vpx/vp8/encoder/dct.c

903 lines
30 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include <math.h>
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-01 15:50:14 -08:00
#include "vpx_ports/config.h"
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
#include "vp8/common/idct.h"
#include "vp8/common/systemdependent.h"
#if CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM8X8 || CONFIG_HYBRIDTRANSFORM16X16
#include "vp8/common/blockd.h"
// TODO: these transforms can be converted into integer forms to reduce
// the complexity
float dct_4[16] = {
0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000,
0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188,
0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000,
0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099
};
float adst_4[16] = {
0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139,
0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626,
0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359,
0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779
};
float dct_8[64] = {
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064,
-0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615,
0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643,
-0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643,
0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801,
0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273,
-0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801,
0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545,
-0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545,
0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615,
0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064
};
float adst_8[64] = {
0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145,
0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509,
0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349,
0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785,
0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376,
-0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762,
0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762,
0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348,
0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735,
0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145,
0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786,
-0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375,
0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534,
-0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736,
0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509,
0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532
};
#endif
#if CONFIG_HYBRIDTRANSFORM16X16 || CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM8X8
float dct_16[256] = {
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.351851, 0.338330, 0.311806, 0.273300, 0.224292, 0.166664, 0.102631, 0.034654,
-0.034654, -0.102631, -0.166664, -0.224292, -0.273300, -0.311806, -0.338330, -0.351851,
0.346760, 0.293969, 0.196424, 0.068975, -0.068975, -0.196424, -0.293969, -0.346760,
-0.346760, -0.293969, -0.196424, -0.068975, 0.068975, 0.196424, 0.293969, 0.346760,
0.338330, 0.224292, 0.034654, -0.166664, -0.311806, -0.351851, -0.273300, -0.102631,
0.102631, 0.273300, 0.351851, 0.311806, 0.166664, -0.034654, -0.224292, -0.338330,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.311806, 0.034654, -0.273300, -0.338330, -0.102631, 0.224292, 0.351851, 0.166664,
-0.166664, -0.351851, -0.224292, 0.102631, 0.338330, 0.273300, -0.034654, -0.311806,
0.293969, -0.068975, -0.346760, -0.196424, 0.196424, 0.346760, 0.068975, -0.293969,
-0.293969, 0.068975, 0.346760, 0.196424, -0.196424, -0.346760, -0.068975, 0.293969,
0.273300, -0.166664, -0.338330, 0.034654, 0.351851, 0.102631, -0.311806, -0.224292,
0.224292, 0.311806, -0.102631, -0.351851, -0.034654, 0.338330, 0.166664, -0.273300,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.224292, -0.311806, -0.102631, 0.351851, -0.034654, -0.338330, 0.166664, 0.273300,
-0.273300, -0.166664, 0.338330, 0.034654, -0.351851, 0.102631, 0.311806, -0.224292,
0.196424, -0.346760, 0.068975, 0.293969, -0.293969, -0.068975, 0.346760, -0.196424,
-0.196424, 0.346760, -0.068975, -0.293969, 0.293969, 0.068975, -0.346760, 0.196424,
