vpx/vp9/common/vp9_idct.c

1310 lines
39 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <assert.h>
#include <math.h>
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_idct.h"
void vp9_short_iwalsh4x4_c(int16_t *input, int16_t *output, int pitch) {
int i;
int a1, b1, c1, d1;
int16_t *ip = input;
int16_t *op = output;
const int half_pitch = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = (ip[0] + ip[3]) >> WHT_UPSCALE_FACTOR;
b1 = (ip[1] + ip[2]) >> WHT_UPSCALE_FACTOR;
c1 = (ip[1] - ip[2]) >> WHT_UPSCALE_FACTOR;
d1 = (ip[0] - ip[3]) >> WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += half_pitch;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[half_pitch * 0] + ip[half_pitch * 3];
b1 = ip[half_pitch * 1] + ip[half_pitch * 2];
c1 = ip[half_pitch * 1] - ip[half_pitch * 2];
d1 = ip[half_pitch * 0] - ip[half_pitch * 3];
op[half_pitch * 0] = (a1 + b1 + 1) >> 1;
op[half_pitch * 1] = (c1 + d1) >> 1;
op[half_pitch * 2] = (a1 - b1) >> 1;
op[half_pitch * 3] = (d1 - c1) >> 1;
ip++;
op++;
}
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
void vp9_short_iwalsh4x4_1_c(int16_t *in, int16_t *out, int pitch) {
int i;
int16_t tmp[4];
int16_t *ip = in;
int16_t *op = tmp;
const int half_pitch = pitch >> 1;
op[0] = ((ip[0] >> WHT_UPSCALE_FACTOR) + 1) >> 1;
op[1] = op[2] = op[3] = (ip[0] >> WHT_UPSCALE_FACTOR) >> 1;
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[half_pitch * 0] = (ip[0] + 1) >> 1;
op[half_pitch * 1] = op[half_pitch * 2] = op[half_pitch * 3] = ip[0] >> 1;
ip++;
op++;
}
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
void vp9_dc_only_inv_walsh_add_c(int input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr,
int pitch, int stride) {
int r, c;
int16_t dc = input_dc;
int16_t tmp[4 * 4];
vp9_short_iwalsh4x4_1_c(&dc, tmp, 4 << 1);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
dst_ptr[c] = clip_pixel(tmp[r * 4 + c] + pred_ptr[c]);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
dst_ptr += stride;
pred_ptr += pitch;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
}
void vp9_idct4_1d_c(int16_t *input, int16_t *output) {
int16_t step[4];
int temp1, temp2;
// stage 1
temp1 = (input[0] + input[2]) * cospi_16_64;
temp2 = (input[0] - input[2]) * cospi_16_64;
step[0] = dct_const_round_shift(temp1);
step[1] = dct_const_round_shift(temp2);
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step[2] = dct_const_round_shift(temp1);
step[3] = dct_const_round_shift(temp2);
// stage 2
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = step[1] - step[2];
output[3] = step[0] - step[3];
}
void vp9_short_idct4x4_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[4 * 4];
int16_t *outptr = out;
const int half_pitch = pitch >> 1;
int i, j;
int16_t temp_in[4], temp_out[4];
// Rows
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = input[j];
vp9_idct4_1d(temp_in, outptr);
input += 4;
outptr += 4;
}
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
vp9_idct4_1d(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j * half_pitch + i] = ROUND_POWER_OF_TWO(temp_out[j], 4);
}
}
void vp9_short_idct4x4_1_c(int16_t *input, int16_t *output, int pitch) {
int i;
int a1;
int16_t *op = output;
const int half_pitch = pitch >> 1;
int16_t out = dct_const_round_shift(input[0] * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
a1 = ROUND_POWER_OF_TWO(out, 4);
for (i = 0; i < 4; i++) {
op[0] = op[1] = op[2] = op[3] = a1;
op += half_pitch;
}
}
void vp9_dc_only_idct_add_c(int input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr, int pitch, int stride) {
int a1;
int r, c;
int16_t out = dct_const_round_shift(input_dc * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
a1 = ROUND_POWER_OF_TWO(out, 4);
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
dst_ptr[c] = clip_pixel(a1 + pred_ptr[c]);
dst_ptr += stride;
pred_ptr += pitch;
}
}
static void idct8_1d(int16_t *input, int16_t *output) {
int16_t step1[8], step2[8];
int temp1, temp2;
// stage 1
step1[0] = input[0];
step1[2] = input[4];
step1[1] = input[2];
step1[3] = input[6];
temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64;
temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64;
temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
// stage 2 & stage 3 - even half
vp9_idct4_1d(step1, step1);
// stage 2 - odd half
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
// stage 3 -odd half
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
// stage 4
output[0] = step1[0] + step1[7];
output[1] = step1[1] + step1[6];
output[2] = step1[2] + step1[5];
output[3] = step1[3] + step1[4];
output[4] = step1[3] - step1[4];
output[5] = step1[2] - step1[5];
output[6] = step1[1] - step1[6];
output[7] = step1[0] - step1[7];
}
void vp9_short_idct8x8_add_c(int16_t *input, uint8_t *dest, int dest_stride) {
int16_t out[8 * 8];
int16_t *outptr = out;
int i, j;
int16_t temp_in[8], temp_out[8];
// First transform rows
for (i = 0; i < 8; ++i) {
idct8_1d(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8_1d(temp_in, temp_out);
for (j = 0; j < 8; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 5)
+ dest[j * dest_stride + i]);
}
}
static void iadst4_1d(int16_t *input, int16_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7;
int x0 = input[0];
int x1 = input[1];
int x2 = input[2];
int x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_2_9 * x0;
s2 = sinpi_3_9 * x1;
s3 = sinpi_4_9 * x2;
s4 = sinpi_1_9 * x2;
s5 = sinpi_2_9 * x3;
s6 = sinpi_4_9 * x3;
s7 = x0 - x2 + x3;
x0 = s0 + s3 + s5;
x1 = s1 - s4 - s6;
x2 = sinpi_3_9 * s7;
x3 = s2;
s0 = x0 + x3;
s1 = x1 + x3;
s2 = x2;
s3 = x0 + x1 - x3;
// 1-D transform scaling factor is sqrt(2).
// The overall dynamic range is 14b (input) + 14b (multiplication scaling)
// + 1b (addition) = 29b.
// Hence the output bit depth is 15b.
output[0] = dct_const_round_shift(s0);
output[1] = dct_const_round_shift(s1);
output[2] = dct_const_round_shift(s2);
output[3] = dct_const_round_shift(s3);
}
void vp9_short_iht4x4_c(int16_t *input, int16_t *output,
int pitch, int tx_type) {
const transform_2d IHT_4[] = {
{ vp9_idct4_1d, vp9_idct4_1d }, // DCT_DCT = 0
{ iadst4_1d, vp9_idct4_1d }, // ADST_DCT = 1
{ vp9_idct4_1d, iadst4_1d }, // DCT_ADST = 2
{ iadst4_1d, iadst4_1d } // ADST_ADST = 3
};
int i, j;
int16_t out[4 * 4];
int16_t *outptr = out;
int16_t temp_in[4], temp_out[4];
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, outptr);
input += 4;
outptr += 4;
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
IHT_4[tx_type].cols(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j * pitch + i] = ROUND_POWER_OF_TWO(temp_out[j], 4);
}
}
static void iadst8_1d(int16_t *input, int16_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7;
int x0 = input[7];
int x1 = input[0];
int x2 = input[5];
int x3 = input[2];
int x4 = input[3];
int x5 = input[4];
int x6 = input[1];
int x7 = input[6];
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) {
output[0] = output[1] = output[2] = output[3] = output[4]
= output[5] = output[6] = output[7] = 0;
return;
}
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = dct_const_round_shift(s0 + s4);
x1 = dct_const_round_shift(s1 + s5);
x2 = dct_const_round_shift(s2 + s6);
x3 = dct_const_round_shift(s3 + s7);
x4 = dct_const_round_shift(s0 - s4);
x5 = dct_const_round_shift(s1 - s5);
x6 = dct_const_round_shift(s2 - s6);
x7 = dct_const_round_shift(s3 - s7);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = -cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = dct_const_round_shift(s4 + s6);
x5 = dct_const_round_shift(s5 + s7);
x6 = dct_const_round_shift(s4 - s6);
x7 = dct_const_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = dct_const_round_shift(s2);
x3 = dct_const_round_shift(s3);
x6 = dct_const_round_shift(s6);
x7 = dct_const_round_shift(s7);
output[0] = x0;
output[1] = -x4;
output[2] = x6;
output[3] = -x2;
output[4] = x3;
output[5] = -x7;
output[6] = x5;
output[7] = -x1;
}
static const transform_2d IHT_8[] = {
{ idct8_1d, idct8_1d }, // DCT_DCT = 0
{ iadst8_1d, idct8_1d }, // ADST_DCT = 1
{ idct8_1d, iadst8_1d }, // DCT_ADST = 2
{ iadst8_1d, iadst8_1d } // ADST_ADST = 3
};
