vpx/vp9/encoder/vp9_encoder.c

3012 lines
93 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "./vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "vpx/internal/vpx_psnr.h"
#include "vpx_ports/vpx_timer.h"
2010-05-18 17:58:33 +02:00
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_idct.h"
#if CONFIG_VP9_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_bitstream.h"
add a context tree structure to encoder This patch sets up a quad_tree structure (pc_tree) for holding all of pick_mode_context data we use at any square block size during encoding or picking modes. That includes contexts for 2 horizontal and 2 vertical splits, one none, and pointers to 4 sub pc_tree nodes corresponding to split. It also includes a pointer to the current chosen partitioning. This replaces code that held an index for every level in the pick modes array including: sb_index, mb_index, b_index, ab_index. These were used as stateful indexes that pointed to the current pick mode contexts you had at each level stored in the following arrays array ab4x4_context[][][], sb8x4_context[][][], sb4x8_context[][][], sb8x8_context[][][], sb8x16_context[][][], sb16x8_context[][][], mb_context[][], sb32x16[][], sb16x32[], sb32_context[], sb32x64_context[], sb64x32_context[], sb64_context and the partitioning that had been stored in the following: b_partitioning, mb_partitioning, sb_partitioning, and sb64_partitioning. Prior to this patch before doing an encode you had to set the appropriate index for your block size ( switch statement), update it ( up to 3 lookups for the index array value) and then make your call into a recursive function at which point you'd have to call get_context which then had to do a switch statement based on the blocksize, and then up to 3 lookups based upon the block size to find the context to use. With the new code the context for the block size is passed around directly avoiding the extraneous switch statements and multi dimensional array look ups that were listed above. At any level in the search all of the contexts are local to the pc_tree you are working on (in?). In addition in most places code that used to call sub functions and then check if the block size was 4x4 and index was > 0 and return now don't preferring instead to call the right none function on the inside. Change-Id: I06e39318269d9af2ce37961b3f95e181b57f5ed9
2014-04-17 16:30:55 +02:00
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_speed_features.h"
#if CONFIG_INTERNAL_STATS
#include "vp9/encoder/vp9_ssim.h"
#endif
#include "vp9/encoder/vp9_temporal_filter.h"
#include "vp9/encoder/vp9_resize.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
void vp9_coef_tree_initialize();
#define DEFAULT_INTERP_FILTER SWITCHABLE
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// #define OUTPUT_YUV_REC
2010-05-18 17:58:33 +02:00
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file = NULL;
#endif
2010-05-18 17:58:33 +02:00
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
2010-05-18 17:58:33 +02:00
#if 0
FILE *framepsnr;
FILE *kf_list;
2010-05-18 17:58:33 +02:00
FILE *keyfile;
#endif
static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
static void setup_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
vp9_setup_past_independence(cm);
} else {
if (!cpi->use_svc)
cm->frame_context_idx = cpi->refresh_alt_ref_frame;
}
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
} else {
cm->fc = cm->frame_contexts[cm->frame_context_idx];
}
}
void vp9_initialize_enc() {
static int init_done = 0;
if (!init_done) {
vp9_init_neighbors();
vp9_coef_tree_initialize();
vp9_tokenize_initialize();
vp9_init_me_luts();
vp9_rc_init_minq_luts();
vp9_entropy_mv_init();
vp9_entropy_mode_init();
vp9_temporal_filter_init();
init_done = 1;
}
2010-05-18 17:58:33 +02:00
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
vpx_free(cm->last_frame_seg_map);
cm->last_frame_seg_map = NULL;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = NULL;
2010-05-18 17:58:33 +02:00
vpx_free(cpi->complexity_map);
cpi->complexity_map = NULL;
vp9_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
2010-05-18 17:58:33 +02:00
vp9_free_frame_buffer(&cpi->last_frame_uf);
vp9_free_frame_buffer(&cpi->scaled_source);
vp9_free_frame_buffer(&cpi->scaled_last_source);
vp9_free_frame_buffer(&cpi->alt_ref_buffer);
vp9_lookahead_destroy(cpi->lookahead);
2010-05-18 17:58:33 +02:00
vpx_free(cpi->tok);
cpi->tok = 0;
2010-05-18 17:58:33 +02:00
vp9_free_pc_tree(cpi);
add a context tree structure to encoder This patch sets up a quad_tree structure (pc_tree) for holding all of pick_mode_context data we use at any square block size during encoding or picking modes. That includes contexts for 2 horizontal and 2 vertical splits, one none, and pointers to 4 sub pc_tree nodes corresponding to split. It also includes a pointer to the current chosen partitioning. This replaces code that held an index for every level in the pick modes array including: sb_index, mb_index, b_index, ab_index. These were used as stateful indexes that pointed to the current pick mode contexts you had at each level stored in the following arrays array ab4x4_context[][][], sb8x4_context[][][], sb4x8_context[][][], sb8x8_context[][][], sb8x16_context[][][], sb16x8_context[][][], mb_context[][], sb32x16[][], sb16x32[], sb32_context[], sb32x64_context[], sb64x32_context[], sb64_context and the partitioning that had been stored in the following: b_partitioning, mb_partitioning, sb_partitioning, and sb64_partitioning. Prior to this patch before doing an encode you had to set the appropriate index for your block size ( switch statement), update it ( up to 3 lookups for the index array value) and then make your call into a recursive function at which point you'd have to call get_context which then had to do a switch statement based on the blocksize, and then up to 3 lookups based upon the block size to find the context to use. With the new code the context for the block size is passed around directly avoiding the extraneous switch statements and multi dimensional array look ups that were listed above. At any level in the search all of the contexts are local to the pc_tree you are working on (in?). In addition in most places code that used to call sub functions and then check if the block size was 4x4 and index was > 0 and return now don't preferring instead to call the right none function on the inside. Change-Id: I06e39318269d9af2ce37961b3f95e181b57f5ed9
2014-04-17 16:30:55 +02:00
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.buf = NULL;
lc->rc_twopass_stats_in.sz = 0;
}
if (cpi->source_diff_var != NULL) {
vpx_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
vpx_free(cpi->twopass.this_frame_mb_stats.mb_stats);
cpi->twopass.this_frame_mb_stats.mb_stats = NULL;
}
#endif
2010-05-18 17:58:33 +02:00
}
static void save_coding_context(VP9_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP9_COMMON *cm = &cpi->common;
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to vp9_restore_coding_context. These functions are
// intended for use in a re-code loop in vp9_compress_frame where the
// quantizer value is adjusted between loop iterations.
vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
cc->fc = cm->fc;
}
static void restore_coding_context(VP9_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP9_COMMON *cm = &cpi->common;
// Restore key state variables to the snapshot state stored in the
// previous call to vp9_save_coding_context.
vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
vpx_memcpy(cm->last_frame_seg_map,
cpi->coding_context.last_frame_seg_map_copy,
(cm->mi_rows * cm->mi_cols));
vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
cm->fc = cc->fc;
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation(seg);
// Clear down the segment features.
vp9_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation(seg);
vp9_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
2011-10-05 12:26:00 +02:00
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp9_disable_segmentation(seg);
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp9_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void set_speed_features(VP9_COMP *cpi) {
#if CONFIG_INTERNAL_STATS
int i;
for (i = 0; i < MAX_MODES; ++i)
cpi->mode_chosen_counts[i] = 0;
#endif
vp9_set_speed_features(cpi);
// Set rd thresholds based on mode and speed setting
vp9_set_rd_speed_thresholds(cpi);
vp9_set_rd_speed_thresholds_sub8x8(cpi);
2010-05-18 17:58:33 +02:00
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
const VP9EncoderConfig *oxcf = &cpi->oxcf;
cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
oxcf->lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
2010-05-18 17:58:33 +02:00
if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
2010-05-18 17:58:33 +02:00
}
static void alloc_ref_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
2010-05-18 17:58:33 +02:00
}
static void alloc_util_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_alloc_context_buffers(cm, cm->width, cm->height);
vpx_free(cpi->tok);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
vp9_setup_pc_tree(&cpi->common, cpi);
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
vp9_update_frame_size(cm);
init_macroblockd(cm, xd);
}
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
cpi->oxcf.framerate = framerate < 0.1 ? 30 : framerate;
vp9_rc_update_framerate(cpi);
2010-05-18 17:58:33 +02:00
}
int64_t vp9_rescale(int64_t val, int64_t num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (llval * llnum / llden);
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tile_cols, max_log2_tile_cols;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void init_buffer_indices(VP9_COMP *cpi) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
}
static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
VP9_COMMON *const cm = &cpi->common;
2010-05-18 17:58:33 +02:00
cpi->oxcf = *oxcf;
2010-05-18 17:58:33 +02:00
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
2010-05-18 17:58:33 +02:00
cm->width = oxcf->width;
cm->height = oxcf->height;
vp9_alloc_compressor_data(cpi);
// Spatial scalability.
cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
// Temporal scalability.
cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->oxcf.mode == TWO_PASS_SECOND_BEST)) {
vp9_init_layer_context(cpi);
}
// change includes all joint functionality
vp9_change_config(cpi, oxcf);
2010-05-18 17:58:33 +02:00
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
init_buffer_indices(cpi);
set_tile_limits(cpi);
2010-05-18 17:58:33 +02:00
}
static int get_pass(MODE mode) {
switch (mode) {
case REALTIME:
case ONE_PASS_GOOD:
case ONE_PASS_BEST:
return 0;
case TWO_PASS_FIRST:
return 1;
case TWO_PASS_SECOND_GOOD:
case TWO_PASS_SECOND_BEST:
return 2;
}
return -1;
}
void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
2010-05-18 17:58:33 +02:00
if (cm->profile != oxcf->profile)
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
if (cm->profile <= PROFILE_1)
assert(cm->bit_depth == BITS_8);
else
assert(cm->bit_depth > BITS_8);
2010-05-18 17:58:33 +02:00
cpi->oxcf = *oxcf;
cpi->pass = get_pass(cpi->oxcf.mode);
2010-05-18 17:58:33 +02:00
rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
2010-05-18 17:58:33 +02:00
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_frame_context = 1;
cm->reset_frame_context = 0;
2010-05-18 17:58:33 +02:00
vp9_reset_segment_features(&cm->seg);
vp9_set_high_precision_mv(cpi, 0);
2010-05-18 17:58:33 +02:00
{
int i;
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
cpi->encode_breakout = cpi->oxcf.encode_breakout;
// local file playback mode == really big buffer
if (cpi->oxcf.rc_mode == VPX_VBR) {
cpi->oxcf.starting_buffer_level_ms = 60000;
cpi->oxcf.optimal_buffer_level_ms = 60000;
cpi->oxcf.maximum_buffer_size_ms = 240000;
}
rc->starting_buffer_level = vp9_rescale(cpi->oxcf.starting_buffer_level_ms,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level_ms == 0)
rc->optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
rc->optimal_buffer_level = vp9_rescale(cpi->oxcf.optimal_buffer_level_ms,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size_ms == 0)
rc->maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
rc->maximum_buffer_size = vp9_rescale(cpi->oxcf.maximum_buffer_size_ms,
cpi->oxcf.target_bandwidth, 1000);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
vp9_new_framerate(cpi, cpi->oxcf.framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
cm->interp_filter = DEFAULT_INTERP_FILTER;
2010-05-18 17:58:33 +02:00
cm->display_width = cpi->oxcf.width;
cm->display_height = cpi->oxcf.height;
2010-05-18 17:58:33 +02:00
if (cpi->initial_width) {
// Increasing the size of the frame beyond the first seen frame, or some
// otherwise signaled maximum size, is not supported.
// TODO(jkoleszar): exit gracefully.
