vpx/third_party/libyuv/source/scale.cc

1673 lines
55 KiB
C++
Raw Normal View History

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/scale.h"
#include <assert.h>
#include <string.h>
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h" // For CopyPlane
#include "libyuv/row.h"
#include "libyuv/scale_row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
static __inline int Abs(int v) {
return v >= 0 ? v : -v;
}
#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s)
// Scale plane, 1/2
// This is an optimized version for scaling down a plane to 1/2 of
// its original size.
static void ScalePlaneDown2(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width) =
filtering == kFilterNone ? ScaleRowDown2_C :
(filtering == kFilterLinear ? ScaleRowDown2Linear_C : ScaleRowDown2Box_C);
int row_stride = src_stride << 1;
if (!filtering) {
src_ptr += src_stride; // Point to odd rows.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_NEON :
(filtering == kFilterLinear ? ScaleRowDown2Linear_Any_NEON :
ScaleRowDown2Box_Any_NEON);
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_NEON :
(filtering == kFilterLinear ? ScaleRowDown2Linear_NEON :
ScaleRowDown2Box_NEON);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_SSSE3 :
(filtering == kFilterLinear ? ScaleRowDown2Linear_Any_SSSE3 :
ScaleRowDown2Box_Any_SSSE3);
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_SSSE3 :
(filtering == kFilterLinear ? ScaleRowDown2Linear_SSSE3 :
ScaleRowDown2Box_SSSE3);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_AVX2 :
(filtering == kFilterLinear ? ScaleRowDown2Linear_Any_AVX2 :
ScaleRowDown2Box_Any_AVX2);
if (IS_ALIGNED(dst_width, 32)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_AVX2 :
(filtering == kFilterLinear ? ScaleRowDown2Linear_AVX2 :
ScaleRowDown2Box_AVX2);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) &&
IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
ScaleRowDown2 = filtering ?
ScaleRowDown2Box_DSPR2 : ScaleRowDown2_DSPR2;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
// TODO(fbarchard): Loop through source height to allow odd height.
for (y = 0; y < dst_height; ++y) {
ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
static void ScalePlaneDown2_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown2)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width) =
filtering == kFilterNone ? ScaleRowDown2_16_C :
(filtering == kFilterLinear ? ScaleRowDown2Linear_16_C :
ScaleRowDown2Box_16_C);
int row_stride = src_stride << 1;
if (!filtering) {
src_ptr += src_stride; // Point to odd rows.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN2_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 = filtering ? ScaleRowDown2Box_16_NEON :
ScaleRowDown2_16_NEON;
}
#endif
#if defined(HAS_SCALEROWDOWN2_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_16_SSE2 :
(filtering == kFilterLinear ? ScaleRowDown2Linear_16_SSE2 :
ScaleRowDown2Box_16_SSE2);
}
#endif
#if defined(HAS_SCALEROWDOWN2_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) &&
IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
ScaleRowDown2 = filtering ?
ScaleRowDown2Box_16_DSPR2 : ScaleRowDown2_16_DSPR2;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
// TODO(fbarchard): Loop through source height to allow odd height.
for (y = 0; y < dst_height; ++y) {
ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
// Scale plane, 1/4
// This is an optimized version for scaling down a plane to 1/4 of
// its original size.
static void ScalePlaneDown4(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown4)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width) =
filtering ? ScaleRowDown4Box_C : ScaleRowDown4_C;
int row_stride = src_stride << 2;
if (!filtering) {
src_ptr += src_stride * 2; // Point to row 2.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN4_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowDown4 = filtering ?
ScaleRowDown4Box_Any_NEON : ScaleRowDown4_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_NEON : ScaleRowDown4_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowDown4 = filtering ?
ScaleRowDown4Box_Any_SSSE3 : ScaleRowDown4_Any_SSSE3;
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_SSSE3 : ScaleRowDown4_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowDown4 = filtering ?
ScaleRowDown4Box_Any_AVX2 : ScaleRowDown4_Any_AVX2;
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_AVX2 : ScaleRowDown4_AVX2;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
ScaleRowDown4 = filtering ?
ScaleRowDown4Box_DSPR2 : ScaleRowDown4_DSPR2;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (y = 0; y < dst_height; ++y) {
ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
static void ScalePlaneDown4_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown4)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width) =
filtering ? ScaleRowDown4Box_16_C : ScaleRowDown4_16_C;
int row_stride = src_stride << 2;
if (!filtering) {
src_ptr += src_stride * 2; // Point to row 2.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN4_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_NEON :
ScaleRowDown4_16_NEON;
}
#endif
#if defined(HAS_SCALEROWDOWN4_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_SSE2 :
ScaleRowDown4_16_SSE2;
}
#endif
#if defined(HAS_SCALEROWDOWN4_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
ScaleRowDown4 = filtering ?
