vpx/vpx_dsp/x86/highbd_idct4x4_add_sse2.c

263 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h"
#include "vpx_dsp/x86/inv_txfm_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
static INLINE __m128i dct_const_round_shift_4_sse2(const __m128i in0,
const __m128i in1) {
const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 1
const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 2, 3
const __m128i t2 = _mm_unpacklo_epi64(t0, t1); // 0, 1, 2, 3
return dct_const_round_shift_sse2(t2);
}
static INLINE __m128i wraplow_16bit_sse2(const __m128i in0, const __m128i in1,
const __m128i rounding) {
__m128i temp[2];
temp[0] = _mm_add_epi32(in0, rounding);
temp[1] = _mm_add_epi32(in1, rounding);
temp[0] = _mm_srai_epi32(temp[0], 4);
temp[1] = _mm_srai_epi32(temp[1], 4);
return _mm_packs_epi32(temp[0], temp[1]);
}
static INLINE void highbd_idct4_small_sse2(__m128i *const io) {
const __m128i cospi_p16_p16 = _mm_setr_epi32(cospi_16_64, 0, cospi_16_64, 0);
const __m128i cospi_p08_p08 = _mm_setr_epi32(cospi_8_64, 0, cospi_8_64, 0);
const __m128i cospi_p24_p24 = _mm_setr_epi32(cospi_24_64, 0, cospi_24_64, 0);
__m128i temp1[4], temp2[4], step[4];
transpose_32bit_4x4(&io[0], &io[1], &io[2], &io[3]);
// Note: There is no 32-bit signed multiply SIMD instruction in SSE2.
// _mm_mul_epu32() is used which can only guarantee the lower 32-bit
// (signed) result is meaningful, which is enough in this function.
// stage 1
temp1[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2]
temp2[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2]
temp1[1] = _mm_srli_si128(temp1[0], 4); // 1, 3
temp2[1] = _mm_srli_si128(temp2[0], 4); // 1, 3
temp1[0] = _mm_mul_epu32(temp1[0], cospi_p16_p16); // ([0] + [2])*cospi_16_64
temp1[1] = _mm_mul_epu32(temp1[1], cospi_p16_p16); // ([0] + [2])*cospi_16_64
temp2[0] = _mm_mul_epu32(temp2[0], cospi_p16_p16); // ([0] - [2])*cospi_16_64
temp2[1] = _mm_mul_epu32(temp2[1], cospi_p16_p16); // ([0] - [2])*cospi_16_64
step[0] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]);
step[1] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]);
temp1[3] = _mm_srli_si128(io[1], 4);
temp2[3] = _mm_srli_si128(io[3], 4);
temp1[0] = _mm_mul_epu32(io[1], cospi_p24_p24); // input[1] * cospi_24_64
temp1[1] = _mm_mul_epu32(temp1[3], cospi_p24_p24); // input[1] * cospi_24_64
temp2[0] = _mm_mul_epu32(io[1], cospi_p08_p08); // input[1] * cospi_8_64
temp2[1] = _mm_mul_epu32(temp1[3], cospi_p08_p08); // input[1] * cospi_8_64
temp1[2] = _mm_mul_epu32(io[3], cospi_p08_p08); // input[3] * cospi_8_64
temp1[3] = _mm_mul_epu32(temp2[3], cospi_p08_p08); // input[3] * cospi_8_64
temp2[2] = _mm_mul_epu32(io[3], cospi_p24_p24); // input[3] * cospi_24_64
temp2[3] = _mm_mul_epu32(temp2[3], cospi_p24_p24); // input[3] * cospi_24_64
temp1[0] = _mm_sub_epi64(temp1[0], temp1[2]); // [1]*cospi_24 - [3]*cospi_8
temp1[1] = _mm_sub_epi64(temp1[1], temp1[3]); // [1]*cospi_24 - [3]*cospi_8
temp2[0] = _mm_add_epi64(temp2[0], temp2[2]); // [1]*cospi_8 + [3]*cospi_24
temp2[1] = _mm_add_epi64(temp2[1], temp2[3]); // [1]*cospi_8 + [3]*cospi_24
step[2] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]);
step[3] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]);
// stage 2
io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3]
io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2]
io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2]
io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3]
}
static INLINE void abs_extend_64bit_sse2(const __m128i in,
