpi->do_full[lf_or_gf])
{
int thissme;
int full_flag_thresh = 0;
MV full_mvp;
full_mvp.row = d->bmi.mv.as_mv.row <<3; // use diamond search result as full search staring point
full_mvp.col = d->bmi.mv.as_mv.col <<3;
2010-05-18 17:58:33 +02:00
// Update x->vector_range based on best vector found in step search
search_range = MAXF(abs((mvp.row>>3) - d->bmi.mv.as_mv.row), abs((mvp.col>>3) - d->bmi.mv.as_mv.col));
//search_range *= 1.4; //didn't improve PSNR
2010-05-18 17:58:33 +02:00
if (search_range > x->vector_range)
x->vector_range = search_range;
else
search_range = x->vector_range;
// Apply limits
search_range = (search_range > cpi->sf.max_fs_radius) ? cpi->sf.max_fs_radius : search_range;
//add this to reduce full search range.
if(sr<=3 && search_range > 8) search_range = 8;
2010-05-18 17:58:33 +02:00
{
int sadpb = x->sadperbit16 >> 2;
thissme = cpi->full_search_sad(x, b, d, &full_mvp, sadpb, search_range, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, x->mvsadcost,&best_ref_mv);
2010-05-18 17:58:33 +02:00
}
// Barrier threshold to initiating full search
// full_flag_thresh = 10 + (thissme >> 7);
if ((thissme + full_flag_thresh) < bestsme)
{
cpi->do_full[lf_or_gf] ++;
bestsme = thissme;
}
else if (thissme < bestsme)
bestsme = thissme;
else
{
cpi->do_full[lf_or_gf] = cpi->do_full[lf_or_gf] >> 1;
cpi->check_freq[lf_or_gf] = cpi->sf.full_freq[lf_or_gf];
// The full search result is actually worse so re-instate the previous best vector
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
2010-05-18 17:58:33 +02:00
if (bestsme < INT_MAX)
// cpi->find_fractional_mv_step(x,b,d,&d->bmi.mv.as_mv,&best_ref_mv,x->errorperbit/2,cpi->fn_ptr.svf,cpi->fn_ptr.vf,x->mvcost); // normal mvc=11
cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv, x->errorperbit / 4, &cpi->fn_ptr[BLOCK_16X16], x->mvcost);
2010-05-18 17:58:33 +02:00
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96);
}
case NEARESTMV:
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
if (mode_mv[this_mode].col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mode_mv[this_mode].row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
// Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode.
if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) &&
((mode_mv[this_mode].row == 0) && (mode_mv[this_mode].col == 0)))
continue;
case ZEROMV:
mv_selected:
// Trap vectors that reach beyond the UMV borders
// Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point
// because of the lack of break statements in the previous two cases.
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
continue;
vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]);
vp8_build_inter_predictors_mby(&x->e_mbd);
if (cpi->active_map_enabled && x->active_ptr[0] == 0) {
2010-05-18 17:58:33 +02:00
x->skip = 1;
}
else if (x->encode_breakout)
2010-05-18 17:58:33 +02:00
{
int sum, sse;
2010-05-18 17:58:33 +02:00
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)
(x->src.y_buffer, x->src.y_stride,
x->e_mbd.predictor, 16, (unsigned int *)(&sse), &sum);
if (sse < x->encode_breakout)
2010-05-18 17:58:33 +02:00
{
// Check u and v to make sure skip is ok
int sse2 = 0;
2010-05-18 17:58:33 +02:00
// add dc check
if (abs(sum) < (cpi->common.Y2dequant[0][0] << 2))
{
sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance));
2010-05-18 17:58:33 +02:00
if (sse2 * 2 < x->encode_breakout)
{
x->skip = 1;
distortion2 = sse + sse2;
rate2 = 500;
/* for best_yrd calculation */
rate_uv = 0;
distortion_uv = sse2;
disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2,
distortion2);
break;
}
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
//intermodecost[mode_index] = vp8_cost_mv_ref(this_mode, mdcounts); // Experimental debug code
// Add in the Mv/mode cost
rate2 += vp8_cost_mv_ref(this_mode, mdcounts);
// Y cost and distortion
macro_block_yrd(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd.encodemb));
rate2 += rate_y;
2010-05-18 17:58:33 +02:00
distortion2 += distortion;
// UV cost and distortion
vp8_rd_inter_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel);
rate2 += rate_uv;
distortion2 += distortion_uv;
2010-05-18 17:58:33 +02:00
break;
default:
break;
}
// Where skip is allowable add in the default per mb cost for the no skip case.
