vpx/vp9/decoder/decodemv.c

1223 lines
42 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "treereader.h"
#include "vp9/common/entropymv.h"
#include "vp9/common/entropymode.h"
2010-05-18 17:58:33 +02:00
#include "onyxd_int.h"
#include "vp9/common/findnearmv.h"
#include "vp9/common/seg_common.h"
#include "vp9/common/pred_common.h"
#include "vp9/common/entropy.h"
#include "vp9/decoder/decodemv.h"
#include "vp9/common/mvref_common.h"
2010-05-18 17:58:33 +02:00
#if CONFIG_DEBUG
#include <assert.h>
#endif
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
// #define DEBUG_DEC_MV
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
static int read_bmode(vp9_reader *bc, const vp9_prob *p) {
B_PREDICTION_MODE m = treed_read(bc, vp9_bmode_tree, p);
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS)
m = B_CONTEXT_PRED;
assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED);
#endif
return m;
}
static int read_kf_bmode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_kf_bmode_tree, p);
}
static int read_ymode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_ymode_tree, p);
}
#if CONFIG_SUPERBLOCKS
static int read_kf_sb_ymode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_uv_mode_tree, p);
}
#endif
static int read_kf_mb_ymode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_kf_ymode_tree, p);
}
static int read_i8x8_mode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_i8x8_mode_tree, p);
}
static int read_uv_mode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_uv_mode_tree, p);
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void read_mb_segid(vp9_reader *r, MB_MODE_INFO *mi,
MACROBLOCKD *xd) {
/* Is segmentation enabled */
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
/* If so then read the segment id. */
if (vp9_read(r, xd->mb_segment_tree_probs[0]))
mi->segment_id =
(unsigned char)(2 + vp9_read(r, xd->mb_segment_tree_probs[2]));
else
mi->segment_id =
(unsigned char)(vp9_read(r, xd->mb_segment_tree_probs[1]));
}
}
#if CONFIG_NEW_MVREF
int vp9_read_mv_ref_id(vp9_reader *r,
vp9_prob * ref_id_probs) {
int ref_index = 0;
if (vp9_read(r, ref_id_probs[0])) {
ref_index++;
if (vp9_read(r, ref_id_probs[1])) {
ref_index++;
if (vp9_read(r, ref_id_probs[2]))
ref_index++;
}
}
return ref_index;
}
#endif
extern const int vp9_i8x8_block[4];
static void kfread_modes(VP9D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map) {
read_mb_segid(bc, &m->mbmi, &pbi->mb);
pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
m->mbmi.mb_skip_coeff = 0;
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) != 0))) {
MACROBLOCKD *const xd = &pbi->mb;
m->mbmi.mb_skip_coeff =
vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (vp9_segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) &&
(vp9_get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) == 0)) {
m->mbmi.mb_skip_coeff = 1;
} else
m->mbmi.mb_skip_coeff = 0;
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
y_mode = (MB_PREDICTION_MODE) read_kf_sb_ymode(bc,
pbi->common.sb_kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
} else
#endif
y_mode = (MB_PREDICTION_MODE) read_kf_mb_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED) {
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp9_read(bc, DEFAULT_COMP_INTRA_PROB);
#endif
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
m->bmi[i].as_mode.first =
(B_PREDICTION_MODE) read_kf_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
m->bmi[i].as_mode.second =
(B_PREDICTION_MODE) read_kf_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
} else {
m->bmi[i].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++i < 16);
}
if ((m->mbmi.mode = y_mode) == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
m->bmi[ib + 0].as_mode.first = mode8x8;
m->bmi[ib + 1].as_mode.first = mode8x8;
m->bmi[ib + 4].as_mode.first = mode8x8;
m->bmi[ib + 5].as_mode.first = mode8x8;
#if CONFIG_COMP_INTRA_PRED
m->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else
m->mbmi.uv_mode = (MB_PREDICTION_MODE)read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