ScaleRowDown4Box_16_DSPR2 : ScaleRowDown4_16_DSPR2;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (y = 0; y < dst_height; ++y) {
ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
// Scale plane down, 3/4
static void ScalePlaneDown34(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown34_0)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
void (*ScaleRowDown34_1)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_C;
ScaleRowDown34_1 = ScaleRowDown34_C;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_C;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_C;
}
#if defined(HAS_SCALEROWDOWN34_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_NEON;
ScaleRowDown34_1 = ScaleRowDown34_Any_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_NEON;
}
if (dst_width % 24 == 0) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_NEON;
ScaleRowDown34_1 = ScaleRowDown34_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_NEON;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_Any_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_SSSE3;
}
if (dst_width % 24 == 0) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_SSSE3;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_DSPR2;
ScaleRowDown34_1 = ScaleRowDown34_DSPR2;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_DSPR2;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_DSPR2;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_0(src_ptr + src_stride, -filter_stride,
dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
}
}
static void ScalePlaneDown34_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown34_0)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width);
void (*ScaleRowDown34_1)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_C;
ScaleRowDown34_1 = ScaleRowDown34_16_C;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_C;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_C;
}
#if defined(HAS_SCALEROWDOWN34_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_NEON;
ScaleRowDown34_1 = ScaleRowDown34_16_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_16_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_DSPR2;
ScaleRowDown34_1 = ScaleRowDown34_16_DSPR2;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_DSPR2;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_DSPR2;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_0(src_ptr + src_stride, -filter_stride,
dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
}
}
// Scale plane, 3/8
// This is an optimized version for scaling down a plane to 3/8
// of its original size.
//
// Uses box filter arranges like this
// aaabbbcc -> abc
// aaabbbcc def
// aaabbbcc ghi
// dddeeeff
// dddeeeff
// dddeeeff
// ggghhhii
// ggghhhii
// Boxes are 3x3, 2x3, 3x2 and 2x2
static void ScalePlaneDown38(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown38_3)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
void (*ScaleRowDown38_2)(const uint8* src_ptr, ptrdiff_t src_stride,
uint8* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_C;
ScaleRowDown38_2 = ScaleRowDown38_C;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_C;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_C;
}
#if defined(HAS_SCALEROWDOWN38_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_Any_NEON;
ScaleRowDown38_2 = ScaleRowDown38_Any_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_NEON;
}
if (dst_width % 12 == 0) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_NEON;
ScaleRowDown38_2 = ScaleRowDown38_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_NEON;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_Any_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_Any_SSSE3;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_SSSE3;
}
if (dst_width % 12 == 0 && !filtering) {
ScaleRowDown38_3 = ScaleRowDown38_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_SSSE3;
}
if (dst_width % 6 == 0 && filtering) {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_DSPR2;
ScaleRowDown38_2 = ScaleRowDown38_DSPR2;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_DSPR2;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_DSPR2;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
}
}
static void ScalePlaneDown38_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown38_3)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width);
void (*ScaleRowDown38_2)(const uint16* src_ptr, ptrdiff_t src_stride,
uint16* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_C;
ScaleRowDown38_2 = ScaleRowDown38_16_C;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_C;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_C;
}
#if defined(HAS_SCALEROWDOWN38_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && (dst_width % 12 == 0)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_NEON;
ScaleRowDown38_2 = ScaleRowDown38_16_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_16_SSSE3;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) &&
IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) &&
IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_DSPR2;
ScaleRowDown38_2 = ScaleRowDown38_16_DSPR2;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_DSPR2;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_DSPR2;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
}
}
#define MIN1(x) ((x) < 1 ? 1 : (x))
static __inline uint32 SumPixels(int iboxwidth, const uint16* src_ptr) {
uint32 sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static __inline uint32 SumPixels_16(int iboxwidth, const uint32* src_ptr) {
uint32 sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static void ScaleAddCols2_C(int dst_width, int boxheight, int x, int dx,
const uint16* src_ptr, uint8* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
*dst_ptr++ = SumPixels(boxwidth, src_ptr + ix) *
scaletbl[boxwidth - minboxwidth] >> 16;
}
}
static void ScaleAddCols2_16_C(int dst_width, int boxheight, int x, int dx,
const uint32* src_ptr, uint16* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
*dst_ptr++ = SumPixels_16(boxwidth, src_ptr + ix) *
scaletbl[boxwidth - minboxwidth] >> 16;
}
}
static void ScaleAddCols0_C(int dst_width, int boxheight, int x, int,
const uint16* src_ptr, uint8* dst_ptr) {
int scaleval = 65536 / boxheight;
int i;
src_ptr += (x >> 16);
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = src_ptr[i] * scaleval >> 16;
}
}
static void ScaleAddCols1_C(int dst_width, int boxheight, int x, int dx,
const uint16* src_ptr, uint8* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
x >>= 16;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = SumPixels(boxwidth, src_ptr + x) * scaleval >> 16;
x += boxwidth;
}
}
static void ScaleAddCols1_16_C(int dst_width, int boxheight, int x, int dx,
const uint32* src_ptr, uint16* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16;
x += boxwidth;
}
}
// Scale plane down to any dimensions, with interpolation.