void vp9_short_iht8x8_add_c(int16_t *input, uint8_t *dest, int dest_stride,
int tx_type) {
int i, j;
int16_t out[8 * 8];
int16_t *outptr = out;
int16_t temp_in[8], temp_out[8];
const transform_2d ht = IHT_8[tx_type];
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
ht.rows(input, outptr);
input += 8;
outptr += 8;
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 5)
+ dest[j * dest_stride + i]); }
}
void vp9_short_idct10_8x8_add_c(int16_t *input, uint8_t *dest,
int dest_stride) {
int16_t out[8 * 8];
int16_t *outptr = out;
int i, j;
int16_t temp_in[8], temp_out[8];
vpx_memset(out, 0, sizeof(out));
// First transform rows
// only first 4 row has non-zero coefs
for (i = 0; i < 4; ++i) {
idct8_1d(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8_1d(temp_in, temp_out);
for (j = 0; j < 8; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 5)
+ dest[j * dest_stride + i]);
}
}
void vp9_short_idct1_8x8_c(int16_t *input, int16_t *output) {
int16_t out = dct_const_round_shift(input[0] * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
output[0] = ROUND_POWER_OF_TWO(out, 5);
}
static void idct16_1d(int16_t *input, int16_t *output) {
int16_t step1[16], step2[16];
int temp1, temp2;
// stage 1
step1[0] = input[0/2];
step1[1] = input[16/2];
step1[2] = input[8/2];
step1[3] = input[24/2];
step1[4] = input[4/2];
step1[5] = input[20/2];
step1[6] = input[12/2];
step1[7] = input[28/2];
step1[8] = input[2/2];
step1[9] = input[18/2];
step1[10] = input[10/2];
step1[11] = input[26/2];
step1[12] = input[6/2];
step1[13] = input[22/2];
step1[14] = input[14/2];
step1[15] = input[30/2];
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = dct_const_round_shift(temp1);
step2[15] = dct_const_round_shift(temp2);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[8] = step2[8] + step2[9];
step1[9] = step2[8] - step2[9];
step1[10] = -step2[10] + step2[11];
step1[11] = step2[10] + step2[11];
step1[12] = step2[12] + step2[13];
step1[13] = step2[12] - step2[13];
step1[14] = -step2[14] + step2[15];
step1[15] = step2[14] + step2[15];
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = dct_const_round_shift(temp1);
step2[1] = dct_const_round_shift(temp2);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = dct_const_round_shift(temp1);
step2[3] = dct_const_round_shift(temp2);
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
step2[11] = step1[11];
step2[12] = step1[12];
// stage 5
step1[0] = step2[0] + step2[3];
step1[1] = step2[1] + step2[2];
step1[2] = step2[1] - step2[2];
step1[3] = step2[0] - step2[3];
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
step1[8] = step2[8] + step2[11];
step1[9] = step2[9] + step2[10];
step1[10] = step2[9] - step2[10];
step1[11] = step2[8] - step2[11];
step1[12] = -step2[12] + step2[15];
step1[13] = -step2[13] + step2[14];
step1[14] = step2[13] + step2[14];
step1[15] = step2[12] + step2[15];
// stage 6
step2[0] = step1[0] + step1[7];
step2[1] = step1[1] + step1[6];
step2[2] = step1[2] + step1[5];
step2[3] = step1[3] + step1[4];
step2[4] = step1[3] - step1[4];
step2[5] = step1[2] - step1[5];
step2[6] = step1[1] - step1[6];
step2[7] = step1[0] - step1[7];
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[14] = step1[14];
step2[15] = step1[15];
// stage 7
output[0] = step2[0] + step2[15];
output[1] = step2[1] + step2[14];
output[2] = step2[2] + step2[13];
output[3] = step2[3] + step2[12];
output[4] = step2[4] + step2[11];
output[5] = step2[5] + step2[10];
output[6] = step2[6] + step2[9];
output[7] = step2[7] + step2[8];
output[8] = step2[7] - step2[8];
output[9] = step2[6] - step2[9];
output[10] = step2[5] - step2[10];
output[11] = step2[4] - step2[11];
output[12] = step2[3] - step2[12];
output[13] = step2[2] - step2[13];
output[14] = step2[1] - step2[14];
output[15] = step2[0] - step2[15];
}
void vp9_short_idct16x16_add_c(int16_t *input, uint8_t *dest, int dest_stride) {
int16_t out[16 * 16];
int16_t *outptr = out;
int i, j;
int16_t temp_in[16], temp_out[16];
// First transform rows
for (i = 0; i < 16; ++i) {
idct16_1d(input, outptr);