0.166664, -0.351851, 0.224292, 0.102631, -0.338330, 0.273300, 0.034654, -0.311806,
0.311806, -0.034654, -0.273300, 0.338330, -0.102631, -0.224292, 0.351851, -0.166664,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.102631, -0.273300, 0.351851, -0.311806, 0.166664, 0.034654, -0.224292, 0.338330,
-0.338330, 0.224292, -0.034654, -0.166664, 0.311806, -0.351851, 0.273300, -0.102631,
0.068975, -0.196424, 0.293969, -0.346760, 0.346760, -0.293969, 0.196424, -0.068975,
-0.068975, 0.196424, -0.293969, 0.346760, -0.346760, 0.293969, -0.196424, 0.068975,
0.034654, -0.102631, 0.166664, -0.224292, 0.273300, -0.311806, 0.338330, -0.351851,
0.351851, -0.338330, 0.311806, -0.273300, 0.224292, -0.166664, 0.102631, -0.034654
};
float adst_16[256] = {
0.033094, 0.065889, 0.098087, 0.129396, 0.159534, 0.188227, 0.215215, 0.240255,
0.263118, 0.283599, 0.301511, 0.316693, 0.329007, 0.338341, 0.344612, 0.347761,
0.098087, 0.188227, 0.263118, 0.316693, 0.344612, 0.344612, 0.316693, 0.263118,
0.188227, 0.098087, 0.000000, -0.098087, -0.188227, -0.263118, -0.316693, -0.344612,
0.159534, 0.283599, 0.344612, 0.329007, 0.240255, 0.098087, -0.065889, -0.215215,
-0.316693, -0.347761, -0.301511, -0.188227, -0.033094, 0.129396, 0.263118, 0.338341,
0.215215, 0.338341, 0.316693, 0.159534, -0.065889, -0.263118, -0.347761, -0.283599,
-0.098087, 0.129396, 0.301511, 0.344612, 0.240255, 0.033094, -0.188227, -0.329007,
0.263118, 0.344612, 0.188227, -0.098087, -0.316693, -0.316693, -0.098087, 0.188227,
0.344612, 0.263118, 0.000000, -0.263118, -0.344612, -0.188227, 0.098087, 0.316693,
0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511,
0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511,
0.329007, 0.215215, -0.188227, -0.338341, -0.033094, 0.316693, 0.240255, -0.159534,
-0.344612, -0.065889, 0.301511, 0.263118, -0.129396, -0.347761, -0.098087, 0.283599,
0.344612, 0.098087, -0.316693, -0.188227, 0.263118, 0.263118, -0.188227, -0.316693,
0.098087, 0.344612, 0.000000, -0.344612, -0.098087, 0.316693, 0.188227, -0.263118,
0.347761, -0.033094, -0.344612, 0.065889, 0.338341, -0.098087, -0.329007, 0.129396,
0.316693, -0.159534, -0.301511, 0.188227, 0.283599, -0.215215, -0.263118, 0.240255,
0.338341, -0.159534, -0.263118, 0.283599, 0.129396, -0.344612, 0.033094, 0.329007,
-0.188227, -0.240255, 0.301511, 0.098087, -0.347761, 0.065889, 0.316693, -0.215215,
0.316693, -0.263118, -0.098087, 0.344612, -0.188227, -0.188227, 0.344612, -0.098087,
-0.263118, 0.316693, 0.000000, -0.316693, 0.263118, 0.098087, -0.344612, 0.188227,
0.283599, -0.329007, 0.098087, 0.215215, -0.347761, 0.188227, 0.129396, -0.338341,
0.263118, 0.033094, -0.301511, 0.316693, -0.065889, -0.240255, 0.344612, -0.159534,
0.240255, -0.347761, 0.263118, -0.033094, -0.215215, 0.344612, -0.283599, 0.065889,
0.188227, -0.338341, 0.301511, -0.098087, -0.159534, 0.329007, -0.316693, 0.129396,
0.188227, -0.316693, 0.344612, -0.263118, 0.098087, 0.098087, -0.263118, 0.344612,
-0.316693, 0.188227, 0.000000, -0.188227, 0.316693, -0.344612, 0.263118, -0.098087,
0.129396, -0.240255, 0.316693, -0.347761, 0.329007, -0.263118, 0.159534, -0.033094,
-0.098087, 0.215215, -0.301511, 0.344612, -0.338341, 0.283599, -0.188227, 0.065889,
0.065889, -0.129396, 0.188227, -0.240255, 0.283599, -0.316693, 0.338341, -0.347761,
0.344612, -0.329007, 0.301511, -0.263118, 0.215215, -0.159534, 0.098087, -0.033094
};
#endif
static const int xC1S7 = 16069;
static const int xC2S6 = 15137;
static const int xC3S5 = 13623;
static const int xC4S4 = 11585;
static const int xC5S3 = 9102;
static const int xC6S2 = 6270;
static const int xC7S1 = 3196;
#define SHIFT_BITS 14
#define DOROUND(X) X += (1<<(SHIFT_BITS-1));
#define FINAL_SHIFT 3
#define FINAL_ROUNDING (1<<(FINAL_SHIFT -1))
#define IN_SHIFT (FINAL_SHIFT+1)
void vp8_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) {
int loop;
int short_pitch = pitch >> 1;
int is07, is12, is34, is56;
int is0734, is1256;
int id07, id12, id34, id56;
int irot_input_x, irot_input_y;
int icommon_product1; // Re-used product (c4s4 * (s12 - s56))
int icommon_product2; // Re-used product (c4s4 * (d12 + d56))
int temp1, temp2; // intermediate variable for computation
int InterData[64];
int *ip = InterData;
short *op = OutputData;
for (loop = 0; loop < 8; loop++) {
// Pre calculate some common sums and differences.