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
}
update_frame_size(cpi);
2010-05-18 17:58:33 +02:00
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 && cpi->pass == 2)) {
vp9_update_layer_context_change_config(cpi,
(int)cpi->oxcf.target_bandwidth);
}
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
2010-05-18 17:58:33 +02:00
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
2010-05-18 17:58:33 +02:00
#endif
set_tile_limits(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
#if CONFIG_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_denoiser_alloc(&(cpi->denoiser), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS);
}
#endif
2010-05-18 17:58:33 +02:00
}
#ifndef M_LOG2_E
2010-05-18 17:58:33 +02:00
#define M_LOG2_E 0.693147180559945309417
#endif
2010-05-18 17:58:33 +02:00
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[3] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
unsigned int i, j;
VP9_COMP *const cpi = vpx_memalign(32, sizeof(VP9_COMP));
VP9_COMMON *const cm = cpi != NULL ? &cpi->common : NULL;
2010-05-18 17:58:33 +02:00
if (!cm)
return NULL;
2010-05-18 17:58:33 +02:00
vp9_zero(*cpi);
2010-05-18 17:58:33 +02:00
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
vp9_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
vp9_rtcd();
cpi->use_svc = 0;
init_config(cpi, oxcf);
vp9_rc_init(&cpi->oxcf, cpi->pass, &cpi->rc);
cm->current_video_frame = 0;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
cpi->skippable_frame = 0;
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a complexity map used for rd adjustment
CHECK_MEM_ERROR(cm, cpi->complexity_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
2011-10-05 12:26:00 +02:00
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder for the mb stats obtained from the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.this_frame_mb_stats.mb_stats,
vpx_calloc(cm->MBs * sizeof(FIRSTPASS_MB_STATS), 1));
} else {
cpi->twopass.this_frame_mb_stats.mb_stats = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
2010-05-18 17:58:33 +02:00
// Note that at the moment multi_arf will not work with svc.
// For the current check in all the execution paths are defaulted to 0
// pending further tuning and testing. The code is left in place here
// as a place holder in regard to the required paths.
cpi->multi_arf_last_grp_enabled = 0;
if (cpi->pass == 2) {
if (cpi->use_svc) {
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
} else {
// Disable by default for now.
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
}
} else {
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
}
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->totalp_sq_error = 0;
cpi->totalp_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
cpi->summedp_quality = 0;
cpi->summedp_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
2010-05-18 17:58:33 +02:00
#endif
cpi->first_time_stamp_ever = INT64_MAX;
2010-05-18 17:58:33 +02:00
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->mb.nmvsadcost);
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
#if CONFIG_DENOISING
#ifdef OUTPUT_YUV_DENOISED
if (cpi->oxcf.noise_sensitivity > 0) {
yuv_denoised_file = fopen("denoised.yuv", "ab");
}
#endif
#endif
2010-05-18 17:58:33 +02:00
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
2010-05-18 17:58:33 +02:00
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
2010-05-18 17:58:33 +02:00
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
2010-05-18 17:58:33 +02:00
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
2010-05-18 17:58:33 +02:00
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
if (cpi->pass == 1) {
vp9_init_first_pass(cpi);
} else if (cpi->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
2010-05-18 17:58:33 +02:00
if (cpi->svc.number_spatial_layers > 1
&& cpi->svc.number_temporal_layers == 1) {
FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
int i;
for (i = 0; i < oxcf->ss_number_layers; ++i) {
FIRSTPASS_STATS *const last_packet_for_layer =
&stats[packets - oxcf->ss_number_layers + i];
const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
const int packets_in_layer = (int)last_packet_for_layer->count + 1;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
vpx_free(lc->rc_twopass_stats_in.buf);
lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
vpx_malloc(lc->rc_twopass_stats_in.sz));
lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
lc->twopass.stats_in = lc->twopass.stats_in_start;
lc->twopass.stats_in_end = lc->twopass.stats_in_start
+ packets_in_layer - 1;
stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
}
}
for (i = 0; i < packets; ++i) {
const int layer_id = (int)stats[i].spatial_layer_id;
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
&& stats_copy[layer_id] != NULL) {
*stats_copy[layer_id] = stats[i];
++stats_copy[layer_id];
}
}
vp9_init_second_pass_spatial_svc(cpi);
} else {
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
vp9_init_second_pass(cpi);
}
}
2010-05-18 17:58:33 +02:00
set_speed_features(cpi);
// Allocate memory to store variances for a frame.
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
cpi->source_var_thresh = 0;
cpi->frames_till_next_var_check = 0;
// Default rd threshold factors for mode selection
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j)
cpi->rd.thresh_freq_fact[i][j] = 32;
}
2010-05-18 17:58:33 +02:00
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
vp9_variance32x16, vp9_sub_pixel_variance32x16,
vp9_sub_pixel_avg_variance32x16, NULL, NULL, vp9_sad32x16x4d)
BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
vp9_variance16x32, vp9_sub_pixel_variance16x32,
vp9_sub_pixel_avg_variance16x32, NULL, NULL, vp9_sad16x32x4d)
BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
vp9_variance64x32, vp9_sub_pixel_variance64x32,
vp9_sub_pixel_avg_variance64x32, NULL, NULL, vp9_sad64x32x4d)
BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
vp9_variance32x64, vp9_sub_pixel_variance32x64,
vp9_sub_pixel_avg_variance32x64, NULL, NULL, vp9_sad32x64x4d)
BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
vp9_variance32x32, vp9_sub_pixel_variance32x32,
vp9_sub_pixel_avg_variance32x32, vp9_sad32x32x3, vp9_sad32x32x8,
vp9_sad32x32x4d)
BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
vp9_variance64x64, vp9_sub_pixel_variance64x64,
vp9_sub_pixel_avg_variance64x64, vp9_sad64x64x3, vp9_sad64x64x8,
vp9_sad64x64x4d)
BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
vp9_variance16x16, vp9_sub_pixel_variance16x16,
vp9_sub_pixel_avg_variance16x16, vp9_sad16x16x3, vp9_sad16x16x8,
vp9_sad16x16x4d)
BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
vp9_variance16x8, vp9_sub_pixel_variance16x8,
vp9_sub_pixel_avg_variance16x8,
vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
vp9_variance8x16, vp9_sub_pixel_variance8x16,
vp9_sub_pixel_avg_variance8x16,
vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
vp9_variance8x8, vp9_sub_pixel_variance8x8,
vp9_sub_pixel_avg_variance8x8,
vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
vp9_variance8x4, vp9_sub_pixel_variance8x4,
vp9_sub_pixel_avg_variance8x4, NULL, vp9_sad8x4x8, vp9_sad8x4x4d)
BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
vp9_variance4x8, vp9_sub_pixel_variance4x8,
vp9_sub_pixel_avg_variance4x8, NULL, vp9_sad4x8x8, vp9_sad4x8x4d)
BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
vp9_variance4x4, vp9_sub_pixel_variance4x4,
vp9_sub_pixel_avg_variance4x4,
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
2010-05-18 17:58:33 +02:00
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
2010-05-18 17:58:33 +02:00
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm);
cm->error.setjmp = 0;
return cpi;
2010-05-18 17:58:33 +02:00
}
void vp9_remove_compressor(VP9_COMP *cpi) {
unsigned int i;
2010-05-18 17:58:33 +02:00
if (!cpi)
return;
2010-05-18 17:58:33 +02:00
if (cpi && (cpi->common.current_video_frame > 0)) {
#if CONFIG_INTERNAL_STATS
2010-05-18 17:58:33 +02:00
vp9_clear_system_state();
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000
/ time_encoded;
if (cpi->b_calculate_psnr) {
const double total_psnr =
vpx_sse_to_psnr((double)cpi->total_samples, 255.0,
(double)cpi->total_sq_error);
const double totalp_psnr =
vpx_sse_to_psnr((double)cpi->totalp_samples, 255.0,
(double)cpi->totalp_sq_error);
const double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
const double totalp_ssim = 100 * pow(cpi->summedp_quality /
cpi->summedp_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\t Time(ms)\n");
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim,
total_encode_time);
}
2010-05-18 17:58:33 +02:00
if (cpi->b_calculate_ssimg) {
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count,
cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count,
cpi->total_ssimg_all / cpi->count, total_encode_time);
}
2010-05-18 17:58:33 +02:00
fclose(f);
}
2010-05-18 17:58:33 +02:00
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
2010-05-18 17:58:33 +02:00
#endif
}
2010-05-18 17:58:33 +02:00
#if CONFIG_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_denoiser_free(&(cpi->denoiser));
}
#endif
dealloc_compressor_data(cpi);
vpx_free(cpi->tok);
2010-05-18 17:58:33 +02:00
for (i = 0; i < sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]); ++i) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
2011-10-05 12:26:00 +02:00
vp9_remove_common(&cpi->common);
vpx_free(cpi);
2010-05-18 17:58:33 +02:00
#if CONFIG_DENOISING
#ifdef OUTPUT_YUV_DENOISED
if (cpi->oxcf.noise_sensitivity > 0) {
fclose(yuv_denoised_file);
}
#endif
#endif
2010-05-18 17:58:33 +02:00
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
2010-05-18 17:58:33 +02:00
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
2010-05-18 17:58:33 +02:00
#if 0
if (keyfile)
fclose(keyfile);
2010-05-18 17:58:33 +02:00
if (framepsnr)
fclose(framepsnr);
2010-05-18 17:58:33 +02:00
if (kf_list)
fclose(kf_list);
2010-05-18 17:58:33 +02:00
#endif
}
static int64_t get_sse(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
int width, int height) {
const int dw = width % 16;
const int dh = height % 16;
int64_t total_sse = 0;
unsigned int sse = 0;
int sum = 0;
int x, y;
if (dw > 0) {
variance(&a[width - dw], a_stride, &b[width - dw], b_stride,
dw, height, &sse, &sum);
total_sse += sse;
}
2010-05-18 17:58:33 +02:00
if (dh > 0) {
variance(&a[(height - dh) * a_stride], a_stride,
&b[(height - dh) * b_stride], b_stride,
width - dw, dh, &sse, &sum);
total_sse += sse;
}
2010-05-18 17:58:33 +02:00
for (y = 0; y < height / 16; ++y) {
const uint8_t *pa = a;
const uint8_t *pb = b;
for (x = 0; x < width / 16; ++x) {
vp9_mse16x16(pa, a_stride, pb, b_stride, &sse);
total_sse += sse;
2010-05-18 17:58:33 +02:00
pa += 16;
pb += 16;
2010-05-18 17:58:33 +02:00
}
a += 16 * a_stride;
b += 16 * b_stride;
}
return total_sse;
2010-05-18 17:58:33 +02:00
}
typedef struct {
double psnr[4]; // total/y/u/v
uint64_t sse[4]; // total/y/u/v
uint32_t samples[4]; // total/y/u/v
} PSNR_STATS;
static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
PSNR_STATS *psnr) {
const int widths[3] = {a->y_width, a->uv_width, a->uv_width };
const int heights[3] = {a->y_height, a->uv_height, a->uv_height};
const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
int i;
uint64_t total_sse = 0;
uint32_t total_samples = 0;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 3; ++i) {
const int w = widths[i];
const int h = heights[i];
const uint32_t samples = w * h;
const uint64_t sse = get_sse(a_planes[i], a_strides[i],
b_planes[i], b_strides[i],
w, h);
psnr->sse[1 + i] = sse;
psnr->samples[1 + i] = samples;
psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, 255.0, (double)sse);
total_sse += sse;
total_samples += samples;
}
psnr->sse[0] = total_sse;
psnr->samples[0] = total_samples;
psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, 255.0,
(double)total_sse);
2010-05-18 17:58:33 +02:00
}
static void generate_psnr_packet(VP9_COMP *cpi) {
struct vpx_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = VPX_CODEC_PSNR_PKT;
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
2010-05-18 17:58:33 +02:00
int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7)
return -1;
2010-05-18 17:58:33 +02:00
cpi->ref_frame_flags = ref_frame_flags;
return 0;
2010-05-18 17:58:33 +02:00
}
void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
2010-05-18 17:58:33 +02:00
}
static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
VP9_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_frame = LAST_FRAME;
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
2010-05-18 17:58:33 +02:00
int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
2010-05-18 17:58:33 +02:00
}
int vp9_get_reference_enc(VP9_COMP *cpi, int index, YV12_BUFFER_CONFIG **fb) {
VP9_COMMON *cm = &cpi->common;
if (index < 0 || index >= REF_FRAMES)
return -1;
*fb = &cm->frame_bufs[cm->ref_frame_map[index]].buf;
return 0;
}
int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int vp9_update_entropy(VP9_COMP * cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
2010-05-18 17:58:33 +02:00
#if defined(OUTPUT_YUV_SRC)
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
2010-05-18 17:58:33 +02:00
#if CONFIG_DENOISING
#if defined(OUTPUT_YUV_DENOISED)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height / 2;
do {
fwrite(src, s->uv_width / 2, 1, f);
src += s->uv_stride + s->uv_width / 2;
} while (--h);
src = s->v_buffer;
h = s->uv_height / 2;
do {
fwrite(src, s->uv_width / 2, 1, f);
src += s->uv_stride + s->uv_width / 2;
} while (--h);
}
#endif
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
#if CONFIG_ALPHA
if (s->alpha_buffer) {
src = s->alpha_buffer;
h = s->alpha_height;
do {
fwrite(src, s->alpha_width, 1, yuv_rec_file);
src += s->alpha_stride;
} while (--h);
}
#endif
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
fflush(yuv_rec_file);
}
#endif
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
int i;
const uint8_t *const srcs[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
src->alpha_buffer};
const int src_strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
src->alpha_stride};
const int src_widths[4] = {src->y_crop_width, src->uv_crop_width,
src->uv_crop_width, src->y_crop_width};
const int src_heights[4] = {src->y_crop_height, src->uv_crop_height,
src->uv_crop_height, src->y_crop_height};
uint8_t *const dsts[4] = {dst->y_buffer, dst->u_buffer, dst->v_buffer,
dst->alpha_buffer};
const int dst_strides[4] = {dst->y_stride, dst->uv_stride, dst->uv_stride,
dst->alpha_stride};
const int dst_widths[4] = {dst->y_crop_width, dst->uv_crop_width,
dst->uv_crop_width, dst->y_crop_width};
const int dst_heights[4] = {dst->y_crop_height, dst->uv_crop_height,
dst->uv_crop_height, dst->y_crop_height};
for (i = 0; i < MAX_MB_PLANE; ++i)
vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
vp9_extend_frame_borders(dst);
}
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
src->alpha_buffer};
const int src_strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
src->alpha_stride};
uint8_t *const dsts[4] = {dst->y_buffer, dst->u_buffer, dst->v_buffer,
dst->alpha_buffer};
const int dst_strides[4] = {dst->y_stride, dst->uv_stride, dst->uv_stride,
dst->alpha_stride};
const InterpKernel *const kernel = vp9_get_interp_kernel(EIGHTTAP);
int x, y, i;
for (y = 0; y < dst_h; y += 16) {
for (x = 0; x < dst_w; x += 16) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const int y_q4 = y * (16 / factor) * src_h / dst_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
src_stride + (x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
kernel[x_q4 & 0xf], 16 * src_w / dst_w,
kernel[y_q4 & 0xf], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
}
}
vp9_extend_frame_borders(dst);
}
#define WRITE_RECON_BUFFER 0
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
FILE *yframe;
int i;
char filename[255];
2010-05-18 17:58:33 +02:00
snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
2010-05-18 17:58:33 +02:00
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
2010-05-18 17:58:33 +02:00
fclose(yframe);
snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
2010-05-18 17:58:33 +02:00
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
2010-05-18 17:58:33 +02:00
fclose(yframe);
snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
2010-05-18 17:58:33 +02:00
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
2010-05-18 17:58:33 +02:00
fclose(yframe);
2010-05-18 17:58:33 +02:00
}
#endif
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(const VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
int force_recode = 0;
// Special case trap if maximum allowed frame size exceeded.
if (rc->projected_frame_size > rc->max_frame_bandwidth) {
force_recode = 1;
// Is frame recode allowed.
// Yes if either recode mode 1 is selected or mode 2 is selected
// and the frame is a key frame, golden frame or alt_ref_frame
} else if ((cpi->sf.recode_loop == ALLOW_RECODE) ||
((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) &&
(cm->frame_type == KEY_FRAME ||
cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
// General over and under shoot tests
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == VPX_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
void vp9_update_reference_frames(VP9_COMP *cpi) {
VP9_COMMON * const cm = &cpi->common;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
} else if (!cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
cpi->rc.is_src_frame_alt_ref && !cpi->use_svc) {
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* The update to the buffer in the alt ref slot was signaled in
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
* as the golden frame next time.