__m128i *const out /*out[2]*/,
__m128i *const sign /*sign[2]*/) {
sign[0] = _mm_srai_epi32(in, 31);
out[0] = _mm_xor_si128(in, sign[0]);
out[0] = _mm_sub_epi32(out[0], sign[0]);
sign[1] = _mm_unpackhi_epi32(sign[0], sign[0]); // 64-bit sign of 2, 3
sign[0] = _mm_unpacklo_epi32(sign[0], sign[0]); // 64-bit sign of 0, 1
out[1] = _mm_unpackhi_epi32(out[0], out[0]); // 2, 3
out[0] = _mm_unpacklo_epi32(out[0], out[0]); // 0, 1
}
static INLINE __m128i multiply_apply_sign_sse2(const __m128i in,
const __m128i sign,
const __m128i cospi) {
__m128i out = _mm_mul_epu32(in, cospi);
out = _mm_xor_si128(out, sign);
return _mm_sub_epi64(out, sign);
}
static INLINE __m128i dct_const_round_shift_64bit_sse2(const __m128i in) {
const __m128i t = _mm_add_epi64(
in,
_mm_setr_epi32(DCT_CONST_ROUNDING << 2, 0, DCT_CONST_ROUNDING << 2, 0));
return _mm_srli_si128(t, 2);
}
static INLINE __m128i pack_4_sse2(const __m128i in0, const __m128i in1) {
const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 2
const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 1, 3
return _mm_unpacklo_epi32(t0, t1); // 0, 1, 2, 3
}
static INLINE void highbd_idct4_large_sse2(__m128i *const io) {
const __m128i cospi_p16_p16 =
_mm_setr_epi32(cospi_16_64 << 2, 0, cospi_16_64 << 2, 0);
const __m128i cospi_p08_p08 =
_mm_setr_epi32(cospi_8_64 << 2, 0, cospi_8_64 << 2, 0);
const __m128i cospi_p24_p24 =
_mm_setr_epi32(cospi_24_64 << 2, 0, cospi_24_64 << 2, 0);
__m128i temp1[4], temp2[4], step[4], sign1[4], sign2[4];
transpose_32bit_4x4(&io[0], &io[1], &io[2], &io[3]);
// stage 1
temp1[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2]
temp2[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2]
abs_extend_64bit_sse2(temp1[0], temp1, sign1);
abs_extend_64bit_sse2(temp2[0], temp2, sign2);
temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p16_p16);
temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p16_p16);
temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p16_p16);
temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p16_p16);
temp1[0] = dct_const_round_shift_64bit_sse2(temp1[0]);
temp1[1] = dct_const_round_shift_64bit_sse2(temp1[1]);
temp2[0] = dct_const_round_shift_64bit_sse2(temp2[0]);
temp2[1] = dct_const_round_shift_64bit_sse2(temp2[1]);
step[0] = pack_4_sse2(temp1[0], temp1[1]);
step[1] = pack_4_sse2(temp2[0], temp2[1]);
abs_extend_64bit_sse2(io[1], temp1, sign1);
abs_extend_64bit_sse2(io[3], temp2, sign2);
temp1[2] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p08_p08);
temp1[3] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p08_p08);
temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], cospi_p24_p24);
temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], cospi_p24_p24);
temp2[2] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p24_p24);
temp2[3] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p24_p24);
temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], cospi_p08_p08);
temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], cospi_p08_p08);
temp1[0] = _mm_sub_epi64(temp1[0], temp2[0]); // [1]*cospi_24 - [3]*cospi_8
temp1[1] = _mm_sub_epi64(temp1[1], temp2[1]); // [1]*cospi_24 - [3]*cospi_8
temp2[0] = _mm_add_epi64(temp1[2], temp2[2]); // [1]*cospi_8 + [3]*cospi_24
temp2[1] = _mm_add_epi64(temp1[3], temp2[3]); // [1]*cospi_8 + [3]*cospi_24
temp1[0] = dct_const_round_shift_64bit_sse2(temp1[0]);
temp1[1] = dct_const_round_shift_64bit_sse2(temp1[1]);
temp2[0] = dct_const_round_shift_64bit_sse2(temp2[0]);
