vpx/vp9/encoder/vp9_rdopt.c

5071 lines
175 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconintra4x4.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
2010-05-18 17:58:33 +02:00
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
2010-05-18 17:58:33 +02:00
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
2010-05-18 17:58:33 +02:00
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
static const int auto_speed_thresh[17] = {
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
2010-05-18 17:58:33 +02:00
};
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, NONE},
{DC_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEARESTMV, LAST_FRAME, NONE},
{NEARMV, LAST_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{ZEROMV, GOLDEN_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{ZEROMV, ALTREF_FRAME, NONE},
{NEARESTMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEARMV, GOLDEN_FRAME, NONE},
{NEARMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{V_PRED, INTRA_FRAME, NONE},
{H_PRED, INTRA_FRAME, NONE},
{D45_PRED, INTRA_FRAME, NONE},
{D135_PRED, INTRA_FRAME, NONE},
{D117_PRED, INTRA_FRAME, NONE},
{D153_PRED, INTRA_FRAME, NONE},
{D27_PRED, INTRA_FRAME, NONE},
{D63_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{TM_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEWMV, LAST_FRAME, NONE},
{NEWMV, GOLDEN_FRAME, NONE},
{NEWMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{SPLITMV, LAST_FRAME, NONE},
{SPLITMV, GOLDEN_FRAME, NONE},
{SPLITMV, ALTREF_FRAME, NONE},
{B_PRED, INTRA_FRAME, NONE},
{I8X8_PRED, INTRA_FRAME, NONE},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, GOLDEN_FRAME},
{NEARESTMV, LAST_FRAME, GOLDEN_FRAME},
{NEARMV, LAST_FRAME, GOLDEN_FRAME},
{ZEROMV, ALTREF_FRAME, LAST_FRAME},
{NEARESTMV, ALTREF_FRAME, LAST_FRAME},
{NEARMV, ALTREF_FRAME, LAST_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, GOLDEN_FRAME},
{NEWMV, ALTREF_FRAME, LAST_FRAME },
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, GOLDEN_FRAME},
{SPLITMV, ALTREF_FRAME, LAST_FRAME },
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
#if CONFIG_COMP_INTERINTRA_PRED
/* compound inter-intra prediction */
{ZEROMV, LAST_FRAME, INTRA_FRAME},
{NEARESTMV, LAST_FRAME, INTRA_FRAME},
{NEARMV, LAST_FRAME, INTRA_FRAME},
{NEWMV, LAST_FRAME, INTRA_FRAME},
{ZEROMV, GOLDEN_FRAME, INTRA_FRAME},
{NEARESTMV, GOLDEN_FRAME, INTRA_FRAME},
{NEARMV, GOLDEN_FRAME, INTRA_FRAME},
{NEWMV, GOLDEN_FRAME, INTRA_FRAME},
{ZEROMV, ALTREF_FRAME, INTRA_FRAME},
{NEARESTMV, ALTREF_FRAME, INTRA_FRAME},
{NEARMV, ALTREF_FRAME, INTRA_FRAME},
{NEWMV, ALTREF_FRAME, INTRA_FRAME},
#endif
2010-05-18 17:58:33 +02:00
};
static void fill_token_costs(vp9_coeff_count *c,
vp9_coeff_probs *p,
int block_type_counts) {
int i, j, k;
for (i = 0; i < block_type_counts; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k == 0 && ((j > 0 && i > 0) || (j > 1 && i == 0)))
vp9_cost_tokens_skip((int *)(c[i][j][k]),
p[i][j][k],
vp9_coef_tree);
else
vp9_cost_tokens((int *)(c[i][j][k]),
p[i][j][k],
vp9_coef_tree);
}
2010-05-18 17:58:33 +02:00
}
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, };
2010-05-18 17:58:33 +02:00
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp9_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)((0.063 * vp9_convert_qindex_to_q(i)) + 2.742);
}
}
2010-05-18 17:58:33 +02:00
static int compute_rd_mult(int qindex) {
int q;
q = vp9_dc_quant(qindex, 0);
return (11 * q * q) >> 6;
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int QIndex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
2010-05-18 17:58:33 +02:00
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
void vp9_initialize_rd_consts(VP9_COMP *cpi, int QIndex) {
int q, i;
2010-05-18 17:58:33 +02:00
vp9_clear_system_state(); // __asm emms;
2010-05-18 17:58:33 +02:00