// where we then decide to skip we have to delete this and replace it with the
// cost of signallying a skip
if (cpi->common.mb_no_coeff_skip)
{
other_cost += vp8_cost_bit(cpi->prob_skip_false, 0);
rate2 += other_cost;
}
// Estimate the reference frame signaling cost and add it to the rolling cost variable.
rate2 += ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame];
2010-05-18 17:58:33 +02:00
if (!disable_skip)
{
// Test for the condition where skip block will be activated because there are no non zero coefficients and make any necessary adjustment for rate
if (cpi->common.mb_no_coeff_skip)
{
int tteob;
2010-05-18 17:58:33 +02:00
tteob = 0;
for (i = 0; i <= 24; i++)
{
tteob += x->e_mbd.block[i].eob;
}
if (tteob == 0)
{
rate2 -= (rate_y + rate_uv);
//for best_yrd calculation
rate_uv = 0;
2010-05-18 17:58:33 +02:00
// Back out no skip flag costing and add in skip flag costing
if (cpi->prob_skip_false)
{
int prob_skip_cost;
2010-05-18 17:58:33 +02:00
prob_skip_cost = vp8_cost_bit(cpi->prob_skip_false, 1);
prob_skip_cost -= vp8_cost_bit(cpi->prob_skip_false, 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
2010-05-18 17:58:33 +02:00
}
}
}
// Calculate the final RD estimate for this mode
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
2010-05-18 17:58:33 +02:00
}
// Experimental debug code.
//all_rds[mode_index] = this_rd;
//all_rates[mode_index] = rate2;
//all_dist[mode_index] = distortion2;
if ((x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) && (this_rd < *returnintra))
2010-05-18 17:58:33 +02:00
{
*returnintra = this_rd ;
}
// Did this mode help.. i.i is it the new best mode
if (this_rd < best_rd || x->skip)
{
// Note index of best mode so far
best_mode_index = mode_index;
x->e_mbd.mode_info_context->mbmi.force_no_skip = force_no_skip;
2010-05-18 17:58:33 +02:00
if (this_mode <= B_PRED)
{
x->e_mbd.mode_info_context->mbmi.uv_mode = uv_intra_mode;
2010-05-18 17:58:33 +02:00
}
other_cost += ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame];
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2-rate_uv-other_cost),
(distortion2-distortion_uv));
2010-05-18 17:58:33 +02:00
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO));
}
// Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
// If the mode did not help improve the best error case then raise the threshold for testing that mode next time around.
else
{
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
if (x->skip)
break;
}
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
// If we chose a split mode then reset the new MV thresholds as well
/*if ( vp8_mode_order[best_mode_index] == SPLITMV )
{
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWMV] >> 4);
cpi->rd_thresh_mult[THR_NEWMV] = (cpi->rd_thresh_mult[THR_NEWMV] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWMV]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWMV] = (cpi->rd_baseline_thresh[THR_NEWMV] >> 7) * cpi->rd_thresh_mult[THR_NEWMV];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWG] >> 4);
cpi->rd_thresh_mult[THR_NEWG] = (cpi->rd_thresh_mult[THR_NEWG] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWG]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWG] = (cpi->rd_baseline_thresh[THR_NEWG] >> 7) * cpi->rd_thresh_mult[THR_NEWG];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWA] >> 4);
cpi->rd_thresh_mult[THR_NEWA] = (cpi->rd_thresh_mult[THR_NEWA] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWA]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWA] = (cpi->rd_baseline_thresh[THR_NEWA] >> 7) * cpi->rd_thresh_mult[THR_NEWA];
}*/
}
// If we have chosen new mv or split then decay the full search check count more quickly.
if ((vp8_mode_order[best_mode_index] == NEWMV) || (vp8_mode_order[best_mode_index] == SPLITMV))
{
int lf_or_gf = (vp8_ref_frame_order[best_mode_index] == LAST_FRAME) ? 0 : 1;
if (cpi->check_freq[lf_or_gf] && !cpi->do_full[lf_or_gf])
{
cpi->check_freq[lf_or_gf] --;
}
}
// Keep a record of best mode index that we chose
cpi->last_best_mode_index = best_mode_index;
// Note how often each mode chosen as best
cpi->mode_chosen_counts[best_mode_index] ++;
if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME))
{
best_mbmode.mode = ZEROMV;
best_mbmode.ref_frame = ALTREF_FRAME;
best_mbmode.mv.as_int = 0;
best_mbmode.uv_mode = 0;
best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0;
best_mbmode.partitioning = 0;
best_mbmode.dc_diff = 0;
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_int = 0;
2010-05-18 17:58:33 +02:00
return best_rd;
}
// macroblock modes
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv;
2010-05-18 17:58:33 +02:00
return best_rd;
}
#endif