vpx/vp9/encoder/vp9_quantize.c

415 lines
14 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <math.h>
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_quant_common.h"
2010-05-18 17:58:33 +02:00
#include "vp9/common/vp9_seg_common.h"
2011-10-05 12:26:00 +02:00
#ifdef ENC_DEBUG
extern int enc_debug;
#endif
static INLINE int plane_idx(int plane) {
return plane == 0 ? 0 :
plane == 1 ? 16 : 20;
}
static void quantize(int16_t *zbin_boost_orig_ptr,
int16_t *coeff_ptr, int n_coeffs, int skip_block,
int16_t *zbin_ptr, int16_t *round_ptr, int16_t *quant_ptr,
uint8_t *quant_shift_ptr,
int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
int16_t *dequant_ptr, int zbin_oq_value,
uint16_t *eob_ptr,
const int *scan, int mul) {
int i, rc, eob;
int zbin;
int x, y, z, sz;
int zero_run = 0;
int16_t *zbin_boost_ptr = zbin_boost_orig_ptr;
vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t));
eob = -1;
if (!skip_block) {
for (i = 0; i < n_coeffs; i++) {
rc = scan[i];
z = coeff_ptr[rc] * mul;
zbin = (zbin_ptr[rc != 0] + zbin_boost_ptr[zero_run] + zbin_oq_value);
zero_run += (zero_run < 15);
sz = (z >> 31); // sign of z
x = (z ^ sz) - sz; // x = abs(z)
if (x >= zbin) {
x += (round_ptr[rc != 0]);
y = ((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x))
>> quant_shift_ptr[rc != 0]; // quantize (x)
x = (y ^ sz) - sz; // get the sign back
qcoeff_ptr[rc] = x; // write to destination
dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0] / mul; // dequantized value
if (y) {
eob = i; // last nonzero coeffs
zero_run = 0;
}
}
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*eob_ptr = eob + 1;
}
void vp9_regular_quantize_b_4x4(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx);
const int *pt_scan = get_scan_4x4(tx_type);
quantize(mb->plane[pb_idx.plane].zrun_zbin_boost,
BLOCK_OFFSET(mb->plane[pb_idx.plane].coeff, pb_idx.block, 16),
16, mb->skip_block,
mb->plane[pb_idx.plane].zbin,
mb->plane[pb_idx.plane].round,
mb->plane[pb_idx.plane].quant,
mb->plane[pb_idx.plane].quant_shift,
BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16),
BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16),
xd->plane[pb_idx.plane].dequant,
mb->plane[pb_idx.plane].zbin_extra,
&xd->plane[pb_idx.plane].eobs[pb_idx.block],
pt_scan, 1);
}
void vp9_regular_quantize_b_8x8(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx);
const int *pt_scan = get_scan_8x8(tx_type);
quantize(mb->plane[pb_idx.plane].zrun_zbin_boost,
BLOCK_OFFSET(mb->plane[pb_idx.plane].coeff, pb_idx.block, 16),
64, mb->skip_block,
mb->plane[pb_idx.plane].zbin,
mb->plane[pb_idx.plane].round,
mb->plane[pb_idx.plane].quant,
mb->plane[pb_idx.plane].quant_shift,
BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16),
BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16),
xd->plane[pb_idx.plane].dequant,
mb->plane[pb_idx.plane].zbin_extra,
&xd->plane[pb_idx.plane].eobs[pb_idx.block],
pt_scan, 1);
}
void vp9_regular_quantize_b_16x16(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx);
const int *pt_scan = get_scan_16x16(tx_type);
quantize(mb->plane[pb_idx.plane].zrun_zbin_boost,
BLOCK_OFFSET(mb->plane[pb_idx.plane].coeff, pb_idx.block, 16),
256, mb->skip_block,
mb->plane[pb_idx.plane].zbin,
mb->plane[pb_idx.plane].round,
mb->plane[pb_idx.plane].quant,
mb->plane[pb_idx.plane].quant_shift,
BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16),
BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16),
xd->plane[pb_idx.plane].dequant,
mb->plane[pb_idx.plane].zbin_extra,
&xd->plane[pb_idx.plane].eobs[pb_idx.block],
pt_scan, 1);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
void vp9_regular_quantize_b_32x32(MACROBLOCK *mb, int b_idx, int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx);
quantize(mb->plane[pb_idx.plane].zrun_zbin_boost,
BLOCK_OFFSET(mb->plane[pb_idx.plane].coeff, pb_idx.block, 16),
1024, mb->skip_block,
mb->plane[pb_idx.plane].zbin,
mb->plane[pb_idx.plane].round,
mb->plane[pb_idx.plane].quant,
mb->plane[pb_idx.plane].quant_shift,
BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16),
BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16),
