vpx/vp8/common/entropymv.c

440 lines
14 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "onyxc_int.h"
2010-05-18 11:58:33 -04:00
#include "entropymv.h"
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
#if CONFIG_HIGH_PRECISION_MV
const MV_CONTEXT_HP vp8_mv_update_probs_hp[2] =
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
{
{{
237,
246,
253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 250, 250, 252, 254, 254, 254
}},
{{
231,
243,
245, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 251, 251, 254, 254, 254, 254
}}
};
const MV_CONTEXT_HP vp8_default_mv_context_hp[2] =
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
{
{{
/* row */
162, /* is short */
128, /* sign */
220, 204, 180, 192, 192, 119, 192, 192, 180, 140, 192, 192, 224, 224, 224, /* short tree */
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
128, 129, 132, 75, 145, 178, 206, 239, 254, 254, 254 /* long bits */
}},
{{
/* same for column */
164, /* is short */
128,
220, 204, 180, 192, 192, 119, 192, 192, 180, 140, 192, 192, 224, 224, 224, /* short tree */
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
128, 130, 130, 74, 148, 180, 203, 236, 254, 254, 254 /* long bits */
}}
};
#endif /* CONFIG_HIGH_PRECISION_MV */
2010-05-18 11:58:33 -04:00
const MV_CONTEXT vp8_mv_update_probs[2] =
{
{{
237,
246,
253, 253, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 250, 250, 252, 254, 254
}},
{{
231,
243,
245, 253, 254, 254, 254, 254, 254,
254, 254, 254, 254, 254, 251, 251, 254, 254, 254
}}
};
const MV_CONTEXT vp8_default_mv_context[2] =
{
{{
/* row */
162, /* is short */
128, /* sign */
225, 146, 172, 147, 214, 39, 156, /* short tree */
128, 129, 132, 75, 145, 178, 206, 239, 254, 254 /* long bits */
2010-05-18 11:58:33 -04:00
}},
{{
/* same for column */
164, /* is short */
2010-05-18 11:58:33 -04:00
128,
204, 170, 119, 235, 140, 230, 228,
128, 130, 130, 74, 148, 180, 203, 236, 254, 254 /* long bits */
2010-05-18 11:58:33 -04:00
}}
};
#if CONFIG_HIGH_PRECISION_MV
const vp8_tree_index vp8_small_mvtree_hp [30] =
{
2, 16,
4, 10,
6, 8,
-0, -1,
-2, -3,
12, 14,
-4, -5,
-6, -7,
18, 24,
20, 22,
-8, -9,
-10, -11,
26, 28,
-12, -13,
-14, -15
};
struct vp8_token_struct vp8_small_mvencodings_hp [16];
#endif /* CONFIG_HIGH_PRECISION_MV */
const vp8_tree_index vp8_small_mvtree [14] =
{
2, 8,
4, 6,
-0, -1,
-2, -3,
10, 12,
-4, -5,
-6, -7
};
struct vp8_token_struct vp8_small_mvencodings [8];
__inline static void calc_prob(vp8_prob *p, const unsigned int ct[2], int pbits)
{
const unsigned int tot = ct[0] + ct[1];
if (tot)
{
const vp8_prob x = ((ct[0] * 255) / tot) & -(1<<(8-pbits));
*p = x ? x : 1;
}
}
static void compute_component_probs(
const unsigned int events [MVvals],
vp8_prob Pnew [MVPcount],
unsigned int is_short_ct[2],
unsigned int sign_ct[2],
unsigned int bit_ct [mvlong_width] [2],
unsigned int short_ct [mvnum_short],
unsigned int short_bct [mvnum_short-1] [2]
)
{
is_short_ct[0] = is_short_ct[1] = 0;
sign_ct[0] = sign_ct[1] = 0;
vpx_memset(bit_ct, 0, sizeof(unsigned int)*mvlong_width*2);
vpx_memset(short_ct, 0, sizeof(unsigned int)*mvnum_short);
vpx_memset(short_bct, 0, sizeof(unsigned int)*(mvnum_short-1)*2);
{
const int c = events [mv_max];
is_short_ct [0] += c; // Short vector
short_ct [0] += c; // Magnitude distribution
}
{
int j = 1;
do
{
const int c1 = events [mv_max + j]; //positive
const int c2 = events [mv_max - j]; //negative
const int c = c1 + c2;
int a = j;
sign_ct [0] += c1;
sign_ct [1] += c2;
if (a < mvnum_short)
{
is_short_ct [0] += c; // Short vector