is07 = (InputData[0] + InputData[7]) << IN_SHIFT;
is12 = (InputData[1] + InputData[2]) << IN_SHIFT;
is34 = (InputData[3] + InputData[4]) << IN_SHIFT;
is56 = (InputData[5] + InputData[6]) << IN_SHIFT;
id07 = (InputData[0] - InputData[7]) << IN_SHIFT;
id12 = (InputData[1] - InputData[2]) << IN_SHIFT;
id34 = (InputData[3] - InputData[4]) << IN_SHIFT;
id56 = (InputData[5] - InputData[6]) << IN_SHIFT;
is0734 = is07 + is34;
is1256 = is12 + is56;
// Pre-Calculate some common product terms.
icommon_product1 = xC4S4 * (is12 - is56);
DOROUND(icommon_product1)
icommon_product1 >>= SHIFT_BITS;
icommon_product2 = xC4S4 * (id12 + id56);
DOROUND(icommon_product2)
icommon_product2 >>= SHIFT_BITS;
ip[0] = (xC4S4 * (is0734 + is1256));
DOROUND(ip[0]);
ip[0] >>= SHIFT_BITS;
ip[4] = (xC4S4 * (is0734 - is1256));
DOROUND(ip[4]);
ip[4] >>= SHIFT_BITS;
// Define inputs to rotation for outputs 2 and 6
irot_input_x = id12 - id56;
irot_input_y = is07 - is34;
// Apply rotation for outputs 2 and 6.
temp1 = xC6S2 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[2] = temp1 + temp2;
temp1 = xC6S2 * irot_input_y;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_x;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[6] = temp1 - temp2;
// Define inputs to rotation for outputs 1 and 7
irot_input_x = icommon_product1 + id07;
irot_input_y = -(id34 + icommon_product2);
// Apply rotation for outputs 1 and 7.
temp1 = xC1S7 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC7S1 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[1] = temp1 - temp2;
temp1 = xC7S1 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC1S7 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[7] = temp1 + temp2;
// Define inputs to rotation for outputs 3 and 5
irot_input_x = id07 - icommon_product1;
irot_input_y = id34 - icommon_product2;
// Apply rotation for outputs 3 and 5.
temp1 = xC3S5 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC5S3 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[3] = temp1 - temp2;
temp1 = xC5S3 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC3S5 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[5] = temp1 + temp2;
// Increment data pointer for next row
InputData += short_pitch;
ip += 8;
}
// Performed DCT on rows, now transform the columns
ip = InterData;
for (loop = 0; loop < 8; loop++) {
// Pre calculate some common sums and differences.
is07 = ip[0 * 8] + ip[7 * 8];
is12 = ip[1 * 8] + ip[2 * 8];
is34 = ip[3 * 8] + ip[4 * 8];
is56 = ip[5 * 8] + ip[6 * 8];
id07 = ip[0 * 8] - ip[7 * 8];
id12 = ip[1 * 8] - ip[2 * 8];
id34 = ip[3 * 8] - ip[4 * 8];
id56 = ip[5 * 8] - ip[6 * 8];
is0734 = is07 + is34;
is1256 = is12 + is56;
// Pre-Calculate some common product terms
icommon_product1 = xC4S4 * (is12 - is56);
icommon_product2 = xC4S4 * (id12 + id56);
DOROUND(icommon_product1)
DOROUND(icommon_product2)
icommon_product1 >>= SHIFT_BITS;
icommon_product2 >>= SHIFT_BITS;
temp1 = xC4S4 * (is0734 + is1256);
temp2 = xC4S4 * (is0734 - is1256);
DOROUND(temp1);
DOROUND(temp2);
temp1 >>= SHIFT_BITS;
temp2 >>= SHIFT_BITS;
op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT;
op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 2 and 6
irot_input_x = id12 - id56;
irot_input_y = is07 - is34;
// Apply rotation for outputs 2 and 6.
