vpx/vp9/encoder/vp9_encodemb.c

1074 lines
40 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/quantize.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_scan.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_tokenize.h"
2010-05-18 11:58:33 -04:00
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
};
#define HETEROMULT 12
#define HETEROCOEF 4
void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
typedef struct vp9_token_state {
int64_t error;
int rate;
int16_t next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} vp9_token_state;
Add trellis quantization. Replace the exponential search for optimal rounding during quantization with a linear Viterbi trellis and enable it by default when using --best. Right now this operates on top of the output of the adaptive zero-bin quantizer in vp8_regular_quantize_b() and gives a small gain. It can be tested as a replacement for that quantizer by enabling the call to vp8_strict_quantize_b(), which uses normal rounding and no zero bin offset. Ultimately, the quantizer will have to become a function of lambda in order to take advantage of activity masking, since there is limited ability to change the quantization factor itself. However, currently vp8_strict_quantize_b() plus the trellis quantizer (which is lambda-dependent) loses to vp8_regular_quantize_b() alone (which is not) on my test clip. Patch Set 3: Fix an issue related to the cost evaluation of successor states when a coefficient is reduced to zero. With this issue fixed, now the trellis search almost exactly matches the exponential search. Patch Set 2: Overall, the goal of this patch set is to make "trellis" search to produce encodings that match the exponential search version. There are three main differences between Patch Set 2 and 1: a. Patch set 1 did not properly account for the scale of 2nd order error, so patch set 2 disable it all together for 2nd blocks. b. Patch set 1 was not consistent on when to enable the the quantization optimization. Patch set 2 restore the condition to be consistent. c. Patch set 1 checks quantized level L-1, and L for any input coefficient was quantized to L. Patch set 2 limits the candidate coefficient to those that were rounded up to L. It is worth noting here that a strategy to check L and L+1 for coefficients that were truncated down to L might work. (a and b get trellis quant to basically match the exponential search on all mid/low rate encodings on cif set, without a, b, trellis quant can hurt the psnr by 0.2 to .3db at 200kbps for some cif clips) (c gets trellis quant to match the exponential search to match at Q0 encoding, without c, trellis quant can be 1.5 to 2db lower for encodings with fixed Q at 0 on most derf cif clips) Change-Id: Ib1a043b665d75fbf00cb0257b7c18e90eebab95e
2010-07-02 14:35:53 -07:00
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] ={ {10, 6}, {8, 7}, };
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
}
// This function eliminates isolated small nonzero coefficients.
static void eliminate_small_coeff(const tran_low_t *const coeff_ptr,
const TX_SIZE tx_size,
const int16_t *const zbin_ptr,
tran_low_t *const qcoeff_ptr,
tran_low_t *const dqcoeff_ptr,
uint16_t *const eob_ptr,
const int16_t *const scan) {
const int zbins[2] =
{tx_size == TX_32X32 ? ROUND_POWER_OF_TWO(zbin_ptr[0], 1) : zbin_ptr[0],
tx_size == TX_32X32 ? ROUND_POWER_OF_TWO(zbin_ptr[1], 1) : zbin_ptr[1]};
const int nzbins[2] = {zbins[0] * -1, zbins[1] * -1};
const int hetero_zbins[2] = {(HETEROCOEF + 1) * zbins[0] / HETEROCOEF,
(HETEROCOEF + 1) * zbins[1] / HETEROCOEF};
const int hetero_nzbins[2] = {hetero_zbins[0] * -1, hetero_zbins[1] * -1};
int eob = *eob_ptr, i = eob - 1, rc, tail_count = 0;
assert(i >= 0);
rc = scan[i];
while (i > 0 && coeff_ptr[rc] <= hetero_zbins[rc != 0] &&
coeff_ptr[rc] >= hetero_nzbins[rc != 0]) {
if (coeff_ptr[rc] > zbins[rc != 0] || coeff_ptr[rc] < nzbins[rc != 0])
++tail_count;
if ((eob - i) * HETEROMULT >= tail_count * zbins[1]) {
eob = i;
tail_count = 0;
}
--i;
rc = scan[i];
}
for (i = eob; i < (*eob_ptr); ++i) {
rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
while (eob > 0 && qcoeff_ptr[scan[eob - 1]] == 0) --eob;
*eob_ptr = eob;
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan,
const int16_t *nb,
int idx, int token,
uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = vp9_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static int optimize_b(MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(xd->mi[0]);