if (cm->txfm_mode == TX_MODE_SELECT && m->mbmi.mb_skip_coeff == 0 &&
m->mbmi.mode <= I8X8_PRED) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
m->mbmi.txfm_size = vp9_read(bc, cm->prob_tx[0]);
if (m->mbmi.txfm_size != TX_4X4 && m->mbmi.mode != I8X8_PRED)
m->mbmi.txfm_size += vp9_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.mode <= TM_PRED) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.mode != B_PRED) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
}
2010-05-18 17:58:33 +02:00
static int read_nmv_component(vp9_reader *r,
int rv,
const nmv_component *mvcomp) {
int v, s, z, c, o, d;
s = vp9_read(r, mvcomp->sign);
c = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
if (c == MV_CLASS_0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i, b;
d = 0;
b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i)
d |= (vp9_read(r, mvcomp->bits[i]) << i);
}
o = d << 3;
z = vp9_get_mv_mag(c, o);
v = (s ? -(z + 8) : (z + 8));
return v;
}
static int read_nmv_component_fp(vp9_reader *r,
int v,
int rv,
const nmv_component *mvcomp,
int usehp) {
int s, z, c, o, d, e, f;
s = v < 0;
z = (s ? -v : v) - 1; /* magnitude - 1 */
z &= ~7;
c = vp9_get_mv_class(z, &o);
d = o >> 3;
if (c == MV_CLASS_0) {
f = treed_read(r, vp9_mv_fp_tree, mvcomp->class0_fp[d]);
} else {
f = treed_read(r, vp9_mv_fp_tree, mvcomp->fp);
}
o += (f << 1);
if (usehp) {
if (c == MV_CLASS_0) {
e = vp9_read(r, mvcomp->class0_hp);
} else {
e = vp9_read(r, mvcomp->hp);
}
o += e;
} else {
++o; /* Note if hp is not used, the default value of the hp bit is 1 */
}
z = vp9_get_mv_mag(c, o);
v = (s ? -(z + 1) : (z + 1));
return v;
}
static void read_nmv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx) {
MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, mvctx->joints);
mv->row = mv-> col = 0;
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]);
}
}
static void read_nmv_fp(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx, int usehp) {
MV_JOINT_TYPE j = vp9_get_mv_joint(*mv);
usehp = usehp && vp9_use_nmv_hp(ref);
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0],
usehp);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1],
usehp);
}
//printf(" %d: %d %d ref: %d %d\n", usehp, mv->row, mv-> col, ref->row, ref->col);
}
static void update_nmv(vp9_reader *bc, vp9_prob *const p,
const vp9_prob upd_p) {
if (vp9_read(bc, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp9_read_literal(bc, 7) << 1) | 1;
#else
*p = (vp9_read_literal(bc, 8));
#endif
}
}
static void read_nmvprobs(vp9_reader *bc, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp9_read_bit(bc)) return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j) {
update_nmv(bc, &mvctx->joints[j],
VP9_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].sign,
VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].classes[j],
VP9_NMV_UPDATE_PROB);
}
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].class0[j],
VP9_NMV_UPDATE_PROB);
}
for (j = 0; j < MV_OFFSET_BITS; ++j) {
update_nmv(bc, &mvctx->comps[i].bits[j],
VP9_NMV_UPDATE_PROB);
}
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j) {
for (k = 0; k < 3; ++k)
update_nmv(bc, &mvctx->comps[i].class0_fp[j][k],
VP9_NMV_UPDATE_PROB);
}
for (j = 0; j < 3; ++j) {
update_nmv(bc, &mvctx->comps[i].fp[j],
VP9_NMV_UPDATE_PROB);
}
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].class0_hp,
VP9_NMV_UPDATE_PROB);
update_nmv(bc, &mvctx->comps[i].hp,
VP9_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi,
vp9_reader *const bc,
unsigned char segment_id) {
MV_REFERENCE_FRAME ref_frame;
int seg_ref_active;
int seg_ref_count = 0;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Segment reference frame features not available or allows for
// multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp9_prob pred_prob;
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Read the prediction status flag
prediction_flag = (unsigned char)vp9_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
// Get the predicted reference frame.
pred_ref = vp9_get_pred_ref(cm, xd);
// If correctly predicted then use the predicted value
if (prediction_flag) {
ref_frame = pred_ref;
}
// else decode the explicitly coded value
else {
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_ref], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if (mod_refprobs[0])
ref_frame = (MV_REFERENCE_FRAME) vp9_read(bc, mod_refprobs[0]);
else
ref_frame++;
if (ref_frame) {
// Do we need to decode the Last/Gf_Arf branch
if (mod_refprobs[1])
ref_frame += vp9_read(bc, mod_refprobs[1]);
else
ref_frame++;
if (ref_frame > 1) {
// Do we need to decode the GF/Arf branch
if (mod_refprobs[2])
ref_frame += vp9_read(bc, mod_refprobs[2]);
else {
if (seg_ref_active) {
if ((pred_ref == GOLDEN_FRAME) ||
!vp9_check_segref(xd, segment_id, GOLDEN_FRAME)) {
ref_frame = ALTREF_FRAME;
} else
ref_frame = GOLDEN_FRAME;
} else
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
}
// Segment reference frame features are enabled
else {
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
vp9_set_pred_flag(xd, PRED_REF, 1);
ref_frame = vp9_get_pred_ref(cm, xd);
}
return (MV_REFERENCE_FRAME)ref_frame;
}
2010-05-18 17:58:33 +02:00
#if CONFIG_SUPERBLOCKS
static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(bc, vp9_sb_mv_ref_tree, p);
}
#endif
2010-05-18 17:58:33 +02:00
static MB_PREDICTION_MODE read_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(bc, vp9_mv_ref_tree, p);
2010-05-18 17:58:33 +02:00
}
static B_PREDICTION_MODE sub_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (B_PREDICTION_MODE) treed_read(bc, vp9_sub_mv_ref_tree, p);
2010-05-18 17:58:33 +02:00
}
#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
2010-05-18 17:58:33 +02:00
};
#endif
2010-05-18 17:58:33 +02:00
static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1};
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15},
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
2010-05-18 17:58:33 +02:00
static void read_switchable_interp_probs(VP9D_COMP* const pbi,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
cm->fc.switchable_interp_prob[j][i] = vp9_read_literal(bc, 8);
}
}
//printf("DECODER: %d %d\n", cm->fc.switchable_interp_prob[0],
//cm->fc.switchable_interp_prob[1]);
}
2010-05-18 17:58:33 +02:00
static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *bc) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
2010-05-18 17:58:33 +02:00
if (cm->frame_type == KEY_FRAME) {
if (!cm->kf_ymode_probs_update)
cm->kf_ymode_probs_index = vp9_read_literal(bc, 3);
} else {
#if CONFIG_PRED_FILTER
cm->pred_filter_mode = (vp9_prob)vp9_read_literal(bc, 2);
if (cm->pred_filter_mode == 2)
cm->prob_pred_filter_off = (vp9_prob)vp9_read_literal(bc, 8);
#endif
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(pbi, bc);
#if CONFIG_COMP_INTERINTRA_PRED
if (cm->use_interintra) {
if (vp9_read(bc, VP9_UPD_INTERINTRA_PROB))
cm->fc.interintra_prob = (vp9_prob)vp9_read_literal(bc, 8);
}
#endif
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = (vp9_prob)vp9_read_literal(bc, 8);
cm->prob_last_coded = (vp9_prob)vp9_read_literal(bc, 8);
cm->prob_gf_coded = (vp9_prob)vp9_read_literal(bc, 8);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
vp9_compute_mod_refprobs(cm);
pbi->common.comp_pred_mode = vp9_read(bc, 128);
if (cm->comp_pred_mode)
cm->comp_pred_mode += vp9_read(bc, 128);
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
int i;
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = (vp9_prob)vp9_read_literal(bc, 8);
}
2010-05-18 17:58:33 +02:00
if (vp9_read_bit(bc)) {
int i = 0;
2010-05-18 17:58:33 +02:00
do {
cm->fc.ymode_prob[i] = (vp9_prob) vp9_read_literal(bc, 8);
} while (++i < VP9_YMODES - 1);
}
#if CONFIG_NEW_MVREF
// Temp defaults probabilities for ecnoding the MV ref id signal
vpx_memset(xd->mb_mv_ref_id_probs, 192, sizeof(xd->mb_mv_ref_id_probs));
#endif
read_nmvprobs(bc, nmvc, xd->allow_high_precision_mv);
}
}
2010-05-18 17:58:33 +02:00
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id(VP9D_COMP *pbi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled) {
if (xd->update_mb_segmentation_map) {
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update) {
// Get the context based probability for reading the
// prediction status flag
vp9_prob pred_prob =
vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
// Read the prediction status flag
unsigned char seg_pred_flag =
(unsigned char)vp9_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_SEG_ID, seg_pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value
if (seg_pred_flag) {
mbmi->segment_id = vp9_get_pred_mb_segid(cm, xd, index);
}
// Else .... decode it explicitly
else {
read_mb_segid(bc, mbmi, xd);
}
}
// Normal unpredicted coding mode
else {
read_mb_segid(bc, mbmi, xd);
}
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
cm->last_frame_seg_map[index] = mbmi->segment_id;
if (mb_col + 1 < cm->mb_cols)
cm->last_frame_seg_map[index + 1] = mbmi->segment_id;
if (mb_row + 1 < cm->mb_rows) {
cm->last_frame_seg_map[index + cm->mb_cols] = mbmi->segment_id;
if (mb_col + 1 < cm->mb_cols)
cm->last_frame_seg_map[index + cm->mb_cols + 1] = mbmi->segment_id;
}
} else
#endif
{
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->segment_id = cm->last_frame_seg_map[index];
if (mb_col < cm->mb_cols - 1)
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + 1];
if (mb_row < cm->mb_rows - 1) {
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + cm->mb_cols];
if (mb_col < cm->mb_cols - 1)
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + cm->mb_cols + 1];
}
} else
#endif
{
mbmi->segment_id = cm->last_frame_seg_map[index];
}
}
} else {
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv = &mbmi->mv[0];
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
mb_to_top_edge = xd->mb_to_top_edge;
mb_to_bottom_edge = xd->mb_to_bottom_edge;
mb_to_top_edge -= LEFT_TOP_MARGIN;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = NONE;
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
*/
xd->mb_to_left_edge =
mb_to_left_edge = -((mb_col * 16) << 3);
mb_to_left_edge -= LEFT_TOP_MARGIN;
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 2 - mb_col) * 16) << 3;
} else {
#endif
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_SUPERBLOCKS
}
#endif
mb_to_right_edge += RIGHT_BOTTOM_MARGIN;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
// Read the macroblock segment id.
read_mb_segment_id(pbi, mb_row, mb_col, bc);
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) != 0))) {
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
mbmi->mb_skip_coeff = vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (vp9_segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) &&
(vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) == 0)) {
mbmi->mb_skip_coeff = 1;
} else
mbmi->mb_skip_coeff = 0;
}
// Read the reference frame
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE)
&& vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE) < NEARESTMV)
mbmi->ref_frame = INTRA_FRAME;
else
mbmi->ref_frame = read_ref_frame(pbi, bc, mbmi->segment_id);
// If reference frame is an Inter frame
if (mbmi->ref_frame) {
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp9_prob mv_ref_p [VP9_MVREFS - 1];
int recon_y_stride, recon_yoffset;
int recon_uv_stride, recon_uvoffset;
{
int ref_fb_idx;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
/* Select the appropriate reference frame for this MB */
if (ref_frame == LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame == GOLDEN_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else
ref_fb_idx = cm->alt_fb_idx;
recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride ;
recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->pre.y_buffer = cm->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cm->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cm->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
vp9_find_mv_refs(xd, mi, prev_mi,
ref_frame, mbmi->ref_mvs[ref_frame],
cm->ref_frame_sign_bias);
vp9_find_best_ref_mvs(xd,
xd->pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[ref_frame],
&best_mv, &nearest, &nearby);
vp9_mv_ref_probs(&pbi->common, mv_ref_p,
mbmi->mb_mode_context[ref_frame]);
}
// Is the segment level mode feature enabled for this segment
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE)) {
mbmi->mode =
vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->mode = read_sb_mv_ref(bc, mv_ref_p);
} else
#endif
mbmi->mode = read_mv_ref(bc, mv_ref_p);
vp9_accum_mv_refs(&pbi->common, mbmi->mode,
mbmi->mb_mode_context[mbmi->ref_frame]);
2011-10-05 12:26:00 +02:00
}
2010-05-18 17:58:33 +02:00
#if CONFIG_PRED_FILTER
if (mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV) {
// Is the prediction filter enabled
if (cm->pred_filter_mode == 2)
mbmi->pred_filter_enabled =
vp9_read(bc, cm->prob_pred_filter_off);
else
mbmi->pred_filter_enabled = cm->pred_filter_mode;
}
#endif
if (mbmi->mode >= NEARESTMV && mbmi->mode <= SPLITMV)
{
if (cm->mcomp_filter_type == SWITCHABLE) {
mbmi->interp_filter = vp9_switchable_interp[
treed_read(bc, vp9_switchable_interp_tree,
vp9_get_pred_probs(cm, xd, PRED_SWITCHABLE_INTERP))];
} else {
mbmi->interp_filter = cm->mcomp_filter_type;
}
}
if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_COMP)))) {
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
if (mbmi->second_ref_frame > 0) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (mbmi->second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cm->lst_fb_idx;
else if (mbmi->second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = cm->gld_fb_idx;
else
second_ref_fb_idx = cm->alt_fb_idx;
xd->second_pre.y_buffer =
cm->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
cm->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
cm->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
vp9_find_mv_refs(xd, mi, prev_mi,
mbmi->second_ref_frame,
mbmi->ref_mvs[mbmi->second_ref_frame],
cm->ref_frame_sign_bias);
vp9_find_best_ref_mvs(xd,
xd->second_pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[mbmi->second_ref_frame],
&best_mv_second,
&nearest_second,
&nearby_second);
}
} else {
#if CONFIG_COMP_INTERINTRA_PRED
if (pbi->common.use_interintra &&
mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV &&
mbmi->second_ref_frame == NONE) {
mbmi->second_ref_frame = (vp9_read(bc, pbi->common.fc.interintra_prob) ?
INTRA_FRAME : NONE);
// printf("-- %d (%d)\n", mbmi->second_ref_frame == INTRA_FRAME,
// pbi->common.fc.interintra_prob);
pbi->common.fc.interintra_counts[
mbmi->second_ref_frame == INTRA_FRAME]++;
if (mbmi->second_ref_frame == INTRA_FRAME) {
mbmi->interintra_mode = (MB_PREDICTION_MODE)read_ymode(
bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->interintra_mode]++;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = (MB_PREDICTION_MODE)read_uv_mode(
bc, pbi->common.fc.uv_mode_prob[mbmi->interintra_mode]);
pbi->common.fc.uv_mode_counts[mbmi->interintra_mode]
[mbmi->interintra_uv_mode]++;
#else
mbmi->interintra_uv_mode = mbmi->interintra_mode;
#endif
// printf("** %d %d\n",
// mbmi->interintra_mode, mbmi->interintra_uv_mode);
}
}
#endif
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode) {
case SPLITMV: {
const int s = mbmi->partitioning =
treed_read(bc, vp9_mbsplit_tree, cm->fc.mbsplit_prob);
const int num_p = vp9_mbsplit_count [s];
int j = 0;
cm->fc.mbsplit_counts[s]++;
2010-05-18 17:58:33 +02:00
mbmi->need_to_clamp_mvs = 0;
do { /* for each subset j */
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int k; /* first block in subset j */
int mv_contz;
int blockmode;
k = vp9_mbsplit_offset[s][j];
leftmv.as_int = left_block_mv(mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
if (mbmi->second_ref_frame > 0) {
second_leftmv.as_int = left_block_second_mv(mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp9_mv_cont(&leftmv, &abovemv);
blockmode = sub_mv_ref(bc, cm->fc.sub_mv_ref_prob [mv_contz]);
cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++;
2010-05-18 17:58:33 +02:00
switch (blockmode) {
case NEW4X4:
read_nmv(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp9_increment_nmv(&blockmv.as_mv, &best_mv.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
blockmv.as_mv.row += best_mv.as_mv.row;
blockmv.as_mv.col += best_mv.as_mv.col;
if (mbmi->second_ref_frame > 0) {
read_nmv(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp9_increment_nmv(&secondmv.as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
secondmv.as_mv.row += best_mv_second.as_mv.row;
secondmv.as_mv.col += best_mv_second.as_mv.col;
}
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mbmi->need_to_clamp_mvs |= check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
mbmi->need_to_clamp_mvs |= check_mv_bounds(&secondmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
const unsigned char *fill_offset;
unsigned int fill_count = mbsplit_fill_count[s];
fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]];
do {
mi->bmi[ *fill_offset].as_mv.first.as_int = blockmv.as_int;
if (mbmi->second_ref_frame > 0)
mi->bmi[ *fill_offset].as_mv.second.as_int = secondmv.as_int;
fill_offset++;
} while (--fill_count);
}
} while (++j < num_p);
}
mv->as_int = mi->bmi[15].as_mv.first.as_int;
mbmi->mv[1].as_int = mi->bmi[15].as_mv.second.as_int;
break; /* done with SPLITMV */
case NEARMV:
mv->as_int = nearby.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
mbmi->mv[1].as_int = nearby_second.as_int;
clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case NEARESTMV:
mv->as_int = nearest.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
mbmi->mv[1].as_int = nearest_second.as_int;
clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case ZEROMV:
mv->as_int = 0;
if (mbmi->second_ref_frame > 0)
mbmi->mv[1].as_int = 0;
break;
2010-05-18 17:58:33 +02:00
case NEWMV:
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
// Encode the index of the choice.
best_index =
vp9_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mv->as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &mv->as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp9_increment_nmv(&mv->as_mv, &best_mv.as_mv, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
mv->as_mv.row += best_mv.as_mv.row;
mv->as_mv.col += best_mv.as_mv.col;
/* Don't need to check this on NEARMV and NEARESTMV modes
* since those modes clamp the MV. The NEWMV mode does not,
* so signal to the prediction stage whether special
* handling may be required.
*/
mbmi->need_to_clamp_mvs = check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->second_ref_frame;
// Encode the index of the choice.
best_index =
vp9_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv_second.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp9_increment_nmv(&mbmi->mv[1].as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
mbmi->mv[1].as_mv.row += best_mv_second.as_mv.row;
mbmi->mv[1].as_mv.col += best_mv_second.as_mv.col;
mbmi->need_to_clamp_secondmv |=
check_mv_bounds(&mbmi->mv[1],
mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
default:
;
#if CONFIG_DEBUG
assert(0);
#endif
}
} else {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE))
mbmi->mode = (MB_PREDICTION_MODE)
vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
else {
// FIXME write using SB mode tree
mbmi->mode = (MB_PREDICTION_MODE)
read_ymode(bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED) {
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp9_read(bc, DEFAULT_COMP_INTRA_PROB);
#endif
do {
int m;
m = mi->bmi[j].as_mode.first = (B_PREDICTION_MODE)
read_bmode(bc, pbi->common.fc.bmode_prob);
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
pbi->common.fc.bmode_counts[m]++;
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)read_bmode(bc, pbi->common.fc.bmode_prob);
} else {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++j < 16);
}
2010-05-18 17:58:33 +02:00
if (mbmi->mode == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
mi->bmi[ib + 0].as_mode.first = mode8x8;
mi->bmi[ib + 1].as_mode.first = mode8x8;
mi->bmi[ib + 4].as_mode.first = mode8x8;
mi->bmi[ib + 5].as_mode.first = mode8x8;
pbi->common.fc.i8x8_mode_counts[mode8x8]++;
#if CONFIG_COMP_INTRA_PRED
mi->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else {
mbmi->uv_mode = (MB_PREDICTION_MODE)read_uv_mode(
bc, pbi->common.fc.uv_mode_prob[mbmi->mode]);
pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
2010-05-18 17:58:33 +02:00
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= I8X8_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && !(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4)))) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
mbmi->txfm_size = vp9_read(bc, cm->prob_tx[0]);
if (mbmi->txfm_size != TX_4X4 && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV)
mbmi->txfm_size += vp9_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
(!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == B_PRED) &&
!(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4))) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
2010-05-18 17:58:33 +02:00
void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, BOOL_DECODER* const bc) {
VP9_COMMON *cm = &pbi->common;
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
if (pbi->common.mb_no_coeff_skip) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cm->mbskip_pred_probs[k] = (vp9_prob)vp9_read_literal(bc, 8);
}
mb_mode_mv_init(pbi, bc);
}
void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
MACROBLOCKD* const xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *prev_mi = xd->prev_mode_info_context;
if (pbi->common.frame_type == KEY_FRAME)
kfread_modes(pbi, mi, mb_row, mb_col, bc);
else
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col, bc);
}