temp1 = xC6S2 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC6S2 * irot_input_y;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_x;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 1 and 7
irot_input_x = icommon_product1 + id07;
irot_input_y = -(id34 + icommon_product2);
// Apply rotation for outputs 1 and 7.
temp1 = xC1S7 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC7S1 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC7S1 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC1S7 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 3 and 5
irot_input_x = id07 - icommon_product1;
irot_input_y = id34 - icommon_product2;
// Apply rotation for outputs 3 and 5.
temp1 = xC3S5 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC5S3 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC5S3 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC3S5 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Increment data pointer for next column.
ip++;
op++;
}
}
void vp8_short_fhaar2x2_c(short *input, short *output, int pitch) { // pitch = 8
/* [1 1; 1 -1] orthogonal transform */
/* use position: 0,1, 4, 8 */
int i;
short *ip1 = input;
short *op1 = output;
for (i = 0; i < 16; i++) {
op1[i] = 0;
}
op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1;
op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1;
op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1;
op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1;
}
#if CONFIG_HYBRIDTRANSFORM8X8 || CONFIG_HYBRIDTRANSFORM || CONFIG_HYBRIDTRANSFORM16X16
void vp8_fht_c(short *input, short *output, int pitch,
TX_TYPE tx_type, int tx_dim) {
vp8_clear_system_state(); // Make it simd safe : __asm emms;
{
int i, j, k;
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
// the implementation could be simplified in
// conjunction with integer transform
short *ip = input;
short *op = output;
float *pfa = &bufa[0];
float *pfb = &bufb[0];
// pointers to vertical and horizontal transforms
float *ptv, *pth;
assert(tx_type != DCT_DCT);
// load and convert residual array into floating-point
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfa[i] = (float)ip[i];
}
pfa += tx_dim;
ip += pitch / 2;
}
// vertical transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch(tx_type) {
case ADST_ADST :
case ADST_DCT :
ptv = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
ptv = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfb[i] = 0;
for(k = 0; k < tx_dim; k++) {
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
}
pfa += 1;
}
pfb += tx_dim;
ptv += tx_dim;
pfa = &bufa[0];
}
// horizontal transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch(tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfa[i] = 0;
for(k = 0; k < tx_dim; k++) {
pfa[i] += pfb[k] * pth[k];
}
pth += tx_dim;
}
pfa += tx_dim;
pfb += tx_dim;
// pth -= tx_dim * tx_dim;
switch(tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
}
// convert to short integer format and load BLOCKD buffer
op = output ;
pfa = &bufa[0] ;
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
op[i] = (pfa[i] > 0 ) ? (short)( 8 * pfa[i] + 0.49) :
-(short)(- 8 * pfa[i] + 0.49);
}
op += tx_dim;
pfa += tx_dim;
}
}
vp8_clear_system_state(); // Make it simd safe : __asm emms;
}
#endif
void vp8_short_fdct4x4_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
2010-05-18 11:58:33 -04:00
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3]) << 5);
b1 = ((ip[1] + ip[2]) << 5);
c1 = ((ip[1] - ip[2]) << 5);
d1 = ((ip[0] - ip[3]) << 5);
op[0] = a1 + b1;
op[2] = a1 - b1;
2010-05-18 11:58:33 -04:00
op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12;
op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12;
2010-05-18 11:58:33 -04:00
ip += pitch / 2;
op += 4;
2010-05-18 11:58:33 -04:00
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = (a1 + b1 + 7) >> 4;
op[8] = (a1 - b1 + 7) >> 4;
op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0);
op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16;
ip++;
op++;
}
2010-05-18 11:58:33 -04:00
}
void vp8_short_fdct8x4_c(short *input, short *output, int pitch)
{
vp8_short_fdct4x4_c(input, output, pitch);