// (boxfilter).
//
// Same method as SimpleScale, which is fixed point, outputting
// one pixel of destination using fixed point (16.16) to step
// through source, sampling a box of pixel with simple
// averaging.
static void ScalePlaneBox(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint16.
align_buffer_64(row16, src_width * 2);
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint16* src_ptr, uint8* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_C:
((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C);
void (*ScaleAddRow)(const uint8* src_ptr, uint16* dst_ptr, int src_width) =
ScaleAddRow_C;
#if defined(HAS_SCALEADDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ScaleAddRow = ScaleAddRow_Any_SSE2;
if (IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_SSE2;
}
}
#endif
#if defined(HAS_SCALEADDROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleAddRow = ScaleAddRow_Any_AVX2;
if (IS_ALIGNED(src_width, 32)) {
ScaleAddRow = ScaleAddRow_AVX2;
}
}
#endif
#if defined(HAS_SCALEADDROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleAddRow = ScaleAddRow_Any_NEON;
if (IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_NEON;
}
}
#endif
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint8* src = src_ptr + iy * src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row16, 0, src_width * 2);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint16 *)(row16), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint16*)(row16), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row16);
}
}
static void ScalePlaneBox_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint32.
align_buffer_64(row32, src_width * 4);
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint32* src_ptr, uint16* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_16_C: ScaleAddCols1_16_C;
void (*ScaleAddRow)(const uint16* src_ptr, uint32* dst_ptr, int src_width) =
ScaleAddRow_16_C;
#if defined(HAS_SCALEADDROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_16_SSE2;
}
#endif
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint16* src = src_ptr + iy * src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row32, 0, src_width * 4);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint32 *)(row32), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint32*)(row32), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row32);
}
}
// Scale plane down with bilinear interpolation.
void ScalePlaneBilinearDown(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width);
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C;
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(src_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2)) {
InterpolateRow = InterpolateRow_Any_DSPR2;
if (IS_ALIGNED(src_width, 4)) {
InterpolateRow = InterpolateRow_DSPR2;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEFILTERCOLS_NEON)
if (TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleFilterCols_NEON;
}
}
#endif
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint8* src = src_ptr + yi * src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
void ScalePlaneBilinearDown_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width * 2);
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C;
void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
InterpolateRow = InterpolateRow_Any_16_SSE2;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_SSE2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_16_SSSE3;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_16_AVX2;
if (IS_ALIGNED(src_width, 32)) {
InterpolateRow = InterpolateRow_16_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_16_NEON;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2)) {
InterpolateRow = InterpolateRow_Any_16_DSPR2;
if (IS_ALIGNED(src_width, 4)) {
InterpolateRow = InterpolateRow_16_DSPR2;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_16_SSSE3;
}
#endif
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint16* src = src_ptr + yi * src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow((uint16*)row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, (uint16*)row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
// Scale up down with bilinear interpolation.
void ScalePlaneBilinearUp(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_C;
void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_C : ScaleCols_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(dst_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2)) {
InterpolateRow = InterpolateRow_Any_DSPR2;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_DSPR2;
}
}
#endif
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_C;
}
#if defined(HAS_SCALEFILTERCOLS_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEFILTERCOLS_NEON)
if (filtering && TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleFilterCols_NEON;
}
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_C;
#if defined(HAS_SCALECOLS_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_SSE2;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint8* src = src_ptr + yi * src_stride;
// Allocate 2 row buffers.