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
uint8_t token_cache[1024];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = get_plane_type(plane);
const int default_eob = 16 << (tx_size << 1);
const int shift = (tx_size == TX_32X32);
const int16_t* const dequant_ptr = pd->dequant;
const uint8_t* const band_translate = get_band_translate(tx_size);
const scan_order *const so = get_scan(xd, tx_size, type, block);
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
int next = eob, sz = 0;
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
EXTRABIT e0;
int best, band, pt, i, final_eob;
#if CONFIG_VP9_HIGHBITDEPTH
const int *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = vp9_get_high_cost_table(8);
#endif
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++)
token_cache[scan[i]] =
vp9_pt_energy_class[vp9_get_token(qcoeff[scan[i]])];
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
const int rc = scan[i];
int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
vp9_get_token_extra(x, &t0, &e0);
/* Consider both possible successor states. */
if (next < default_eob) {
band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][0].token];
rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp9_get_cost(t0, e0, cat6_high_cost);
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] < (abs(coeff[rc]) << shift) +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
best_index[i][1] = best_index[i][0];
next = i;
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
Add trellis quantization. Replace the exponential search for optimal rounding during quantization with a linear Viterbi trellis and enable it by default when using --best. Right now this operates on top of the output of the adaptive zero-bin quantizer in vp8_regular_quantize_b() and gives a small gain. It can be tested as a replacement for that quantizer by enabling the call to vp8_strict_quantize_b(), which uses normal rounding and no zero bin offset. Ultimately, the quantizer will have to become a function of lambda in order to take advantage of activity masking, since there is limited ability to change the quantization factor itself. However, currently vp8_strict_quantize_b() plus the trellis quantizer (which is lambda-dependent) loses to vp8_regular_quantize_b() alone (which is not) on my test clip. Patch Set 3: Fix an issue related to the cost evaluation of successor states when a coefficient is reduced to zero. With this issue fixed, now the trellis search almost exactly matches the exponential search. Patch Set 2: Overall, the goal of this patch set is to make "trellis" search to produce encodings that match the exponential search version. There are three main differences between Patch Set 2 and 1: a. Patch set 1 did not properly account for the scale of 2nd order error, so patch set 2 disable it all together for 2nd blocks. b. Patch set 1 was not consistent on when to enable the the quantization optimization. Patch set 2 restore the condition to be consistent. c. Patch set 1 checks quantized level L-1, and L for any input coefficient was quantized to L. Patch set 2 limits the candidate coefficient to those that were rounded up to L. It is worth noting here that a strategy to check L and L+1 for coefficients that were truncated down to L might work. (a and b get trellis quant to basically match the exponential search on all mid/low rate encodings on cif set, without a, b, trellis quant can hurt the psnr by 0.2 to .3db at 200kbps for some cif clips) (c gets trellis quant to match the exponential search to match at Q0 encoding, without c, trellis quant can be 1.5 to 2db lower for encodings with fixed Q at 0 on most derf cif clips) Change-Id: Ib1a043b665d75fbf00cb0257b7c18e90eebab95e
2010-07-02 14:35:53 -07:00
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
e0 = 0;
} else {
vp9_get_token_extra(x, &t0, &e0);
t1 = t0;
}
if (next < default_eob) {
band = band_translate[i + 1];
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
2010-05-18 11:58:33 -04:00
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
}
}
2010-05-18 11:58:33 -04:00
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp9_get_cost(t0, e0, cat6_high_cost);
if (shortcut) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
}
#else
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
tran_low_t offset = dq_step[rc != 0];
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.
