vpx/vp9/encoder/x86/vp9_subpel_variance_impl_intrin_avx2.c

642 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h> // AVX2
#include "vpx_ports/mem.h"
#include "vp9/encoder/vp9_variance.h"
DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = {
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1,
15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1,
14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3,
13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3,
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5,
11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5,
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7,
9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9,
7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9, 7, 9,
6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11,
5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11, 5, 11,
4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13,
3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13,
2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15,
1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15
};
unsigned int vp9_sub_pixel_variance32xh_avx2(const uint8_t *src,
int src_stride,
int x_offset,
int y_offset,
const uint8_t *dst,
int dst_stride,
int height,
unsigned int *sse) {
__m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
__m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
__m256i zero_reg;
int i, sum;
sum_reg = _mm256_set1_epi16(0);
sse_reg = _mm256_set1_epi16(0);
zero_reg = _mm256_set1_epi16(0);
if (x_offset == 0) {
// x_offset = 0 and y_offset = 0
if (y_offset == 0) {
for (i = 0; i < height ; i++) {
// load source and destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// expend each byte to 2 bytes
exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg);
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src+= src_stride;
dst+= dst_stride;
}
// x_offset = 0 and y_offset = 8
} else if (y_offset == 8) {
__m256i src_next_reg;
for (i = 0; i < height ; i++) {
// load source + next source + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *)
(src + src_stride));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// average between current and next stride source
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
// expend each byte to 2 bytes
exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg);
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src+= src_stride;
dst+= dst_stride;
}
// x_offset = 0 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg;
#if (ARCH_X86_64)
int64_t y_offset64;
y_offset64 = y_offset;
y_offset64 <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset64));
#else
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
#endif
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height ; i++) {
// load current and next source + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *)
(src + src_stride));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// merge current and next source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter);
// add 8 to the source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// expand each byte to 2 byte in the destination
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src+= src_stride;
dst+= dst_stride;
}
}
// x_offset = 8 and y_offset = 0
} else if (x_offset == 8) {
if (y_offset == 0) {
__m256i src_next_reg;
for (i = 0; i < height ; i++) {
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// average between source and the next byte following source
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
// expand each byte to 2 bytes
exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg);
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src+= src_stride;
dst+= dst_stride;
}
// x_offset = 8 and y_offset = 8
} else if (y_offset == 8) {
__m256i src_next_reg, src_avg;
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
// average between source and the next byte following source
src_avg = _mm256_avg_epu8(src_reg, src_next_reg);
for (i = 0; i < height ; i++) {
src+= src_stride;
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// average between source and the next byte following source
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
// expand each byte to 2 bytes
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// average between previous average to current average
src_avg = _mm256_avg_epu8(src_avg, src_reg);
// expand each byte to 2 bytes
exp_src_lo = _mm256_unpacklo_epi8(src_avg, zero_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_avg, zero_reg);
// save current source average
src_avg = src_reg;
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
dst+= dst_stride;
}
// x_offset = 8 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg, src_avg;
#if (ARCH_X86_64)
int64_t y_offset64;
y_offset64 = y_offset;
y_offset64 <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset64));
#else
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
#endif
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
// average between source and the next byte following source
src_avg = _mm256_avg_epu8(src_reg, src_next_reg);
for (i = 0; i < height ; i++) {
src+= src_stride;
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// average between source and the next byte following source
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
// merge previous average and current average
exp_src_lo = _mm256_unpacklo_epi8(src_avg, src_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_avg, src_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter);
// add 8 to the source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide the source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// expand each byte to 2 bytes
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// save current source average
src_avg = src_reg;
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
dst+= dst_stride;
}
}
// x_offset = bilin interpolation and y_offset = 0
} else {
if (y_offset == 0) {
__m256i filter, pw8, src_next_reg;
#if (ARCH_X86_64)
int64_t x_offset64;
x_offset64 = x_offset;
x_offset64 <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset64));
#else
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
#endif
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height ; i++) {
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// merge current and next source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter);
// add 8 to source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide the source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// expand each byte to 2 bytes
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src+= src_stride;
dst+= dst_stride;
}
// x_offset = bilin interpolation and y_offset = 8
} else if (y_offset == 8) {
__m256i filter, pw8, src_next_reg, src_pack;
#if (ARCH_X86_64)
int64_t x_offset64;
x_offset64 = x_offset;
x_offset64 <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset64));
#else
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
#endif
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
// merge current and next stride source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter);
// add 8 to source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height ; i++) {
src+= src_stride;
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// merge current and next stride source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter);
// add 8 to source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// convert each 16 bit to 8 bit to each low and high lane source
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// average between previous pack to the current
src_pack = _mm256_avg_epu8(src_pack, src_reg);
// expand each byte to 2 bytes
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
exp_src_lo = _mm256_unpacklo_epi8(src_pack, zero_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_pack, zero_reg);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// calculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
// save previous pack
src_pack = src_reg;
dst+= dst_stride;
}
// x_offset = bilin interpolation and y_offset = bilin interpolation
} else {
__m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
#if (ARCH_X86_64)
int64_t x_offset64, y_offset64;
x_offset64 = x_offset;
x_offset64 <<= 5;
y_offset64 = y_offset;
y_offset64 <<= 5;
xfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset64));
yfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset64));
#else
x_offset <<= 5;
xfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
y_offset <<= 5;
yfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
#endif
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
// merge current and next stride source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, xfilter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, xfilter);
// add 8 to the source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide the source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height ; i++) {
src+= src_stride;
// load source and another source starting from the next
// following byte + destination
src_reg = _mm256_loadu_si256((__m256i const *) (src));
src_next_reg = _mm256_loadu_si256((__m256i const *) (src + 1));
dst_reg = _mm256_load_si256((__m256i const *) (dst));
// merge current and next stride source
exp_src_lo = _mm256_unpacklo_epi8(src_reg, src_next_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_reg, src_next_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, xfilter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, xfilter);
// add 8 to source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// convert each 16 bit to 8 bit to each low and high lane source
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// merge previous pack to current pack source
exp_src_lo = _mm256_unpacklo_epi8(src_pack, src_reg);
exp_src_hi = _mm256_unpackhi_epi8(src_pack, src_reg);
// filter the source
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, yfilter);
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, yfilter);
// expand each byte to 2 bytes
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg);
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg);
// add 8 to source
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8);
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8);
// divide source by 16
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4);
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
// source - dest
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo);
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi);
// caculate sum
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo);
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo);
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi);
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi);
// calculate sse
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo);
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
src_pack = src_reg;
dst+= dst_stride;
}
}
}
// sum < 0
res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg);
// save the next 8 bytes of each lane of sse
sse_reg_hi = _mm256_srli_si256(sse_reg, 8);
// merge the result of sum < 0 with sum to add sign to the next 16 bits
sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp);
sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp);
// add each 8 bytes from every lane of sse and sum
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi);
sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi);
// save the next 4 bytes of each lane sse
sse_reg_hi = _mm256_srli_si256(sse_reg, 4);
// save the next 8 bytes of each lane of sum
sum_reg_hi = _mm256_srli_si256(sum_reg, 8);
// add the first 4 bytes to the next 4 bytes sse
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi);
// add the first 8 bytes to the next 8 bytes
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi);
// extract the low lane and the high lane and add the results
*((int*)sse)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) +
_mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1));
sum_reg_hi = _mm256_srli_si256(sum_reg, 4);
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi);
sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) +
_mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1));
return sum;
}