temp2[1] = dct_const_round_shift_64bit_sse2(temp2[1]);
step[2] = pack_4_sse2(temp1[0], temp1[1]);
step[3] = pack_4_sse2(temp2[0], temp2[1]);
// stage 2
io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3]
io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2]
io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2]
io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3]
}
void vpx_highbd_idct4x4_16_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
int16_t max = 0, min = 0;
__m128i io[4], io_short[2];
io[0] = _mm_load_si128((const __m128i *)(input + 0));
io[1] = _mm_load_si128((const __m128i *)(input + 4));
io[2] = _mm_load_si128((const __m128i *)(input + 8));
io[3] = _mm_load_si128((const __m128i *)(input + 12));
io_short[0] = _mm_packs_epi32(io[0], io[1]);
io_short[1] = _mm_packs_epi32(io[2], io[3]);
if (bd != 8) {
__m128i max_input, min_input;
max_input = _mm_max_epi16(io_short[0], io_short[1]);
min_input = _mm_min_epi16(io_short[0], io_short[1]);
max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 8));
min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 8));
max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 4));
min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 4));
max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 2));
min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 2));
max = _mm_extract_epi16(max_input, 0);
min = _mm_extract_epi16(min_input, 0);
}
if (bd == 8 || (max < 4096 && min >= -4096)) {
idct4_sse2(io_short);
idct4_sse2(io_short);
io_short[0] = _mm_add_epi16(io_short[0], _mm_set1_epi16(8));
io_short[1] = _mm_add_epi16(io_short[1], _mm_set1_epi16(8));
io[0] = _mm_srai_epi16(io_short[0], 4);
io[1] = _mm_srai_epi16(io_short[1], 4);
} else {
if (max < 32767 && min > -32768) {
highbd_idct4_small_sse2(io);
highbd_idct4_small_sse2(io);
} else {
highbd_idct4_large_sse2(io);
highbd_idct4_large_sse2(io);
}
io[0] = wraplow_16bit_sse2(io[0], io[1], _mm_set1_epi32(8));
io[1] = wraplow_16bit_sse2(io[2], io[3], _mm_set1_epi32(8));
}
// Reconstruction and Store
{
__m128i d0 = _mm_loadl_epi64((const __m128i *)dest);
__m128i d2 = _mm_loadl_epi64((const __m128i *)(dest + stride * 2));
d0 = _mm_unpacklo_epi64(d0,
_mm_loadl_epi64((const __m128i *)(dest + stride)));
d2 = _mm_unpacklo_epi64(
d2, _mm_loadl_epi64((const __m128i *)(dest + stride * 3)));
d0 = clamp_high_sse2(_mm_adds_epi16(d0, io[0]), bd);
d2 = clamp_high_sse2(_mm_adds_epi16(d2, io[1]), bd);
// store input0
_mm_storel_epi64((__m128i *)dest, d0);
// store input1
d0 = _mm_srli_si128(d0, 8);
_mm_storel_epi64((__m128i *)(dest + stride), d0);
// store input2
_mm_storel_epi64((__m128i *)(dest + stride * 2), d2);
// store input3
d2 = _mm_srli_si128(d2, 8);
_mm_storel_epi64((__m128i *)(dest + stride * 3), d2);
}
}
void vpx_highbd_idct4x4_1_add_sse2(const tran_low_t *input, uint16_t *dest,
int stride, int bd) {
const __m128i zero = _mm_setzero_si128();
// Faster than _mm_set1_epi16((1 << bd) - 1).
const __m128i one = _mm_set1_epi16(1);
const __m128i max = _mm_sub_epi16(_mm_slli_epi16(one, bd), one);
int a1, i;
tran_low_t out;
__m128i dc, d;
out = HIGHBD_WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd);
out = HIGHBD_WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd);
a1 = ROUND_POWER_OF_TWO(out, 4);
dc = _mm_set1_epi16(a1);
for (i = 0; i < 4; ++i) {
d = _mm_loadl_epi64((const __m128i *)dest);
d = add_dc_clamp(&zero, &max, &dc, &d);
_mm_storel_epi64((__m128i *)dest, d);
dest += stride;
}
}