const int kRowSize = (dst_width + 31) & ~31;
align_buffer_64(row, kRowSize * 2);
uint8* rowptr = row;
int rowstride = kRowSize;
int lasty = yi;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
src += src_stride;
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src += src_stride;
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
}
void ScalePlaneBilinearUp_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_16_C;
void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_16_C : ScaleCols_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
InterpolateRow = InterpolateRow_Any_16_SSE2;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_SSE2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_16_SSSE3;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_16_AVX2;
if (IS_ALIGNED(dst_width, 32)) {
InterpolateRow = InterpolateRow_16_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_16_NEON;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_DSPR2)
if (TestCpuFlag(kCpuHasDSPR2)) {
InterpolateRow = InterpolateRow_Any_16_DSPR2;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_16_DSPR2;
}
}
#endif
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_16_C;
}
#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_16_SSSE3;
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_16_C;
#if defined(HAS_SCALECOLS_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_16_SSE2;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint16* src = src_ptr + yi * src_stride;
// Allocate 2 row buffers.
const int kRowSize = (dst_width + 31) & ~31;
align_buffer_64(row, kRowSize * 4);
uint16* rowptr = (uint16*)row;
int rowstride = kRowSize;
int lasty = yi;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
src += src_stride;
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src += src_stride;
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
}
// Scale Plane to/from any dimensions, without interpolation.
// Fixed point math is used for performance: The upper 16 bits
// of x and dx is the integer part of the source position and
// the lower 16 bits are the fixed decimal part.
static void ScalePlaneSimple(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr) {
int i;
void (*ScaleCols)(uint8* dst_ptr, const uint8* src_ptr,
int dst_width, int x, int dx) = ScaleCols_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_C;
#if defined(HAS_SCALECOLS_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_SSE2;
}
#endif
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx);
dst_ptr += dst_stride;
y += dy;
}
}
static void ScalePlaneSimple_16(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint16* src_ptr, uint16* dst_ptr) {
int i;
void (*ScaleCols)(uint16* dst_ptr, const uint16* src_ptr,
int dst_width, int x, int dx) = ScaleCols_16_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_16_C;
#if defined(HAS_SCALECOLS_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_16_SSE2;
}
#endif
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride,
dst_width, x, dx);
dst_ptr += dst_stride;
y += dy;
}
}
// Scale a plane.
// This function dispatches to a specialized scaler based on scale factor.
LIBYUV_API
void ScalePlane(const uint8* src, int src_stride,
int src_width, int src_height,
uint8* dst, int dst_stride,
int dst_width, int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height,
dst_width, dst_height, filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height);
return;
}
if (dst_width == src_width && filtering != kFilterBox) {
int dy = FixedDiv(src_height, dst_height);
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical(src_height,
dst_width, dst_height,
src_stride, dst_stride, src, dst,
0, 0, dy, 1, filtering);
return;
}
if (dst_width <= Abs(src_width) && dst_height <= src_height) {
// Scale down.
if (4 * dst_width == 3 * src_width &&
4 * dst_height == 3 * src_height) {
// optimized, 3/4
ScalePlaneDown34(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (2 * dst_width == src_width && 2 * dst_height == src_height) {
// optimized, 1/2
ScalePlaneDown2(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
// 3/8 rounded up for odd sized chroma height.
if (8 * dst_width == 3 * src_width &&
dst_height == ((src_height * 3 + 7) / 8)) {
// optimized, 3/8
ScalePlaneDown38(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (4 * dst_width == src_width && 4 * dst_height == src_height &&
(filtering == kFilterBox || filtering == kFilterNone)) {
// optimized, 1/4
ScalePlaneDown4(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
ScalePlaneBox(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if (filtering && dst_height > src_height) {
ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (filtering) {
ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
ScalePlaneSimple(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
}
LIBYUV_API
void ScalePlane_16(const uint16* src, int src_stride,
int src_width, int src_height,
uint16* dst, int dst_stride,
int dst_width, int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height,
dst_width, dst_height, filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height);
return;
}
if (dst_width == src_width) {
int dy = FixedDiv(src_height, dst_height);
// Arbitrary scale vertically, but unscaled vertically.