vp8_short_fdct4x4_c(input + 4, output + 16, pitch);
}
2010-05-18 11:58:33 -04:00
void vp8_short_walsh4x4_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
#if CONFIG_LOSSLESS
void vp8_short_walsh4x4_lossless_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
ip += 4;
op += 4;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
void vp8_short_walsh4x4_x8_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR;
op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR;
op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR;
op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR;
ip += 4;
op += 4;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
void vp8_short_walsh8x4_x8_c(short *input, short *output, int pitch) {
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
vp8_short_walsh4x4_x8_c(input, output, pitch);
vp8_short_walsh4x4_x8_c(input + 4, output + 16, pitch);
}
#endif
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
static void dct16x16_1d(double input[16], double output[16]) {
vp8_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8]*C7;
temp2 = step[15]*C9;
output[ 8] = temp1 + temp2;
temp1 = step[ 9]*C11;
temp2 = step[14]*C5;
output[ 9] = temp1 - temp2;
temp1 = step[10]*C3;
temp2 = step[13]*C13;
output[10] = temp1 + temp2;
temp1 = step[11]*C15;
temp2 = step[12]*C1;
output[11] = temp1 - temp2;
temp1 = step[11]*C1;
temp2 = step[12]*C15;
output[12] = temp2 + temp1;
temp1 = step[10]*C13;
temp2 = step[13]*C3;
output[13] = temp2 - temp1;
temp1 = step[ 9]*C5;
temp2 = step[14]*C11;
output[14] = temp2 + temp1;
temp1 = step[ 8]*C9;
temp2 = step[15]*C7;
output[15] = temp2 - temp1;
// step 3
step[ 0] = output[0] + output[3];
step[ 1] = output[1] + output[2];
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4]*C14;
temp2 = output[7]*C2;
step[ 4] = temp1 + temp2;
temp1 = output[5]*C10;
temp2 = output[6]*C6;
step[ 5] = temp1 + temp2;
temp1 = output[5]*C6;
temp2 = output[6]*C10;
step[ 6] = temp2 - temp1;
temp1 = output[4]*C2;
temp2 = output[7]*C14;
step[ 7] = temp2 - temp1;
step[ 8] = output[ 8] + output[11];
step[ 9] = output[ 9] + output[10];
step[10] = output[ 9] - output[10];
step[11] = output[ 8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[ 0] = (step[ 0] + step[ 1]);
output[ 8] = (step[ 0] - step[ 1]);
temp1 = step[2]*C12;
temp2 = step[3]*C4;
temp1 = temp1 + temp2;
output[ 4] = 2*(temp1*C8);
temp1 = step[2]*C4;
temp2 = step[3]*C12;
temp1 = temp2 - temp1;
output[12] = 2*(temp1*C8);
output[ 2] = 2*((step[4] + step[ 5])*C8);
output[14] = 2*((step[7] - step[ 6])*C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[ 6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8]*C12;
temp2 = intermediate[9]*C4;
temp1 = temp1 - temp2;
output[3] = 2*(temp1*C8);
temp1 = intermediate[8]*C4;
temp2 = intermediate[9]*C12;
temp1 = temp2 + temp1;
output[13] = 2*(temp1*C8);
output[ 9] = 2*((step[10] + step[11])*C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[ 8] - step[14];
intermediate[15] = step[ 9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[ 1] = -(intermediate[11] - intermediate[12]);
output[ 7] = 2*(intermediate[13]*C8);
temp1 = intermediate[14]*C12;
temp2 = intermediate[15]*C4;
temp1 = temp1 - temp2;
output[11] = -2*(temp1*C8);
temp1 = intermediate[14]*C4;
temp2 = intermediate[15]*C12;
temp1 = temp2 + temp1;
output[ 5] = 2*(temp1*C8);
}
vp8_clear_system_state(); // Make it simd safe : __asm emms;
}
void vp8_short_fdct16x16_c(short *input, short *out, int pitch) {
vp8_clear_system_state(); // Make it simd safe : __asm emms;
{
int shortpitch = pitch >> 1;
int i, j;
double output[256];
// First transform columns
for (i = 0; i < 16; i++) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; j++)
temp_in[j] = input[j*shortpitch + i];
dct16x16_1d(temp_in, temp_out);
for (j = 0; j < 16; j++)
output[j*16 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = output[j + i*16];
dct16x16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j + i*16] = temp_out[j];
}
// Scale by some magic number
for (i = 0; i < 256; i++)
out[i] = (short)round(output[i]/2);
}
vp8_clear_system_state(); // Make it simd safe : __asm emms;
}