input += 16;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
idct16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6)
+ dest[j * dest_stride + i]);
}
}
void iadst16_1d(int16_t *input, int16_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
int x0 = input[15];
int x1 = input[0];
int x2 = input[13];
int x3 = input[2];
int x4 = input[11];
int x5 = input[4];
int x6 = input[9];
int x7 = input[6];
int x8 = input[7];
int x9 = input[8];
int x10 = input[5];
int x11 = input[10];
int x12 = input[3];
int x13 = input[12];
int x14 = input[1];
int x15 = input[14];
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8
| x9 | x10 | x11 | x12 | x13 | x14 | x15)) {
output[0] = output[1] = output[2] = output[3] = output[4]
= output[5] = output[6] = output[7] = output[8]
= output[9] = output[10] = output[11] = output[12]
= output[13] = output[14] = output[15] = 0;
return;
}
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = dct_const_round_shift(s0 + s8);
x1 = dct_const_round_shift(s1 + s9);
x2 = dct_const_round_shift(s2 + s10);
x3 = dct_const_round_shift(s3 + s11);
x4 = dct_const_round_shift(s4 + s12);
x5 = dct_const_round_shift(s5 + s13);
x6 = dct_const_round_shift(s6 + s14);
x7 = dct_const_round_shift(s7 + s15);
x8 = dct_const_round_shift(s0 - s8);
x9 = dct_const_round_shift(s1 - s9);
x10 = dct_const_round_shift(s2 - s10);
x11 = dct_const_round_shift(s3 - s11);
x12 = dct_const_round_shift(s4 - s12);
x13 = dct_const_round_shift(s5 - s13);
x14 = dct_const_round_shift(s6 - s14);
x15 = dct_const_round_shift(s7 - s15);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = s0 - s4;
x5 = s1 - s5;
x6 = s2 - s6;
x7 = s3 - s7;
x8 = dct_const_round_shift(s8 + s12);
x9 = dct_const_round_shift(s9 + s13);
x10 = dct_const_round_shift(s10 + s14);
x11 = dct_const_round_shift(s11 + s15);
x12 = dct_const_round_shift(s8 - s12);
x13 = dct_const_round_shift(s9 - s13);
x14 = dct_const_round_shift(s10 - s14);
x15 = dct_const_round_shift(s11 - s15);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = dct_const_round_shift(s4 + s6);
x5 = dct_const_round_shift(s5 + s7);
x6 = dct_const_round_shift(s4 - s6);
x7 = dct_const_round_shift(s5 - s7);
x8 = s8 + s10;
x9 = s9 + s11;
x10 = s8 - s10;
x11 = s9 - s11;
x12 = dct_const_round_shift(s12 + s14);
x13 = dct_const_round_shift(s13 + s15);
x14 = dct_const_round_shift(s12 - s14);
x15 = dct_const_round_shift(s13 - s15);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (- x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (- x10 + x11);
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = dct_const_round_shift(s2);
x3 = dct_const_round_shift(s3);
x6 = dct_const_round_shift(s6);
x7 = dct_const_round_shift(s7);
x10 = dct_const_round_shift(s10);
x11 = dct_const_round_shift(s11);
x14 = dct_const_round_shift(s14);
x15 = dct_const_round_shift(s15);
output[0] = x0;
output[1] = -x8;
output[2] = x12;
output[3] = -x4;
output[4] = x6;
output[5] = x14;
output[6] = x10;
output[7] = x2;
output[8] = x3;
output[9] = x11;
output[10] = x15;
output[11] = x7;
output[12] = x5;
output[13] = -x13;
output[14] = x9;
output[15] = -x1;
}
static const transform_2d IHT_16[] = {
{ idct16_1d, idct16_1d }, // DCT_DCT = 0
{ iadst16_1d, idct16_1d }, // ADST_DCT = 1
{ idct16_1d, iadst16_1d }, // DCT_ADST = 2
{ iadst16_1d, iadst16_1d } // ADST_ADST = 3
};
void vp9_short_iht16x16_add_c(int16_t *input, uint8_t *dest, int dest_stride,
int tx_type) {
int i, j;
int16_t out[16 * 16];
int16_t *outptr = out;
int16_t temp_in[16], temp_out[16];
const transform_2d ht = IHT_16[tx_type];
// Rows
for (i = 0; i < 16; ++i) {
ht.rows(input, outptr);
input += 16;
outptr += 16;
}
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6)
+ dest[j * dest_stride + i]); }
}
void vp9_short_idct10_16x16_add_c(int16_t *input, uint8_t *dest,
int dest_stride) {
int16_t out[16 * 16];
int16_t *outptr = out;
int i, j;
int16_t temp_in[16], temp_out[16];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
/* First transform rows. Since all non-zero dct coefficients are in
* upper-left 4x4 area, we only need to calculate first 4 rows here.