*/
int tmp;
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
}
#if CONFIG_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_denoiser_update_frame_info(&cpi->denoiser,
*cpi->Source,
cpi->common.frame_type,
cpi->refresh_alt_ref_frame,
cpi->refresh_golden_frame,
cpi->refresh_last_frame);
}
#endif
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (xd->lossless) {
lf->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp9_clear_system_state();
vpx_usec_timer_start(&timer);
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
}
vp9_extend_frame_inner_borders(cm->frame_to_show);
}
void vp9_scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
const YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf;
// Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
if ((cpi->ref_frame_flags & ref_mask[ref_frame - 1]) &&
(ref->y_crop_width != cm->width || ref->y_crop_height != cm->height)) {
const int new_fb = get_free_fb(cm);
vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
} else {
cpi->scaled_ref_idx[ref_frame - 1] = idx;
cm->frame_bufs[idx].ref_count++;
}
}
}
static void release_scaled_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
for (i = 0; i < 3; i++)
cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--;
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
static void full_to_model_counts(vp9_coeff_count_model *model_count,
vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int recon_err;
vp9_clear_system_state();
recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10u %10d %10d %10d %10d"
"%10"PRId64" %10"PRId64" %10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.vbr_bits_off_target,
cpi->rc.total_target_vs_actual,
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
cpi->rc.avg_q,
vp9_convert_qindex_to_q(cpi->rc.ni_av_qi),
vp9_convert_qindex_to_q(cpi->oxcf.cq_level),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct);
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
2010-05-18 17:58:33 +02:00
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
2011-10-05 12:26:00 +02:00
fprintf(fmodes, "\n");
2010-05-18 17:58:33 +02:00
fclose(fmodes);
}
}
#endif
2010-05-18 17:58:33 +02:00
static void encode_without_recode_loop(VP9_COMP *cpi,
int q) {
VP9_COMMON *const cm = &cpi->common;
vp9_clear_system_state();
vp9_set_quantizer(cm, q);
setup_frame(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp9_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp9_cyclic_refresh_setup(cpi);
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state();
}
static void encode_with_recode_loop(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
int q,
int bottom_index,
int top_index) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int loop_count = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int q_low = bottom_index, q_high = top_index;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
// Decide frame size bounds
vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
do {
vp9_clear_system_state();
2010-05-18 17:58:33 +02:00
vp9_set_quantizer(cm, q);
if (loop_count == 0)
setup_frame(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp9_setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
cpi->dummy_packing = 1;
if (!cpi->sf.use_nonrd_pick_mode)
vp9_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == VPX_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) &&
rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
int high_err_target = cpi->ambient_err;
int low_err_target = cpi->ambient_err >> 1;
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (q * high_err_target) / kf_err;
q = MIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (q * low_err_target) / kf_err;
q = MIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
q, MAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, MAX(q_high, top_index));
while (q < q_low && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, MAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_count > 1) {
vp9_rc_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low) / 2;
} else {
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == VPX_CQ &&
q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (loop) {
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (loop);
}
static void get_ref_frame_flags(VP9_COMP *cpi) {
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
cpi->gold_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_last = 0;
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 0;
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
cpi->gold_is_alt = 1;
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
}
static void set_ext_overrides(VP9_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// vp9_update_reference() and vp9_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
}
YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
scale_and_extend_frame_nonnormative(unscaled, scaled);
return scaled;
} else {
return unscaled;
}
}
static void configure_skippable_frame(VP9_COMP *cpi) {
// If the current frame does not have non-zero motion vector detected in the
// first pass, and so do its previous and forward frames, then this frame
// can be skipped for partition check, and the partition size is assigned
// according to the variance
SVC *const svc = &cpi->svc;
const int is_spatial_svc = (svc->number_spatial_layers > 1) &&
(svc->number_temporal_layers == 1);
TWO_PASS *const twopass = is_spatial_svc ?
&svc->layer_context[svc->spatial_layer_id].twopass
: &cpi->twopass;
cpi->skippable_frame = (!frame_is_intra_only(&cpi->common) &&
twopass->stats_in - 2 > twopass->stats_in_start &&
twopass->stats_in < twopass->stats_in_end &&
(twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion
== 1 &&
(twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion
== 1 &&
twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
}
static void encode_frame_to_data_rate(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
VP9_COMMON *const cm = &cpi->common;
TX_SIZE t;
int q;
int top_index;
int bottom_index;
const SPEED_FEATURES *const sf = &cpi->sf;
const unsigned int max_mv_def = MIN(cm->width, cm->height);
struct segmentation *const seg = &cm->seg;
set_ext_overrides(cpi);
cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
vp9_scale_references(cpi);
vp9_clear_system_state();
// Enable or disable mode based tweaking of the zbin.
// For 2 pass only used where GF/ARF prediction quality
// is above a threshold.
cpi->zbin_mode_boost = 0;
cpi->zbin_mode_boost_enabled = 0;
// Current default encoder behavior for the altref sign bias.
cm->ref_frame_sign_bias[ALTREF_FRAME] = cpi->rc.source_alt_ref_active;
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
// Initialize cpi->mv_step_param to default based on max resolution.
cpi->mv_step_param = vp9_init_search_range(sf, max_mv_def);
// Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
if (sf->mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame)
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = vp9_init_search_range(sf, MIN(max_mv_def, 2 *
cpi->max_mv_magnitude));
cpi->max_mv_magnitude = 0;
}
}
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
// Reset the loop filter deltas and segmentation map.
vp9_reset_segment_features(&cm->seg);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
cm->frame_parallel_decoding_mode =
(cpi->oxcf.frame_parallel_decoding_mode != 0);
// By default, encoder assumes decoder can use prev_mi.
cm->coding_use_prev_mi = 1;
if (cm->error_resilient_mode) {
cm->coding_use_prev_mi = 0;
cm->frame_parallel_decoding_mode = 1;
cm->reset_frame_context = 0;
cm->refresh_frame_context = 0;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = 2;
}
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in second pass of two pass (as requires lagged coding)
// and if the relevant speed feature flag is set.
if (cpi->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
// Check if the current frame is skippable for the partition search in the
// second pass according to the first pass stats
if (cpi->pass == 2 &&
(!cpi->use_svc || cpi->svc.number_temporal_layers == 1)) {
configure_skippable_frame(cpi);
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (cpi->pass == 0 &&
cpi->oxcf.rc_mode == VPX_CBR &&
cm->frame_type != KEY_FRAME) {
if (vp9_rc_drop_frame(cpi)) {
vp9_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
return;
}
}
vp9_clear_system_state();
#if CONFIG_VP9_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0) {
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp9_denoise(cpi->Source, cpi->Source, l);
}
2010-05-18 17:58:33 +02:00
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source, yuv_file);
2010-05-18 17:58:33 +02:00
#endif
set_speed_features(cpi);
#if CONFIG_DENOISING
#ifdef OUTPUT_YUV_DENOISED
if (cpi->oxcf.noise_sensitivity > 0) {
vp9_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME],
yuv_denoised_file);
}
#endif
#endif
// Decide q and q bounds.
q = vp9_rc_pick_q_and_bounds(cpi, &bottom_index, &top_index);
if (!frame_is_intra_only(cm)) {
cm->interp_filter = DEFAULT_INTERP_FILTER;
/* TODO: Decide this more intelligently */
vp9_set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH);
}
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi, q);
} else {
encode_with_recode_loop(cpi, size, dest, q, bottom_index, top_index);
}
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
2010-05-18 17:58:33 +02:00
cm->frame_to_show = get_frame_new_buffer(cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 2000);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 3000);
#endif
// build the bitstream
cpi->dummy_packing = 0;
vp9_pack_bitstream(cpi, dest, size);
if (cm->seg.update_map)
update_reference_segmentation_map(cpi);
release_scaled_references(cpi);
vp9_update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]);
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
2010-05-18 17:58:33 +02:00
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
2010-05-18 17:58:33 +02:00
get_ref_frame_flags(cpi);
2010-05-18 17:58:33 +02:00
cm->last_frame_type = cm->frame_type;
vp9_rc_postencode_update(cpi, *size);
2010-05-18 17:58:33 +02:00
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
2010-05-18 17:58:33 +02:00
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
2010-05-18 17:58:33 +02:00
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
2010-05-18 17:58:33 +02:00
// reset to normal state now that we are done.
if (!cm->show_existing_frame)
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
vp9_swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
if (cpi->use_svc)
vp9_inc_frame_in_layer(&cpi->svc);
}
2010-05-18 17:58:33 +02:00
}
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
vp9_rc_get_svc_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == VPX_CBR) {
vp9_rc_get_one_pass_cbr_params(cpi);
} else {
vp9_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass2Encode(VP9_COMP *cpi, size_t *size,
uint8_t *dest, unsigned int *frame_flags) {
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
vp9_rc_get_second_pass_params(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
vp9_twopass_postencode_update(cpi);
2010-05-18 17:58:33 +02:00
}
static void init_motion_estimation(VP9_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
int subsampling_y) {
VP9_COMMON *const cm = &cpi->common;
if (!cpi->initial_width) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
alloc_raw_frame_buffers(cpi);
alloc_ref_frame_buffers(cpi);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
}
}
int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
const int subsampling_x = sd->uv_width < sd->y_width;
const int subsampling_y = sd->uv_height < sd->y_height;
const int is_spatial_svc = cpi->use_svc &&
(cpi->svc.number_temporal_layers == 1);
check_initial_width(cpi, subsampling_x, subsampling_y);
vpx_usec_timer_start(&timer);
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
res = vp9_svc_lookahead_push(cpi, cpi->lookahead, sd, time_stamp, end_time,
frame_flags);
else
#endif
res = vp9_lookahead_push(cpi->lookahead,
sd, time_stamp, end_time, frame_flags);
if (res)
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
2010-05-18 17:58:33 +02:00
if (cm->profile == PROFILE_0 && (subsampling_x != 1 || subsampling_y != 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"Non-4:2:0 color space requires profile >= 1");
res = -1;
}
return res;
2010-05-18 17:58:33 +02:00
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame ||
cm->refresh_frame_context ||
cm->lf.mode_ref_delta_update ||
cm->seg.update_map ||
cm->seg.update_data;
}
void adjust_frame_rate(VP9_COMP *cpi) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp9_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = MIN((double)(cpi->source->ts_end
- cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->oxcf.framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(&cpi->oxcf)) {
if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
static void check_src_altref(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
(cpi->source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
RATE_CONTROL *const rc = &cpi->rc;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
MV_REFERENCE_FRAME ref_frame;
int arf_src_index;
const int is_spatial_svc = cpi->use_svc &&
(cpi->svc.number_temporal_layers == 1) &&
(cpi->svc.number_spatial_layers > 1);
2010-05-18 17:58:33 +02:00
if (!cpi)
return -1;
2010-05-18 17:58:33 +02:00
if (is_spatial_svc && cpi->pass == 2) {
vp9_svc_lookahead_peek(cpi, cpi->lookahead, 0, 1);
vp9_restore_layer_context(cpi);
}
vpx_usec_timer_start(&cmptimer);
2010-05-18 17:58:33 +02:00
cpi->source = NULL;
cpi->last_source = NULL;
2010-05-18 17:58:33 +02:00
vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Normal defaults
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->source = vp9_svc_lookahead_peek(cpi, cpi->lookahead,
arf_src_index, 1);
else
#endif
cpi->source = vp9_lookahead_peek(cpi->lookahead, arf_src_index);
if (cpi->source != NULL) {
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0) {
// Produce the filtered ARF frame.
// TODO(agrange) merge these two functions.
vp9_configure_arnr_filter(cpi, arf_src_index, rc->gfu_boost);
vp9_temporal_filter_prepare(cpi, arf_src_index);
vp9_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
rc->source_alt_ref_pending = 0;
} else {
rc->source_alt_ref_pending = 0;
}
}
if (!cpi->source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->last_source = vp9_svc_lookahead_peek(cpi, cpi->lookahead, -1, 0);
else
#endif
cpi->last_source = vp9_lookahead_peek(cpi->lookahead, -1);
if (cpi->last_source == NULL)
return -1;
}
// Read in the source frame.
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
else
#endif
cpi->source = vp9_lookahead_pop(cpi->lookahead, flush);
if (cpi->source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi);
}
}
if (cpi->source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &cpi->source->img;
if (cpi->last_source != NULL) {
cpi->unscaled_last_source = &cpi->last_source->img;
} else {
cpi->unscaled_last_source = NULL;
}
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags =
(cpi->source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
2010-05-18 17:58:33 +02:00
}
return -1;
}
2010-05-18 17:58:33 +02:00
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (cm->show_frame) {
adjust_frame_rate(cpi);
}
2010-05-18 17:58:33 +02:00
if (cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) {
vp9_update_temporal_layer_framerate(cpi);
vp9_restore_layer_context(cpi);
}
// start with a 0 size frame
*size = 0;
2010-05-18 17:58:33 +02:00
// Clear down mmx registers
vp9_clear_system_state();
/* find a free buffer for the new frame, releasing the reference previously
* held.