if (shift & x)
offset += (dequant_ptr[rc != 0] & 0x01);
if (sz == 0)
tokens[i][1].dqc = dqcoeff[rc] - offset;
else
tokens[i][1].dqc = dqcoeff[rc] + offset;
} else {
tokens[i][1].dqc = 0;
}
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
/* Don't update next, because we didn't add a new node. */
Add trellis quantization. Replace the exponential search for optimal rounding during quantization with a linear Viterbi trellis and enable it by default when using --best. Right now this operates on top of the output of the adaptive zero-bin quantizer in vp8_regular_quantize_b() and gives a small gain. It can be tested as a replacement for that quantizer by enabling the call to vp8_strict_quantize_b(), which uses normal rounding and no zero bin offset. Ultimately, the quantizer will have to become a function of lambda in order to take advantage of activity masking, since there is limited ability to change the quantization factor itself. However, currently vp8_strict_quantize_b() plus the trellis quantizer (which is lambda-dependent) loses to vp8_regular_quantize_b() alone (which is not) on my test clip. Patch Set 3: Fix an issue related to the cost evaluation of successor states when a coefficient is reduced to zero. With this issue fixed, now the trellis search almost exactly matches the exponential search. Patch Set 2: Overall, the goal of this patch set is to make "trellis" search to produce encodings that match the exponential search version. There are three main differences between Patch Set 2 and 1: a. Patch set 1 did not properly account for the scale of 2nd order error, so patch set 2 disable it all together for 2nd blocks. b. Patch set 1 was not consistent on when to enable the the quantization optimization. Patch set 2 restore the condition to be consistent. c. Patch set 1 checks quantized level L-1, and L for any input coefficient was quantized to L. Patch set 2 limits the candidate coefficient to those that were rounded up to L. It is worth noting here that a strategy to check L and L+1 for coefficients that were truncated down to L might work. (a and b get trellis quant to basically match the exponential search on all mid/low rate encodings on cif set, without a, b, trellis quant can hurt the psnr by 0.2 to .3db at 200kbps for some cif clips) (c gets trellis quant to match the exponential search to match at Q0 encoding, without c, trellis quant can be 1.5 to 2db lower for encodings with fixed Q at 0 on most derf cif clips) Change-Id: Ib1a043b665d75fbf00cb0257b7c18e90eebab95e
2010-07-02 14:35:53 -07:00
}
}
/* Now pick the best path through the whole trellis. */
band = band_translate[i + 1];
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
static INLINE void fdct32x32(int rd_transform,
const int16_t *src, tran_low_t *dst,
int src_stride) {
if (rd_transform)
vpx_fdct32x32_rd(src, dst, src_stride);
else
vpx_fdct32x32(src, dst, src_stride);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src,
tran_low_t *dst, int src_stride) {
if (rd_transform)
vpx_highbd_fdct32x32_rd(src, dst, src_stride);
else
vpx_highbd_fdct32x32(src, dst, src_stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round_fp, p->quant_fp, p->quant_shift,
qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vpx_fdct16x16(src_diff, coeff, diff_stride);
vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64,
x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
break;
}
}
void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
vpx_highbd_fdct16x16_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
vpx_highbd_fdct8x8_1(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
vpx_fdct32x32_1(src_diff, coeff, diff_stride);
vpx_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
vpx_fdct16x16_1(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 256, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
vpx_fdct8x8_1(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 64, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_quantize_dc(coeff, 16, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
break;
}
}
void vp9_xform_quant(MACROBLOCK *x, int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift, qcoeff,
dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_16X16:
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
vpx_fdct16x16(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
vpx_fdct8x8(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
break;
}
if (!x->skip_block && *eob > 0) {
eliminate_small_coeff(coeff, tx_size, p->zbin, qcoeff, dqcoeff, eob,
scan_order->scan);
}
}
static void encode_block(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
a = &ctx->ta[plane][col];
l = &ctx->tl[plane][row];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
if (x->zcoeff_blk[tx_size][block] && plane == 0) {
p->eobs[block] = 0;
*a = *l = 0;
return;
}
if (!x->skip_recode) {
if (x->quant_fp) {
// Encoding process for rtc mode
if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
} else {
vp9_xform_quant_fp(x, plane, block, row, col, plane_bsize, tx_size);
}
} else {
if (max_txsize_lookup[plane_bsize] == tx_size) {
int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1));
if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) {
// full forward transform and quantization
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
} else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) {
// fast path forward transform and quantization
vp9_xform_quant_dc(x, plane, block, row, col, plane_bsize, tx_size);
} else {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
}
} else {
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
}
}
}
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const int ctx = combine_entropy_contexts(*a, *l);
*a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
if (p->eobs[block])
*(args->skip) = 0;
if (x->skip_encode || p->eobs[block] == 0)
return;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
vp9_highbd_idct32x32_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
break;
case TX_16X16:
vp9_highbd_idct16x16_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
break;
case TX_8X8:
vp9_highbd_idct8x8_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->highbd_itxm_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