short_ct [a] += c; // Magnitude distribution
}
else
{
int k = mvlong_width - 1;
is_short_ct [1] += c; // Long vector
do
bit_ct [k] [(a >> k) & 1] += c;
while (--k >= 0);
}
}
while (++j <= mv_max);
}
calc_prob(Pnew + mvpis_short, is_short_ct, 8);
calc_prob(Pnew + MVPsign, sign_ct, 8);
{
vp8_prob p [mvnum_short - 1]; /* actually only need branch ct */
int j = 0;
vp8_tree_probs_from_distribution(
mvnum_short, vp8_small_mvencodings, vp8_small_mvtree,
p, short_bct, short_ct,
256, 1
);
do
calc_prob(Pnew + MVPshort + j, short_bct[j], 8);
while (++j < mvnum_short - 1);
}
{
int j = 0;
do
calc_prob(Pnew + MVPbits + j, bit_ct[j], 8);
while (++j < mvlong_width);
}
}
#if CONFIG_HIGH_PRECISION_MV
static void compute_component_probs_hp(
const unsigned int events [MVvals_hp],
vp8_prob Pnew [MVPcount_hp],
unsigned int is_short_ct[2],
unsigned int sign_ct[2],
unsigned int bit_ct [mvlong_width_hp] [2],
unsigned int short_ct [mvnum_short_hp],
unsigned int short_bct [mvnum_short_hp-1] [2]
)
{
is_short_ct[0] = is_short_ct[1] = 0;
sign_ct[0] = sign_ct[1] = 0;
vpx_memset(bit_ct, 0, sizeof(unsigned int)*mvlong_width_hp*2);
vpx_memset(short_ct, 0, sizeof(unsigned int)*mvnum_short_hp);
vpx_memset(short_bct, 0, sizeof(unsigned int)*(mvnum_short_hp-1)*2);
{
const int c = events [mv_max_hp];
is_short_ct [0] += c; // Short vector
short_ct [0] += c; // Magnitude distribution
}
{
int j = 1;
do
{
const int c1 = events [mv_max_hp + j]; //positive
const int c2 = events [mv_max_hp - j]; //negative
const int c = c1 + c2;
int a = j;
sign_ct [0] += c1;
sign_ct [1] += c2;
if (a < mvnum_short_hp)
{
is_short_ct [0] += c; // Short vector
short_ct [a] += c; // Magnitude distribution
}
else
{
int k = mvlong_width_hp - 1;
is_short_ct [1] += c; // Long vector
do
bit_ct [k] [(a >> k) & 1] += c;
while (--k >= 0);
}
}
while (++j <= mv_max_hp);
}
calc_prob(Pnew + mvpis_short_hp, is_short_ct, 8);
calc_prob(Pnew + MVPsign_hp, sign_ct, 8);
{
vp8_prob p [mvnum_short_hp - 1]; /* actually only need branch ct */
int j = 0;
vp8_tree_probs_from_distribution(
mvnum_short_hp, vp8_small_mvencodings_hp, vp8_small_mvtree_hp,
p, short_bct, short_ct,
256, 1
);
do
calc_prob(Pnew + MVPshort_hp + j, short_bct[j], 8);
while (++j < mvnum_short_hp - 1);
}
{
int j = 0;
do
calc_prob(Pnew + MVPbits_hp + j, bit_ct[j], 8);
while (++j < mvlong_width_hp);
}
}
#endif /* CONFIG_HIGH_PRECISION_MV */
void vp8_entropy_mv_init()
{
vp8_tokens_from_tree(vp8_small_mvencodings, vp8_small_mvtree);
#if CONFIG_HIGH_PRECISION_MV
vp8_tokens_from_tree(vp8_small_mvencodings_hp, vp8_small_mvtree_hp);
#endif
}
#if CONFIG_ADAPTIVE_ENTROPY
//#define MV_COUNT_TESTING
#define MV_COUNT_SAT 16
#define MV_MAX_UPDATE_FACTOR 128
void vp8_adapt_mv_probs(VP8_COMMON *cm)
{
int i, t, count, factor;
#ifdef MV_COUNT_TESTING
printf("static const unsigned int\nMVcount[2][MVvals]={\n");
for (i = 0; i < 2; ++i)
{
printf(" { ");
for (t = 0; t < MVvals; t++)
{
printf("%d, ", cm->fc.MVcount[i][t]);
if (t%16 == 15 && t!=MVvals-1) printf("\n ");
}
printf("},\n");
}
printf("};\n");
#if CONFIG_HIGH_PRECISION_MV
printf("static const unsigned int\nMVcount_hp[2][MVvals_hp]={\n");
for (i = 0; i < 2; ++i)
{
printf(" { ");
for (t = 0; t < MVvals_hp; t++)
{
printf("%d, ", cm->fc.MVcount_hp[i][t]);
if (t%16 == 15 && t!=MVvals_hp-1) printf("\n ");
}
printf("},\n");
}
printf("};\n");
#endif
#endif /* MV_COUNT_TESTING */
for (i = 0; i < 2; ++i)
{
int prob;
unsigned int is_short_ct[2];
unsigned int sign_ct[2];
unsigned int bit_ct [mvlong_width] [2];
unsigned int short_ct [mvnum_short];
unsigned int short_bct [mvnum_short-1] [2];