*/
vpx_memset(out, 0, sizeof(out));
for (i = 0; i < 4; ++i) {
idct16_1d(input, outptr);
input += 16;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
idct16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6)
+ dest[j * dest_stride + i]);
}
}
void vp9_short_idct1_16x16_c(int16_t *input, int16_t *output) {
int16_t out = dct_const_round_shift(input[0] * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
output[0] = ROUND_POWER_OF_TWO(out, 6);
}
static void idct32_1d(int16_t *input, int16_t *output) {
int16_t step1[32], step2[32];
int temp1, temp2;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
// stage 1
step1[0] = input[0];
step1[1] = input[16];
step1[2] = input[8];
step1[3] = input[24];
step1[4] = input[4];
step1[5] = input[20];
step1[6] = input[12];
step1[7] = input[28];
step1[8] = input[2];
step1[9] = input[18];
step1[10] = input[10];
step1[11] = input[26];
step1[12] = input[6];
step1[13] = input[22];
step1[14] = input[14];
step1[15] = input[30];
temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64;
temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64;
step1[16] = dct_const_round_shift(temp1);
step1[31] = dct_const_round_shift(temp2);
temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64;
temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64;
step1[17] = dct_const_round_shift(temp1);
step1[30] = dct_const_round_shift(temp2);
temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64;
temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64;
temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64;
step1[19] = dct_const_round_shift(temp1);
step1[28] = dct_const_round_shift(temp2);
temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64;
temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64;
temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64;
temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64;
temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64;
step1[23] = dct_const_round_shift(temp1);
step1[24] = dct_const_round_shift(temp2);
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = dct_const_round_shift(temp1);
step2[15] = dct_const_round_shift(temp2);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[16] = step1[16] + step1[17];
step2[17] = step1[16] - step1[17];
step2[18] = -step1[18] + step1[19];
step2[19] = step1[18] + step1[19];
step2[20] = step1[20] + step1[21];
step2[21] = step1[20] - step1[21];
step2[22] = -step1[22] + step1[23];
step2[23] = step1[22] + step1[23];
step2[24] = step1[24] + step1[25];
step2[25] = step1[24] - step1[25];
step2[26] = -step1[26] + step1[27];
step2[27] = step1[26] + step1[27];
step2[28] = step1[28] + step1[29];
step2[29] = step1[28] - step1[29];
step2[30] = -step1[30] + step1[31];
step2[31] = step1[30] + step1[31];
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = dct_const_round_shift(temp1);
step1[7] = dct_const_round_shift(temp2);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[8] = step2[8] + step2[9];
step1[9] = step2[8] - step2[9];
step1[10] = -step2[10] + step2[11];
step1[11] = step2[10] + step2[11];
step1[12] = step2[12] + step2[13];
step1[13] = step2[12] - step2[13];
step1[14] = -step2[14] + step2[15];
step1[15] = step2[14] + step2[15];
step1[16] = step2[16];
step1[31] = step2[31];
temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64;
temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64;
step1[17] = dct_const_round_shift(temp1);
step1[30] = dct_const_round_shift(temp2);
temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64;
temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
step1[19] = step2[19];
step1[20] = step2[20];
temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64;
temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64;
temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