xd->plane[pb_idx.plane].dequant,
mb->plane[pb_idx.plane].zbin_extra,
&xd->plane[pb_idx.plane].eobs[pb_idx.block],
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
vp9_default_zig_zag1d_32x32, 2);
}
void vp9_quantize_sby_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bw = 1 << (b_width_log2(bsize) - 3);
const int bh = 1 << (b_height_log2(bsize) - 3);
int n;
for (n = 0; n < bw * bh; n++)
vp9_regular_quantize_b_32x32(x, n * 64, bw * bh * 64);
}
void vp9_quantize_sby_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize) - 2, bw = 1 << bwl;
const int bh = 1 << (b_height_log2(bsize) - 2);
const int bstride = 16 << bwl;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
TX_TYPE tx_type = get_tx_type_16x16(&x->e_mbd,
4 * x_idx + y_idx * bstride);
x->quantize_b_16x16(x, n * 16, tx_type, 16 * bw * bh);
}
}
void vp9_quantize_sby_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize) - 1, bw = 1 << bwl;
const int bh = 1 << (b_height_log2(bsize) - 1);
const int bstride = 4 << bwl;
int n;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
TX_TYPE tx_type = get_tx_type_8x8(&x->e_mbd,
2 * x_idx + y_idx * bstride);
x->quantize_b_8x8(x, n * 4, tx_type, 4 * bw * bh);
}
}
void vp9_quantize_sby_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize), bw = 1 << bwl;
const int bh = 1 << b_height_log2(bsize);
MACROBLOCKD *const xd = &x->e_mbd;
int n;
for (n = 0; n < bw * bh; n++) {
const TX_TYPE tx_type = get_tx_type_4x4(xd, n);
x->quantize_b_4x4(x, n, tx_type, bw * bh);
}
}
void vp9_quantize_sbuv_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
assert(bsize == BLOCK_SIZE_SB64X64);
vp9_regular_quantize_b_32x32(x, 256, 256);
vp9_regular_quantize_b_32x32(x, 320, 256);
}
void vp9_quantize_sbuv_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize) - 2;
const int bhl = b_height_log2(bsize) - 2;
const int uoff = 16 << (bhl + bwl);
int i;
for (i = uoff; i < ((uoff * 3) >> 1); i += 16)
x->quantize_b_16x16(x, i, DCT_DCT, uoff);
}
void vp9_quantize_sbuv_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize) - 2;
const int bhl = b_height_log2(bsize) - 2;
const int uoff = 16 << (bhl + bwl);
int i;
for (i = uoff; i < ((uoff * 3) >> 1); i += 4)
x->quantize_b_8x8(x, i, DCT_DCT, uoff);
}
void vp9_quantize_sbuv_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) {
const int bwl = b_width_log2(bsize) - 2;
const int bhl = b_height_log2(bsize) - 2;
const int uoff = 16 << (bhl + bwl);
int i;
for (i = uoff; i < ((uoff * 3) >> 1); i++)
x->quantize_b_4x4(x, i, DCT_DCT, uoff);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
/* quantize_b_pair function pointer in MACROBLOCK structure is set to one of
* these two C functions if corresponding optimized routine is not available.
* NEON optimized version implements currently the fast quantization for pair
* of blocks. */
void vp9_regular_quantize_b_4x4_pair(MACROBLOCK *x, int b_idx1, int b_idx2,
int y_blocks) {
vp9_regular_quantize_b_4x4(x, b_idx1, DCT_DCT, y_blocks);
vp9_regular_quantize_b_4x4(x, b_idx2, DCT_DCT, y_blocks);
}
static void invert_quant(int16_t *quant, uint8_t *shift, int d) {
unsigned t;
int l;
t = d;
for (l = 0; t > 1; l++)
t >>= 1;
t = 1 + (1 << (16 + l)) / d;
*quant = (int16_t)(t - (1 << 16));
*shift = l;
}
void vp9_init_quantizer(VP9_COMP *cpi) {
int i;
int quant_val;
int q;
static const int zbin_boost[16] = { 0, 0, 0, 8, 8, 8, 10, 12,
14, 16, 20, 24, 28, 32, 36, 40 };
for (q = 0; q < QINDEX_RANGE; q++) {
int qzbin_factor = (vp9_dc_quant(q, 0) < 148) ? 84 : 80;
int qrounding_factor = 48;
if (q == 0) {
qzbin_factor = 64;
qrounding_factor = 64;
}
// dc values
quant_val = vp9_dc_quant(q, cpi->common.y_dc_delta_q);
invert_quant(cpi->Y1quant[q] + 0, cpi->Y1quant_shift[q] + 0, quant_val);
cpi->Y1zbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7);
cpi->Y1round[q][0] = (qrounding_factor * quant_val) >> 7;
cpi->common.y_dequant[q][0] = quant_val;
cpi->zrun_zbin_boost_y1[q][0] = (quant_val * zbin_boost[0]) >> 7;
quant_val = vp9_dc_uv_quant(q, cpi->common.uv_dc_delta_q);
invert_quant(cpi->UVquant[q] + 0, cpi->UVquant_shift[q] + 0, quant_val);