vp8_prob Pnew [MVPcount];
compute_component_probs(cm->fc.MVcount[i], Pnew,
is_short_ct, sign_ct,
bit_ct, short_ct, short_bct);
count = is_short_ct[0] + is_short_ct[1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc[i].prob[mvpis_short] * (256-factor) +
(int)Pnew[mvpis_short] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc[i].prob[mvpis_short] = 1;
else if (prob > 255) cm->fc.mvc[i].prob[mvpis_short] = 255;
else cm->fc.mvc[i].prob[mvpis_short] = prob;
count = sign_ct[0] + sign_ct[1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc[i].prob[MVPsign] * (256-factor) +
(int)Pnew[MVPsign] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc[i].prob[MVPsign] = 1;
else if (prob > 255) cm->fc.mvc[i].prob[MVPsign] = 255;
else cm->fc.mvc[i].prob[MVPsign] = prob;
for (t = 0; t < mvnum_short - 1; ++t)
{
count = short_bct[t][0] + short_bct[t][1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc[i].prob[MVPshort+t] * (256-factor) +
(int)Pnew[MVPshort+t] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc[i].prob[MVPshort+t] = 1;
else if (prob > 255) cm->fc.mvc[i].prob[MVPshort+t] = 255;
else cm->fc.mvc[i].prob[MVPshort+t] = prob;
}
for (t = 0; t < mvlong_width; ++t)
{
count = bit_ct[t][0] + bit_ct[t][1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc[i].prob[MVPbits+t] * (256-factor) +
(int)Pnew[MVPbits+t] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc[i].prob[MVPbits+t] = 1;
else if (prob > 255) cm->fc.mvc[i].prob[MVPbits+t] = 255;
else cm->fc.mvc[i].prob[MVPbits+t] = prob;
}
}
#if CONFIG_HIGH_PRECISION_MV
for (i = 0; i < 2; ++i)
{
int prob;
unsigned int is_short_ct[2];
unsigned int sign_ct[2];
unsigned int bit_ct [mvlong_width_hp] [2];
unsigned int short_ct [mvnum_short_hp];
unsigned int short_bct [mvnum_short_hp-1] [2];
vp8_prob Pnew [MVPcount_hp];
compute_component_probs_hp(cm->fc.MVcount_hp[i], Pnew,
is_short_ct, sign_ct,
bit_ct, short_ct, short_bct);
count = is_short_ct[0] + is_short_ct[1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc_hp[i].prob[mvpis_short_hp] * (256-factor) +
(int)Pnew[mvpis_short_hp] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc_hp[i].prob[mvpis_short_hp] = 1;
else if (prob > 255) cm->fc.mvc_hp[i].prob[mvpis_short_hp] = 255;
else cm->fc.mvc_hp[i].prob[mvpis_short_hp] = prob;
count = sign_ct[0] + sign_ct[1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc_hp[i].prob[MVPsign_hp] * (256-factor) +
(int)Pnew[MVPsign_hp] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc_hp[i].prob[MVPsign_hp] = 1;
else if (prob > 255) cm->fc.mvc_hp[i].prob[MVPsign_hp] = 255;
else cm->fc.mvc_hp[i].prob[MVPsign_hp] = prob;
for (t = 0; t < mvnum_short_hp - 1; ++t)
{
count = short_bct[t][0] + short_bct[t][1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc_hp[i].prob[MVPshort_hp+t] * (256-factor) +
(int)Pnew[MVPshort_hp+t] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc_hp[i].prob[MVPshort_hp+t] = 1;
else if (prob > 255) cm->fc.mvc_hp[i].prob[MVPshort_hp+t] = 255;
else cm->fc.mvc_hp[i].prob[MVPshort_hp+t] = prob;
}
for (t = 0; t < mvlong_width_hp; ++t)
{
count = bit_ct[t][0] + bit_ct[t][1];
count = count > MV_COUNT_SAT ? MV_COUNT_SAT : count;
factor = (MV_MAX_UPDATE_FACTOR * count / MV_COUNT_SAT);
prob = ((int)cm->fc.pre_mvc_hp[i].prob[MVPbits_hp+t] * (256-factor) +
(int)Pnew[MVPbits_hp+t] * factor + 128) >> 8;
if (prob <= 0) cm->fc.mvc_hp[i].prob[MVPbits_hp+t] = 1;
else if (prob > 255) cm->fc.mvc_hp[i].prob[MVPbits_hp+t] = 255;
else cm->fc.mvc_hp[i].prob[MVPbits_hp+t] = prob;
}
}
#endif
}
#endif /* CONFIG_ADAPTIVE_ENTROPY */