step1[23] = step2[23];
step1[24] = step2[24];
step1[27] = step2[27];
step1[28] = step2[28];
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = dct_const_round_shift(temp1);
step2[1] = dct_const_round_shift(temp2);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = dct_const_round_shift(temp1);
step2[3] = dct_const_round_shift(temp2);
step2[4] = step1[4] + step1[5];
step2[5] = step1[4] - step1[5];
step2[6] = -step1[6] + step1[7];
step2[7] = step1[6] + step1[7];
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = dct_const_round_shift(temp1);
step2[14] = dct_const_round_shift(temp2);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
step2[11] = step1[11];
step2[12] = step1[12];
step2[16] = step1[16] + step1[19];
step2[17] = step1[17] + step1[18];
step2[18] = step1[17] - step1[18];
step2[19] = step1[16] - step1[19];
step2[20] = -step1[20] + step1[23];
step2[21] = -step1[21] + step1[22];
step2[22] = step1[21] + step1[22];
step2[23] = step1[20] + step1[23];
step2[24] = step1[24] + step1[27];
step2[25] = step1[25] + step1[26];
step2[26] = step1[25] - step1[26];
step2[27] = step1[24] - step1[27];
step2[28] = -step1[28] + step1[31];
step2[29] = -step1[29] + step1[30];
step2[30] = step1[29] + step1[30];
step2[31] = step1[28] + step1[31];
// stage 5
step1[0] = step2[0] + step2[3];
step1[1] = step2[1] + step2[2];
step1[2] = step2[1] - step2[2];
step1[3] = step2[0] - step2[3];
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = dct_const_round_shift(temp1);
step1[6] = dct_const_round_shift(temp2);
step1[7] = step2[7];
step1[8] = step2[8] + step2[11];
step1[9] = step2[9] + step2[10];
step1[10] = step2[9] - step2[10];
step1[11] = step2[8] - step2[11];
step1[12] = -step2[12] + step2[15];
step1[13] = -step2[13] + step2[14];
step1[14] = step2[13] + step2[14];
step1[15] = step2[12] + step2[15];
step1[16] = step2[16];
step1[17] = step2[17];
temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64;
temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64;
step1[18] = dct_const_round_shift(temp1);
step1[29] = dct_const_round_shift(temp2);
temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64;
temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64;
step1[19] = dct_const_round_shift(temp1);
step1[28] = dct_const_round_shift(temp2);
temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64;
temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64;
temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
step1[22] = step2[22];
step1[23] = step2[23];
step1[24] = step2[24];
step1[25] = step2[25];
step1[30] = step2[30];
step1[31] = step2[31];
// stage 6
step2[0] = step1[0] + step1[7];
step2[1] = step1[1] + step1[6];
step2[2] = step1[2] + step1[5];
step2[3] = step1[3] + step1[4];
step2[4] = step1[3] - step1[4];
step2[5] = step1[2] - step1[5];
step2[6] = step1[1] - step1[6];
step2[7] = step1[0] - step1[7];
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = dct_const_round_shift(temp1);
step2[13] = dct_const_round_shift(temp2);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = dct_const_round_shift(temp1);
step2[12] = dct_const_round_shift(temp2);
step2[14] = step1[14];
step2[15] = step1[15];
step2[16] = step1[16] + step1[23];
step2[17] = step1[17] + step1[22];
step2[18] = step1[18] + step1[21];
step2[19] = step1[19] + step1[20];
step2[20] = step1[19] - step1[20];
step2[21] = step1[18] - step1[21];
step2[22] = step1[17] - step1[22];
step2[23] = step1[16] - step1[23];
step2[24] = -step1[24] + step1[31];
step2[25] = -step1[25] + step1[30];
step2[26] = -step1[26] + step1[29];
step2[27] = -step1[27] + step1[28];
step2[28] = step1[27] + step1[28];
step2[29] = step1[26] + step1[29];
step2[30] = step1[25] + step1[30];
step2[31] = step1[24] + step1[31];
// stage 7
step1[0] = step2[0] + step2[15];
step1[1] = step2[1] + step2[14];
step1[2] = step2[2] + step2[13];