break;
default:
assert(0 && "Invalid transform size");
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
default:
assert(0 && "Invalid transform size");
break;
}
2010-05-18 11:58:33 -04:00
}
static void encode_block_pass1(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size);
if (p->eobs[block] > 0) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->highbd_itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp9_subtract_plane(x, bsize, 0);
vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, x);
}
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MODE_INFO *mi = xd->mi[0];
struct encode_b_args arg = {x, &ctx, &mi->skip};
int plane;
2010-05-18 11:58:33 -04:00
mi->skip = 1;
if (x->skip)
return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
if (!x->skip_recode)
vp9_subtract_plane(x, bsize, plane);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd,
ctx.ta[plane], ctx.tl[plane]);
}
vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
2010-05-18 11:58:33 -04:00
}
void vp9_encode_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const scan_order *scan_order;
TX_TYPE tx_type = DCT_DCT;
PREDICTION_MODE mode;
const int bwl = b_width_log2_lookup[plane_bsize];
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
struct optimize_ctx *const ctx = args->ctx;
ENTROPY_CONTEXT *a = NULL;
ENTROPY_CONTEXT *l = NULL;
int entropy_ctx = 0;
dst = &pd->dst.buf[4 * (row * dst_stride + col)];
src = &p->src.buf[4 * (row * src_stride + col)];
src_diff = &p->src_diff[4 * (row * diff_stride + col)];
if (args->ctx != NULL) {
a = &ctx->ta[plane][col];
l = &ctx->tl[plane][row];
entropy_ctx = combine_entropy_contexts(*a, *l);
}
if (tx_size == TX_4X4) {
tx_type = get_tx_type_4x4(get_plane_type(plane), xd, block);
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mi->uv_mode;
} else {
mode = plane == 0 ? mi->mode : mi->uv_mode;
if (tx_size == TX_32X32) {
scan_order = &vp9_default_scan_orders[TX_32X32];
} else {
tx_type = get_tx_type(get_plane_type(plane), xd);
scan_order = &vp9_scan_orders[tx_size][tx_type];
}
}
vp9_predict_intra_block(xd, bwl, tx_size, mode, x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, col, row, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_highbd_subtract_block(32, 32, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift,
qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (!x->skip_encode && *eob) {
vp9_highbd_idct32x32_add(dqcoeff, dst, dst_stride, *eob, xd->bd);
}
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_highbd_subtract_block(16, 16, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
if (tx_type == DCT_DCT)
vpx_highbd_fdct16x16(src_diff, coeff, diff_stride);
else
vp9_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (!x->skip_encode && *eob) {
vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, dst_stride,
*eob, xd->bd);
}
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_highbd_subtract_block(8, 8, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
if (tx_type == DCT_DCT)
vpx_highbd_fdct8x8(src_diff, coeff, diff_stride);
else
vp9_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (!x->skip_encode && *eob) {
vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob,
xd->bd);
}
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_highbd_subtract_block(4, 4, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
if (tx_type != DCT_DCT)
vp9_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT) {
// this is like vp9_short_idct4x4 but has a special case around
// eob<=1 which is significant (not just an optimization) for the
// lossless case.
x->highbd_itxm_add(dqcoeff, dst, dst_stride, *eob, xd->bd);
} else {
vp9_highbd_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type, xd->bd);
}
}
break;
default:
assert(0);
return;
}
if (*eob)
*(args->skip) = 0;
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_subtract_block(32, 32, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
if (!x->skip_block && *eob > 0) {
eliminate_small_coeff(coeff, tx_size, p->zbin, qcoeff, dqcoeff,
eob, scan_order->scan);
}
}
if (args->ctx != NULL && !x->skip_recode) {
*a = *l = optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob);
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_subtract_block(16, 16, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
vp9_fht16x16(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
if (!x->skip_block && *eob > 0) {
eliminate_small_coeff(coeff, tx_size, p->zbin, qcoeff, dqcoeff,
eob, scan_order->scan);
}
}
if (args->ctx != NULL && !x->skip_recode) {
*a = *l = optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_subtract_block(8, 8, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
vp9_fht8x8(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
if (!x->skip_block && *eob > 0) {
eliminate_small_coeff(coeff, tx_size, p->zbin, qcoeff, dqcoeff,
eob, scan_order->scan);
}
}
if (args->ctx != NULL && !x->skip_recode) {
*a = *l = optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob)
vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob);
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_subtract_block(4, 4, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
if (tx_type != DCT_DCT)
vp9_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
if (!x->skip_block && *eob > 0) {
eliminate_small_coeff(coeff, tx_size, p->zbin, qcoeff, dqcoeff,
eob, scan_order->scan);
}
}
if (args->ctx != NULL && !x->skip_recode) {
*a = *l = optimize_b(x, plane, block, tx_size, entropy_ctx) > 0;
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT)
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, dst_stride, *eob);
else
vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type);
}
break;
default:
assert(0);
break;
}
if (*eob)
*(args->skip) = 0;
}
void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane,
int enable_optimize_b) {
const MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {x, NULL, &xd->mi[0]->skip};
if (enable_optimize_b && x->optimize &&
(!x->skip_recode || !x->skip_optimize)) {
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(xd->mi[0], pd) :
xd->mi[0]->tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ctx = &ctx;
}
vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
vp9_encode_block_intra, &arg);
}