cpi->UVzbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7);
cpi->UVround[q][0] = (qrounding_factor * quant_val) >> 7;
cpi->common.uv_dequant[q][0] = quant_val;
cpi->zrun_zbin_boost_uv[q][0] = (quant_val * zbin_boost[0]) >> 7;
// all the 4x4 ac values =;
for (i = 1; i < 16; i++) {
int rc = vp9_default_zig_zag1d_4x4[i];
quant_val = vp9_ac_yquant(q);
invert_quant(cpi->Y1quant[q] + rc, cpi->Y1quant_shift[q] + rc, quant_val);
cpi->Y1zbin[q][rc] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7);
cpi->Y1round[q][rc] = (qrounding_factor * quant_val) >> 7;
cpi->common.y_dequant[q][rc] = quant_val;
cpi->zrun_zbin_boost_y1[q][i] =
ROUND_POWER_OF_TWO(quant_val * zbin_boost[i], 7);
quant_val = vp9_ac_uv_quant(q, cpi->common.uv_ac_delta_q);
invert_quant(cpi->UVquant[q] + rc, cpi->UVquant_shift[q] + rc, quant_val);
cpi->UVzbin[q][rc] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7);
cpi->UVround[q][rc] = (qrounding_factor * quant_val) >> 7;
cpi->common.uv_dequant[q][rc] = quant_val;
cpi->zrun_zbin_boost_uv[q][i] =
ROUND_POWER_OF_TWO(quant_val * zbin_boost[i], 7);
}
}
}
void vp9_mb_init_quantizer(VP9_COMP *cpi, MACROBLOCK *x) {
int i;
int qindex;
MACROBLOCKD *xd = &x->e_mbd;
int zbin_extra;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Select the baseline MB Q index allowing for any segment level change.
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) {
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) {
// Abs Value
qindex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
} else {
// Delta Value
qindex = cpi->common.base_qindex +
vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
// Clamp to valid range
qindex = clamp(qindex, 0, MAXQ);
}
} else {
qindex = cpi->common.base_qindex;
}
// Y
zbin_extra = (cpi->common.y_dequant[qindex][1] *
(cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
x->plane[0].quant = cpi->Y1quant[qindex];
x->plane[0].quant_shift = cpi->Y1quant_shift[qindex];
x->plane[0].zbin = cpi->Y1zbin[qindex];
x->plane[0].round = cpi->Y1round[qindex];
x->plane[0].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[qindex];
x->plane[0].zbin_extra = (int16_t)zbin_extra;
x->e_mbd.plane[0].dequant = cpi->common.y_dequant[qindex];
// UV
zbin_extra = (cpi->common.uv_dequant[qindex][1] *
(cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
for (i = 1; i < 3; i++) {
x->plane[i].quant = cpi->UVquant[qindex];
x->plane[i].quant_shift = cpi->UVquant_shift[qindex];
x->plane[i].zbin = cpi->UVzbin[qindex];
x->plane[i].round = cpi->UVround[qindex];
x->plane[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[qindex];
x->plane[i].zbin_extra = (int16_t)zbin_extra;
x->e_mbd.plane[i].dequant = cpi->common.uv_dequant[qindex];
}
x->skip_block = vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
/* save this macroblock QIndex for vp9_update_zbin_extra() */
x->e_mbd.q_index = qindex;
}
void vp9_update_zbin_extra(VP9_COMP *cpi, MACROBLOCK *x) {
const int qindex = x->e_mbd.q_index;
const int y_zbin_extra = (cpi->common.y_dequant[qindex][1] *
(cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
const int uv_zbin_extra = (cpi->common.uv_dequant[qindex][1] *
(cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7;
x->plane[0].zbin_extra = (int16_t)y_zbin_extra;
x->plane[1].zbin_extra = (int16_t)uv_zbin_extra;
x->plane[2].zbin_extra = (int16_t)uv_zbin_extra;
}
void vp9_frame_init_quantizer(VP9_COMP *cpi) {
// Clear Zbin mode boost for default case
cpi->zbin_mode_boost = 0;
// MB level quantizer setup
vp9_mb_init_quantizer(cpi, &cpi->mb);
}
void vp9_set_quantizer(struct VP9_COMP *cpi, int Q) {
VP9_COMMON *cm = &cpi->common;
cm->base_qindex = Q;
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 19:03:17 +01:00
// Set lossless mode
if (cm->base_qindex <= 4)
cm->base_qindex = 0;
// if any of the delta_q values are changing update flag will
// have to be set.
cm->y_dc_delta_q = 0;
cm->uv_dc_delta_q = 0;
cm->uv_ac_delta_q = 0;
// quantizer has to be reinitialized if any delta_q changes.
// As there are not any here for now this is inactive code.
// if(update)
// vp9_init_quantizer(cpi);
}