ScalePlaneVertical_16(src_height,
dst_width, dst_height,
src_stride, dst_stride, src, dst,
0, 0, dy, 1, filtering);
return;
}
if (dst_width <= Abs(src_width) && dst_height <= src_height) {
// Scale down.
if (4 * dst_width == 3 * src_width &&
4 * dst_height == 3 * src_height) {
// optimized, 3/4
ScalePlaneDown34_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (2 * dst_width == src_width && 2 * dst_height == src_height) {
// optimized, 1/2
ScalePlaneDown2_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
// 3/8 rounded up for odd sized chroma height.
if (8 * dst_width == 3 * src_width &&
dst_height == ((src_height * 3 + 7) / 8)) {
// optimized, 3/8
ScalePlaneDown38_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (4 * dst_width == src_width && 4 * dst_height == src_height &&
filtering != kFilterBilinear) {
// optimized, 1/4
ScalePlaneDown4_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
ScalePlaneBox_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if (filtering && dst_height > src_height) {
ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (filtering) {
ScalePlaneBilinearDown_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
}
// Scale an I420 image.
// This function in turn calls a scaling function for each plane.
LIBYUV_API
int I420Scale(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
int src_width, int src_height,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int dst_width, int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 ||
!dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane(src_y, src_stride_y, src_width, src_height,
dst_y, dst_stride_y, dst_width, dst_height,
filtering);
ScalePlane(src_u, src_stride_u, src_halfwidth, src_halfheight,
dst_u, dst_stride_u, dst_halfwidth, dst_halfheight,
filtering);
ScalePlane(src_v, src_stride_v, src_halfwidth, src_halfheight,
dst_v, dst_stride_v, dst_halfwidth, dst_halfheight,
filtering);
return 0;
}
LIBYUV_API
int I420Scale_16(const uint16* src_y, int src_stride_y,
const uint16* src_u, int src_stride_u,
const uint16* src_v, int src_stride_v,
int src_width, int src_height,
uint16* dst_y, int dst_stride_y,
uint16* dst_u, int dst_stride_u,
uint16* dst_v, int dst_stride_v,
int dst_width, int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 ||
!dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane_16(src_y, src_stride_y, src_width, src_height,
dst_y, dst_stride_y, dst_width, dst_height,
filtering);
ScalePlane_16(src_u, src_stride_u, src_halfwidth, src_halfheight,
dst_u, dst_stride_u, dst_halfwidth, dst_halfheight,
filtering);
ScalePlane_16(src_v, src_stride_v, src_halfwidth, src_halfheight,
dst_v, dst_stride_v, dst_halfwidth, dst_halfheight,
filtering);
return 0;
}
// Deprecated api
LIBYUV_API
int Scale(const uint8* src_y, const uint8* src_u, const uint8* src_v,
int src_stride_y, int src_stride_u, int src_stride_v,
int src_width, int src_height,
uint8* dst_y, uint8* dst_u, uint8* dst_v,
int dst_stride_y, int dst_stride_u, int dst_stride_v,
int dst_width, int dst_height,
LIBYUV_BOOL interpolate) {
return I420Scale(src_y, src_stride_y,
src_u, src_stride_u,
src_v, src_stride_v,
src_width, src_height,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
dst_width, dst_height,
interpolate ? kFilterBox : kFilterNone);
}
// Deprecated api
LIBYUV_API
int ScaleOffset(const uint8* src, int src_width, int src_height,
uint8* dst, int dst_width, int dst_height, int dst_yoffset,
LIBYUV_BOOL interpolate) {
// Chroma requires offset to multiple of 2.
int dst_yoffset_even = dst_yoffset & ~1;
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
int aheight = dst_height - dst_yoffset_even * 2; // actual output height
const uint8* src_y = src;
const uint8* src_u = src + src_width * src_height;
const uint8* src_v = src + src_width * src_height +
src_halfwidth * src_halfheight;
uint8* dst_y = dst + dst_yoffset_even * dst_width;
uint8* dst_u = dst + dst_width * dst_height +
(dst_yoffset_even >> 1) * dst_halfwidth;
uint8* dst_v = dst + dst_width * dst_height + dst_halfwidth * dst_halfheight +
(dst_yoffset_even >> 1) * dst_halfwidth;
if (!src || src_width <= 0 || src_height <= 0 ||
!dst || dst_width <= 0 || dst_height <= 0 || dst_yoffset_even < 0 ||
dst_yoffset_even >= dst_height) {
return -1;
}
return I420Scale(src_y, src_width,
src_u, src_halfwidth,
src_v, src_halfwidth,
src_width, src_height,
dst_y, dst_width,
dst_u, dst_halfwidth,
dst_v, dst_halfwidth,
dst_width, aheight,
interpolate ? kFilterBox : kFilterNone);
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif