2010-08-20 10:58:19 -07:00
|
|
|
/*
|
2010-09-09 08:16:39 -04:00
|
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
2010-08-20 10:58:19 -07:00
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license
|
|
|
|
* that can be found in the LICENSE file in the root of the source
|
|
|
|
* tree. An additional intellectual property rights grant can be found
|
|
|
|
* in the file PATENTS. All contributing project authors may
|
|
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
|
|
*/
|
|
|
|
|
2012-11-08 17:09:30 -08:00
|
|
|
#include "vp9_rtcd.h"
|
2012-11-27 13:59:17 -08:00
|
|
|
#include "vp9/common/vp9_blockd.h"
|
2013-04-22 17:53:07 -04:00
|
|
|
#include "vp9/decoder/vp9_idct_blk.h"
|
2010-10-27 11:21:02 -04:00
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
void vp9_idct_add_y_block_c(int16_t *q, uint8_t *dst, int stride,
|
|
|
|
MACROBLOCKD *xd) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
for (j = 0; j < 4; j++) {
|
2013-04-22 17:53:07 -04:00
|
|
|
vp9_idct_add(q, dst, stride, xd->plane[0].eobs[i * 4 + j]);
|
2012-07-13 15:21:29 -07:00
|
|
|
q += 16;
|
|
|
|
dst += 4;
|
2010-08-20 10:58:19 -07:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
|
|
|
|
dst += 4 * stride - 16;
|
|
|
|
}
|
2010-08-20 10:58:19 -07:00
|
|
|
}
|
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
void vp9_idct_add_uv_block_c(int16_t *q, uint8_t *dst, int stride,
|
|
|
|
uint16_t *eobs) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
|
|
for (j = 0; j < 2; j++) {
|
2013-04-22 17:53:07 -04:00
|
|
|
vp9_idct_add(q, dst, stride, eobs[i * 2 + j]);
|
2013-04-02 14:50:40 -07:00
|
|
|
q += 16;
|
|
|
|
dst += 4;
|
2010-08-20 10:58:19 -07:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
|
2013-04-02 14:50:40 -07:00
|
|
|
dst += 4 * stride - 8;
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
2010-08-20 10:58:19 -07:00
|
|
|
}
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
void vp9_idct_add_y_block_8x8_c(int16_t *q, uint8_t *dst, int stride,
|
|
|
|
MACROBLOCKD *xd) {
|
2012-12-18 15:31:19 -08:00
|
|
|
uint8_t *origdest = dst;
|
2011-02-14 14:18:18 -08:00
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
vp9_idct_add_8x8_c(q, dst, stride, xd->plane[0].eobs[0]);
|
|
|
|
vp9_idct_add_8x8_c(&q[64], origdest + 8, stride, xd->plane[0].eobs[4]);
|
|
|
|
vp9_idct_add_8x8_c(&q[128], origdest + 8 * stride, stride,
|
|
|
|
xd->plane[0].eobs[8]);
|
|
|
|
vp9_idct_add_8x8_c(&q[192], origdest + 8 * stride + 8, stride,
|
|
|
|
xd->plane[0].eobs[12]);
|
2011-02-14 14:18:18 -08:00
|
|
|
}
|
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
void vp9_idct_add_y_block_lossless_c(int16_t *q, uint8_t *dst, int stride,
|
|
|
|
MACROBLOCKD *xd) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
for (j = 0; j < 4; j++) {
|
2013-04-22 17:53:07 -04:00
|
|
|
vp9_idct_add_lossless_c(q, dst, stride, xd->plane[0].eobs[i * 4 + j]);
|
2012-07-13 15:21:29 -07:00
|
|
|
q += 16;
|
|
|
|
dst += 4;
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
|
|
|
|
dst += 4 * stride - 16;
|
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
void vp9_idct_add_uv_block_lossless_c(int16_t *q, uint8_t *dst, int stride,
|
|
|
|
uint16_t *eobs) {
|
2012-07-13 15:21:29 -07:00
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
|
|
for (j = 0; j < 2; j++) {
|
2013-04-22 17:53:07 -04:00
|
|
|
vp9_idct_add_lossless_c(q, dst, stride, eobs[i * 2 + j]);
|
2013-04-02 14:50:40 -07:00
|
|
|
q += 16;
|
|
|
|
dst += 4;
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
2012-07-13 15:21:29 -07:00
|
|
|
|
2013-04-02 14:50:40 -07:00
|
|
|
dst += 4 * stride - 8;
|
2012-07-13 15:21:29 -07:00
|
|
|
}
|
Add lossless compression mode.
This commit adds lossless compression capability to the experimental
branch. The lossless experiment can be enabled using --enable-lossless
in configure. When the experiment is enabled, the encoder will use
lossless compression mode by command line option --lossless, and the
decoder automatically recognizes a losslessly encoded clip and decodes
accordingly.
To achieve the lossless coding, this commit has changed the following:
1. To encode at lossless mode, encoder forces the use of unit
quantizer, i.e, Q 0, where effective quantization is 1. Encoder also
disables the usage of 8x8 transform and allows only 4x4 transform;
2. At Q 0, the first order 4x4 DCT/IDCT have been switched over
to a pair of forward and inverse Walsh-Hadamard Transform
(http://goo.gl/EIsfy), with proper scaling applied to match the range
of the original 4x4 DCT/IDCT pair;
3. At Q 0, the second order remains to use the previous
walsh-hadamard transform pair. However, to maintain the reversibility
in second order transform at Q 0, scaling down is applied to first
order DC coefficients prior to forward transform, and scaling up is
applied to the second order output prior to quantization. Symmetric
upscaling and downscaling are added around inverse second order
transform;
4. At lossless mode, encoder also disables a number of minor
features to ensure no loss is introduced, these features includes:
a. Trellis quantization optimization
b. Loop filtering
c. Aggressive zero-binning, rounding and zero-bin boosting
d. Mode based zero-bin boosting
Lossless coding test was performed on all clips within the derf set,
to verify that the commit has achieved lossless compression for all
clips. The average compression ratio is around 2.57 to 1.
(http://goo.gl/dEShs)
Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
|
|
|
}
|
|
|
|
|
2013-04-22 17:53:07 -04:00
|
|
|
static void add_residual(const int16_t *diff, uint8_t *dest, int stride,
|
|
|
|
int width, int height) {
|
|
|
|
int r, c;
|
|
|
|
|
|
|
|
for (r = 0; r < height; r++) {
|
|
|
|
for (c = 0; c < width; c++)
|
|
|
|
dest[c] = clip_pixel(diff[c] + dest[c]);
|
|
|
|
|
|
|
|
dest += stride;
|
|
|
|
diff += width;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_add_residual_4x4_c(const int16_t *diff, uint8_t *dest, int stride) {
|
|
|
|
add_residual(diff, dest, stride, 4, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_add_residual_8x8_c(const int16_t *diff, uint8_t *dest, int stride) {
|
|
|
|
add_residual(diff, dest, stride, 8, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_constant_residual(const int16_t diff, uint8_t *dest, int stride,
|
|
|
|
int width, int height) {
|
|
|
|
int r, c;
|
|
|
|
|
|
|
|
for (r = 0; r < height; r++) {
|
|
|
|
for (c = 0; c < width; c++)
|
|
|
|
dest[c] = clip_pixel(diff + dest[c]);
|
|
|
|
|
|
|
|
dest += stride;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_add_constant_residual_8x8_c(const int16_t diff, uint8_t *dest,
|
|
|
|
int stride) {
|
|
|
|
add_constant_residual(diff, dest, stride, 8, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_add_constant_residual_16x16_c(const int16_t diff, uint8_t *dest,
|
|
|
|
int stride) {
|
|
|
|
add_constant_residual(diff, dest, stride, 16, 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_add_constant_residual_32x32_c(const int16_t diff, uint8_t *dest,
|
|
|
|
int stride) {
|
|
|
|
add_constant_residual(diff, dest, stride, 32, 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_iht_add_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest, int stride,
|
|
|
|
int eob) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_idct_add(input, dest, stride, eob);
|
|
|
|
} else {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16);
|
|
|
|
|
|
|
|
vp9_short_iht4x4(input, output, 4, tx_type);
|
|
|
|
vpx_memset(input, 0, 32);
|
|
|
|
vp9_add_residual_4x4(output, dest, stride);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_iht_add_8x8_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest,
|
|
|
|
int stride, int eob) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_idct_add_8x8(input, dest, stride, eob);
|
|
|
|
} else {
|
|
|
|
if (eob > 0) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 64);
|
|
|
|
|
|
|
|
vp9_short_iht8x8(input, output, 8, tx_type);
|
|
|
|
vpx_memset(input, 0, 128);
|
|
|
|
vp9_add_residual_8x8(output, dest, stride);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_idct_add_c(int16_t *input, uint8_t *dest, int stride, int eob) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16);
|
|
|
|
|
|
|
|
if (eob > 1) {
|
|
|
|
// the idct halves ( >> 1) the pitch
|
|
|
|
vp9_short_idct4x4(input, output, 4 << 1);
|
|
|
|
vpx_memset(input, 0, 32);
|
|
|
|
vp9_add_residual_4x4(output, dest, stride);
|
|
|
|
} else {
|
|
|
|
vp9_dc_only_idct_add(input[0], dest, dest, stride, stride);
|
|
|
|
((int *)input)[0] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_dc_idct_add_c(int16_t *input, uint8_t *dest, int stride, int dc) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16);
|
|
|
|
|
|
|
|
input[0] = dc;
|
|
|
|
|
|
|
|
// the idct halves ( >> 1) the pitch
|
|
|
|
vp9_short_idct4x4(input, output, 4 << 1);
|
|
|
|
vpx_memset(input, 0, 32);
|
|
|
|
vp9_add_residual_4x4(output, dest, stride);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_idct_add_lossless_c(int16_t *input, uint8_t *dest, int stride,
|
|
|
|
int eob) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16);
|
|
|
|
|
|
|
|
if (eob > 1) {
|
|
|
|
vp9_short_iwalsh4x4_c(input, output, 4 << 1);
|
|
|
|
vpx_memset(input, 0, 32);
|
|
|
|
vp9_add_residual_4x4(output, dest, stride);
|
|
|
|
} else {
|
|
|
|
vp9_dc_only_inv_walsh_add(input[0], dest, dest, stride, stride);
|
|
|
|
((int *)input)[0] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_dc_idct_add_lossless_c(int16_t *input, uint8_t *dest,
|
|
|
|
int stride, int dc) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16);
|
|
|
|
|
|
|
|
input[0] = dc;
|
|
|
|
vp9_short_iwalsh4x4_c(input, output, 4 << 1);
|
|
|
|
vpx_memset(input, 0, 32);
|
|
|
|
vp9_add_residual_4x4(output, dest, stride);
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_idct_add_8x8_c(int16_t *input, uint8_t *dest, int stride, int eob) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 64);
|
|
|
|
|
|
|
|
// If dc is 1, then input[0] is the reconstructed value, do not need
|
|
|
|
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
|
|
|
|
|
|
|
|
// The calculation can be simplified if there are not many non-zero dct
|
|
|
|
// coefficients. Use eobs to decide what to do.
|
|
|
|
// TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c.
|
|
|
|
// Combine that with code here.
|
|
|
|
if (eob) {
|
|
|
|
if (eob == 1) {
|
|
|
|
// DC only DCT coefficient
|
|
|
|
int16_t in = input[0];
|
|
|
|
int16_t out;
|
|
|
|
|
|
|
|
// Note: the idct1 will need to be modified accordingly whenever
|
|
|
|
// vp9_short_idct8x8_c() is modified.
|
|
|
|
vp9_short_idct1_8x8_c(&in, &out);
|
|
|
|
input[0] = 0;
|
|
|
|
|
|
|
|
vp9_add_constant_residual_8x8(out, dest, stride);
|
|
|
|
#if !CONFIG_SCATTERSCAN
|
|
|
|
} else if (eob <= 10) {
|
|
|
|
vp9_short_idct10_8x8(input, output, 16);
|
|
|
|
|
|
|
|
input[0] = input[1] = input[2] = input[3] = 0;
|
|
|
|
input[8] = input[9] = input[10] = 0;
|
|
|
|
input[16] = input[17] = 0;
|
|
|
|
input[24] = 0;
|
|
|
|
|
|
|
|
vp9_add_residual_8x8(output, dest, stride);
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
// the idct halves ( >> 1) the pitch
|
|
|
|
vp9_short_idct8x8(input, output, 8 << 1);
|
|
|
|
vpx_memset(input, 0, 128);
|
|
|
|
vp9_add_residual_8x8(output, dest, stride);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_iht_add_16x16_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest,
|
|
|
|
int stride, int eob) {
|
|
|
|
if (tx_type == DCT_DCT) {
|
|
|
|
vp9_idct_add_16x16(input, dest, stride, eob);
|
|
|
|
} else {
|
|
|
|
if (eob > 0) {
|
2013-05-15 13:16:02 -04:00
|
|
|
vp9_short_iht16x16_add(input, dest, stride, tx_type);
|
2013-04-22 17:53:07 -04:00
|
|
|
vpx_memset(input, 0, 512);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_idct_add_16x16_c(int16_t *input, uint8_t *dest, int stride, int eob) {
|
|
|
|
/* The calculation can be simplified if there are not many non-zero dct
|
|
|
|
* coefficients. Use eobs to separate different cases. */
|
|
|
|
if (eob) {
|
|
|
|
if (eob == 1) {
|
|
|
|
/* DC only DCT coefficient. */
|
|
|
|
int16_t in = input[0];
|
|
|
|
int16_t out;
|
|
|
|
/* Note: the idct1 will need to be modified accordingly whenever
|
|
|
|
* vp9_short_idct16x16() is modified. */
|
|
|
|
vp9_short_idct1_16x16_c(&in, &out);
|
|
|
|
input[0] = 0;
|
|
|
|
|
|
|
|
vp9_add_constant_residual_16x16(out, dest, stride);
|
|
|
|
#if !CONFIG_SCATTERSCAN
|
|
|
|
} else if (eob <= 10) {
|
2013-05-15 13:16:02 -04:00
|
|
|
vp9_short_idct10_16x16_add(input, dest, stride);
|
2013-04-22 17:53:07 -04:00
|
|
|
input[0] = input[1] = input[2] = input[3] = 0;
|
|
|
|
input[16] = input[17] = input[18] = 0;
|
|
|
|
input[32] = input[33] = 0;
|
|
|
|
input[48] = 0;
|
|
|
|
#endif
|
|
|
|
} else {
|
2013-05-15 13:16:02 -04:00
|
|
|
vp9_short_idct16x16_add(input, dest, stride);
|
2013-04-22 17:53:07 -04:00
|
|
|
vpx_memset(input, 0, 512);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void vp9_idct_add_32x32_c(int16_t *input, uint8_t *dest, int stride, int eob) {
|
|
|
|
DECLARE_ALIGNED_ARRAY(16, int16_t, output, 1024);
|
|
|
|
|
|
|
|
if (eob) {
|
|
|
|
if (eob == 1) {
|
|
|
|
vp9_short_idct1_32x32(input, output);
|
|
|
|
vp9_add_constant_residual_32x32(output[0], dest, stride);
|
|
|
|
input[0] = 0;
|
|
|
|
#if !CONFIG_SCATTERSCAN
|
|
|
|
} else if (eob <= 10) {
|
2013-05-14 11:58:13 -04:00
|
|
|
vp9_short_idct10_32x32_add_c(input, dest, stride);
|
2013-04-22 17:53:07 -04:00
|
|
|
input[0] = input[1] = input[2] = input[3] = 0;
|
|
|
|
input[32] = input[33] = input[34] = 0;
|
|
|
|
input[64] = input[65] = 0;
|
|
|
|
input[96] = 0;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
} else {
|
2013-05-14 11:58:13 -04:00
|
|
|
vp9_short_idct32x32_add(input, dest, stride);
|
2013-04-22 17:53:07 -04:00
|
|
|
vpx_memset(input, 0, 2048);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|