*/
cm->frame_bufs[cm->new_fb_idx].ref_count--;
cm->new_fb_idx = get_free_fb(cm);
if (!cpi->use_svc && cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
cpi->frame_flags = *frame_flags;
if (cpi->pass == 2 &&
cm->current_video_frame == 0 &&
cpi->oxcf.allow_spatial_resampling &&
cpi->oxcf.rc_mode == VPX_VBR) {
// Internal scaling is triggered on the first frame.
vp9_set_size_literal(cpi, cpi->oxcf.scaled_frame_width,
cpi->oxcf.scaled_frame_height);
}
// Reset the frame pointers to the current frame size
vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf;
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
ref_buf->buf = buf;
ref_buf->idx = idx;
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height);
if (vp9_is_scaled(&ref_buf->sf))
vp9_extend_frame_borders(buf);
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_vaq_init();
}
if (cpi->pass == 1 &&
(!cpi->use_svc || cpi->svc.number_temporal_layers == 1)) {
const int lossless = is_lossless_requested(&cpi->oxcf);
cpi->mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4;
cpi->mb.itxm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
vp9_first_pass(cpi);
} else if (cpi->pass == 2 &&
(!cpi->use_svc || cpi->svc.number_temporal_layers == 1)) {
Pass2Encode(cpi, size, dest, frame_flags);
} else if (cpi->use_svc) {
SvcEncode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
2010-05-18 17:58:33 +02:00
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
2010-05-18 17:58:33 +02:00
// Frame was dropped, release scaled references.
if (*size == 0) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
2010-05-18 17:58:33 +02:00
// Save layer specific state.
if ((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 && cpi->pass == 2)) {
vp9_save_layer_context(cpi);
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
2010-05-18 17:58:33 +02:00
#if CONFIG_INTERNAL_STATS
2010-05-18 17:58:33 +02:00
if (cpi->pass != 1) {
cpi->bytes += (int)(*size);
2010-05-18 17:58:33 +02:00
if (cm->show_frame) {
cpi->count++;
2010-05-18 17:58:33 +02:00
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
PSNR_STATS psnr;
calc_psnr(orig, recon, &psnr);
cpi->total += psnr.psnr[0];
cpi->total_y += psnr.psnr[1];
cpi->total_u += psnr.psnr[2];
cpi->total_v += psnr.psnr[3];
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
{
PSNR_STATS psnr2;
double frame_ssim2 = 0, weight = 0;
#if CONFIG_VP9_POSTPROC
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cm->lf.filter_level * 10 / 6);
#endif
vp9_clear_system_state();
calc_psnr(orig, pp, &psnr2);
cpi->totalp += psnr2.psnr[0];
cpi->totalp_y += psnr2.psnr[1];
cpi->totalp_u += psnr2.psnr[2];
cpi->totalp_v += psnr2.psnr[3];
cpi->totalp_sq_error += psnr2.sse[0];
cpi->totalp_samples += psnr2.samples[0];
2010-05-18 17:58:33 +02:00
frame_ssim2 = vp9_calc_ssim(orig, recon, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, 1, &weight);
cpi->summedp_quality += frame_ssim2 * weight;
cpi->summedp_weights += weight;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
#endif
}
}
2010-05-18 17:58:33 +02:00
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
#endif
return 0;
2010-05-18 17:58:33 +02:00
}
int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMMON *cm = &cpi->common;
#if !CONFIG_VP9_POSTPROC
(void)flags;
#endif
2010-05-18 17:58:33 +02:00
if (!cm->show_frame) {
return -1;
} else {
int ret;
#if CONFIG_VP9_POSTPROC
ret = vp9_post_proc_frame(cm, dest, flags);
2010-05-18 17:58:33 +02:00
#else
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
2010-05-18 17:58:33 +02:00
}
#endif // !CONFIG_VP9_POSTPROC
vp9_clear_system_state();
return ret;
}
}
2010-05-18 17:58:33 +02:00
int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
if (map) {
int r, c;
for (r = 0; r < mi_rows; r++) {
for (c = 0; c < mi_cols; c++) {
cpi->segmentation_map[r * mi_cols + c] =
!map[(r >> 1) * cols + (c >> 1)];
}
}
vp9_enable_segfeature(&cpi->common.seg, 1, SEG_LVL_SKIP);
vp9_enable_segmentation(&cpi->common.seg);
} else {
vp9_disable_segmentation(&cpi->common.seg);
}
return 0;
} else {
return -1;
}
2010-05-18 17:58:33 +02:00
}
int vp9_set_internal_size(VP9_COMP *cpi,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
2010-05-18 17:58:33 +02:00
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
2010-05-18 17:58:33 +02:00
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
2010-05-18 17:58:33 +02:00
}
int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
unsigned int height) {
VP9_COMMON *cm = &cpi->common;
check_initial_width(cpi, 1, 1);
if (width) {
cm->width = width;
if (cm->width * 5 < cpi->initial_width) {
cm->width = cpi->initial_width / 5 + 1;
printf("Warning: Desired width too small, changed to %d\n", cm->width);
}
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d\n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height * 5 < cpi->initial_height) {
cm->height = cpi->initial_height / 5 + 1;
printf("Warning: Desired height too small, changed to %d\n", cm->height);
}
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d\n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
cpi->use_svc = use_svc;
return;
}
2010-05-18 17:58:33 +02:00
int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) {
assert(a->y_crop_width == b->y_crop_width);
assert(a->y_crop_height == b->y_crop_height);
return (int)get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
a->y_crop_width, a->y_crop_height);
2010-05-18 17:58:33 +02:00
}
int vp9_get_quantizer(VP9_COMP *cpi) {
return cpi->common.base_qindex;
2010-05-18 17:58:33 +02:00
}
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF)) {
int ref = 7;
if (flags & VP8_EFLAG_NO_REF_LAST)
ref ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_REF_GF)
ref ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_REF_ARF)
ref ^= VP9_ALT_FLAG;
vp9_use_as_reference(cpi, ref);
}
if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
VP8_EFLAG_FORCE_ARF)) {
int upd = 7;
if (flags & VP8_EFLAG_NO_UPD_LAST)
upd ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_UPD_GF)
upd ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_UPD_ARF)
upd ^= VP9_ALT_FLAG;
vp9_update_reference(cpi, upd);
}
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
vp9_update_entropy(cpi, 0);
}
}