vpx/vpx_dsp/x86/highbd_quantize_intrin_sse2.c

156 lines
5.7 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <emmintrin.h>
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#if CONFIG_VP9_HIGHBITDEPTH
void vpx_highbd_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t count,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int i, j, non_zero_regs = (int)count / 4, eob_i = -1;
__m128i zbins[2];
__m128i nzbins[2];
zbins[0] = _mm_set_epi32((int)zbin_ptr[1], (int)zbin_ptr[1], (int)zbin_ptr[1],
(int)zbin_ptr[0]);
zbins[1] = _mm_set1_epi32((int)zbin_ptr[1]);
nzbins[0] = _mm_setzero_si128();
nzbins[1] = _mm_setzero_si128();
nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]);
nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]);
(void)scan;
(void)skip_block;
assert(!skip_block);
memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr));
// Pre-scan pass
for (i = ((int)count / 4) - 1; i >= 0; i--) {
__m128i coeffs, cmp1, cmp2;
int test;
coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]);
cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]);
cmp1 = _mm_and_si128(cmp1, cmp2);
test = _mm_movemask_epi8(cmp1);
if (test == 0xffff)
non_zero_regs--;
else
break;
}
// Quantization pass:
for (i = 0; i < non_zero_regs; i++) {
__m128i coeffs, coeffs_sign, tmp1, tmp2;
int test;
int abs_coeff[4];
int coeff_sign[4];
coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
coeffs_sign = _mm_srai_epi32(coeffs, 31);
coeffs = _mm_sub_epi32(_mm_xor_si128(coeffs, coeffs_sign), coeffs_sign);
tmp1 = _mm_cmpgt_epi32(coeffs, zbins[i != 0]);
tmp2 = _mm_cmpeq_epi32(coeffs, zbins[i != 0]);
tmp1 = _mm_or_si128(tmp1, tmp2);
test = _mm_movemask_epi8(tmp1);
_mm_storeu_si128((__m128i *)abs_coeff, coeffs);
_mm_storeu_si128((__m128i *)coeff_sign, coeffs_sign);
for (j = 0; j < 4; j++) {
if (test & (1 << (4 * j))) {
int k = 4 * i + j;
const int64_t tmp3 = abs_coeff[j] + round_ptr[k != 0];
const int64_t tmp4 = ((tmp3 * quant_ptr[k != 0]) >> 16) + tmp3;
const uint32_t abs_qcoeff =
(uint32_t)((tmp4 * quant_shift_ptr[k != 0]) >> 16);
qcoeff_ptr[k] = (int)(abs_qcoeff ^ coeff_sign[j]) - coeff_sign[j];
dqcoeff_ptr[k] = qcoeff_ptr[k] * dequant_ptr[k != 0];
if (abs_qcoeff) eob_i = iscan[k] > eob_i ? iscan[k] : eob_i;
}
}
}
*eob_ptr = eob_i + 1;
}
void vpx_highbd_quantize_b_32x32_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
__m128i zbins[2];
__m128i nzbins[2];
int idx = 0;
int idx_arr[1024];
int i, eob = -1;
const int zbin0_tmp = ROUND_POWER_OF_TWO(zbin_ptr[0], 1);
const int zbin1_tmp = ROUND_POWER_OF_TWO(zbin_ptr[1], 1);
(void)scan;
(void)skip_block;
assert(!skip_block);
zbins[0] = _mm_set_epi32(zbin1_tmp, zbin1_tmp, zbin1_tmp, zbin0_tmp);
zbins[1] = _mm_set1_epi32(zbin1_tmp);
nzbins[0] = _mm_setzero_si128();
nzbins[1] = _mm_setzero_si128();
nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]);
nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]);
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
// Pre-scan pass
for (i = 0; i < n_coeffs / 4; i++) {
__m128i coeffs, cmp1, cmp2;
int test;
coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4));
cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]);
cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]);
cmp1 = _mm_and_si128(cmp1, cmp2);
test = _mm_movemask_epi8(cmp1);
if (!(test & 0xf)) idx_arr[idx++] = i * 4;
if (!(test & 0xf0)) idx_arr[idx++] = i * 4 + 1;
if (!(test & 0xf00)) idx_arr[idx++] = i * 4 + 2;
if (!(test & 0xf000)) idx_arr[idx++] = i * 4 + 3;
}
// Quantization pass: only process the coefficients selected in
// pre-scan pass. Note: idx can be zero.
for (i = 0; i < idx; i++) {
const int rc = idx_arr[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp1 = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1);
const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1;
const uint32_t abs_qcoeff =
(uint32_t)((tmp2 * quant_shift_ptr[rc != 0]) >> 15);
qcoeff_ptr[rc] = (int)(abs_qcoeff ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2;
if (abs_qcoeff) eob = iscan[idx_arr[i]] > eob ? iscan[idx_arr[i]] : eob;
}
*eob_ptr = eob + 1;
}
#endif