step1[3] = step2[3] + step2[12];
step1[4] = step2[4] + step2[11];
step1[5] = step2[5] + step2[10];
step1[6] = step2[6] + step2[9];
step1[7] = step2[7] + step2[8];
step1[8] = step2[7] - step2[8];
step1[9] = step2[6] - step2[9];
step1[10] = step2[5] - step2[10];
step1[11] = step2[4] - step2[11];
step1[12] = step2[3] - step2[12];
step1[13] = step2[2] - step2[13];
step1[14] = step2[1] - step2[14];
step1[15] = step2[0] - step2[15];
step1[16] = step2[16];
step1[17] = step2[17];
step1[18] = step2[18];
step1[19] = step2[19];
temp1 = (-step2[20] + step2[27]) * cospi_16_64;
temp2 = (step2[20] + step2[27]) * cospi_16_64;
step1[20] = dct_const_round_shift(temp1);
step1[27] = dct_const_round_shift(temp2);
temp1 = (-step2[21] + step2[26]) * cospi_16_64;
temp2 = (step2[21] + step2[26]) * cospi_16_64;
step1[21] = dct_const_round_shift(temp1);
step1[26] = dct_const_round_shift(temp2);
temp1 = (-step2[22] + step2[25]) * cospi_16_64;
temp2 = (step2[22] + step2[25]) * cospi_16_64;
step1[22] = dct_const_round_shift(temp1);
step1[25] = dct_const_round_shift(temp2);
temp1 = (-step2[23] + step2[24]) * cospi_16_64;
temp2 = (step2[23] + step2[24]) * cospi_16_64;
step1[23] = dct_const_round_shift(temp1);
step1[24] = dct_const_round_shift(temp2);
step1[28] = step2[28];
step1[29] = step2[29];
step1[30] = step2[30];
step1[31] = step2[31];
// final stage
output[0] = step1[0] + step1[31];
output[1] = step1[1] + step1[30];
output[2] = step1[2] + step1[29];
output[3] = step1[3] + step1[28];
output[4] = step1[4] + step1[27];
output[5] = step1[5] + step1[26];
output[6] = step1[6] + step1[25];
output[7] = step1[7] + step1[24];
output[8] = step1[8] + step1[23];
output[9] = step1[9] + step1[22];
output[10] = step1[10] + step1[21];
output[11] = step1[11] + step1[20];
output[12] = step1[12] + step1[19];
output[13] = step1[13] + step1[18];
output[14] = step1[14] + step1[17];
output[15] = step1[15] + step1[16];
output[16] = step1[15] - step1[16];
output[17] = step1[14] - step1[17];
output[18] = step1[13] - step1[18];
output[19] = step1[12] - step1[19];
output[20] = step1[11] - step1[20];
output[21] = step1[10] - step1[21];
output[22] = step1[9] - step1[22];
output[23] = step1[8] - step1[23];
output[24] = step1[7] - step1[24];
output[25] = step1[6] - step1[25];
output[26] = step1[5] - step1[26];
output[27] = step1[4] - step1[27];
output[28] = step1[3] - step1[28];
output[29] = step1[2] - step1[29];
output[30] = step1[1] - step1[30];
output[31] = step1[0] - step1[31];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
void vp9_short_idct32x32_add_c(int16_t *input, uint8_t *dest, int dest_stride) {
int16_t out[32 * 32];
int16_t *outptr = out;
int i, j;
int16_t temp_in[32], temp_out[32];
// Rows
for (i = 0; i < 32; ++i) {
idct32_1d(input, outptr);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
idct32_1d(temp_in, temp_out);
for (j = 0; j < 32; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6)
+ dest[j * dest_stride + i]);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
}
void vp9_short_idct1_32x32_c(int16_t *input, int16_t *output) {
int16_t out = dct_const_round_shift(input[0] * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
output[0] = ROUND_POWER_OF_TWO(out, 6);
}
void vp9_short_idct10_32x32_add_c(int16_t *input, uint8_t *dest,
int dest_stride) {
int16_t out[32 * 32];
int16_t *outptr = out;
int i, j;
int16_t temp_in[32], temp_out[32];
/* First transform rows. Since all non-zero dct coefficients are in
* upper-left 4x4 area, we only need to calculate first 4 rows here.
*/
vpx_memset(out, 0, sizeof(out));
for (i = 0; i < 4; ++i) {
idct32_1d(input, outptr);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
idct32_1d(temp_in, temp_out);
for (j = 0; j < 32; ++j)
dest[j * dest_stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6)
+ dest[j * dest_stride + i]);
}
}