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
QIndex = (QIndex < 0) ? 0 : ((QIndex > MAXQ) ? MAXQ : QIndex);
cpi->RDMULT = compute_rd_mult(QIndex);
2010-05-18 17:58:33 +02:00
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0) {
double oq_factor;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
cpi->RDMULT = (int)((double)cpi->RDMULT * oq_factor * oq_factor);
}
2010-05-18 17:58:33 +02:00
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
2010-05-18 17:58:33 +02:00
if (cpi->RDMULT < 7)
cpi->RDMULT = 7;
cpi->mb.errorperbit = (cpi->RDMULT / 110);
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp9_set_speed_features(cpi);
2010-05-18 17:58:33 +02:00
q = (int)pow(vp9_dc_quant(QIndex, 0) >> 2, 1.25);
q = q << 2;
cpi->RDMULT = cpi->RDMULT << 4;
if (q < 8)
q = 8;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < INT_MAX) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
2010-05-18 17:58:33 +02:00
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
2010-05-18 17:58:33 +02:00
}
} else {
cpi->RDDIV = 100;
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_MODES; i++) {
if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) {
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
} else {
cpi->rd_threshes[i] = INT_MAX;
}
2010-05-18 17:58:33 +02:00
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
fill_token_costs(cpi->mb.token_costs[TX_4X4],
cpi->common.fc.coef_probs_4x4, BLOCK_TYPES_4X4);
fill_token_costs(cpi->mb.hybrid_token_costs[TX_4X4],
cpi->common.fc.hybrid_coef_probs_4x4, BLOCK_TYPES_4X4);
fill_token_costs(cpi->mb.token_costs[TX_8X8],
cpi->common.fc.coef_probs_8x8, BLOCK_TYPES_8X8);
fill_token_costs(cpi->mb.hybrid_token_costs[TX_8X8],
cpi->common.fc.hybrid_coef_probs_8x8, BLOCK_TYPES_8X8);
fill_token_costs(cpi->mb.token_costs[TX_16X16],
cpi->common.fc.coef_probs_16x16, BLOCK_TYPES_16X16);
fill_token_costs(cpi->mb.hybrid_token_costs[TX_16X16],
cpi->common.fc.hybrid_coef_probs_16x16, BLOCK_TYPES_16X16);
fill_token_costs(cpi->mb.token_costs[TX_32X32],
cpi->common.fc.coef_probs_32x32, BLOCK_TYPES_32X32);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
/*rough estimate for costing*/
cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4;
vp9_init_mode_costs(cpi);
2010-05-18 17:58:33 +02:00
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (cpi->common.frame_type != KEY_FRAME) {
vp9_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
}
2010-05-18 17:58:33 +02:00
}
int vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, int block_size) {
int i, error = 0;
2010-05-18 17:58:33 +02:00
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
2010-05-18 17:58:33 +02:00
return error;
2010-05-18 17:58:33 +02:00
}
int vp9_mbblock_error_8x8_c(MACROBLOCK *mb, int dc) {
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i+=4) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 64; j++) {
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp9_mbblock_error_c(MACROBLOCK *mb, int dc) {
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++) {
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
2010-05-18 17:58:33 +02:00
}
error += berror;
}
return error;
2010-05-18 17:58:33 +02:00
}
int vp9_mbuverror_c(MACROBLOCK *mb) {
BLOCK *be;
BLOCKD *bd;
2010-05-18 17:58:33 +02:00
int i, error = 0;
2010-05-18 17:58:33 +02:00
for (i = 16; i < 24; i++) {
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
2010-05-18 17:58:33 +02:00
error += vp9_block_error_c(be->coeff, bd->dqcoeff, 16);
}
2010-05-18 17:58:33 +02:00
return error;
2010-05-18 17:58:33 +02:00
}
int vp9_uvsse(MACROBLOCK *x) {
uint8_t *uptr, *vptr;
uint8_t *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
uint8_t *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.row;
int mv_col = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
if (mv_row < 0)
mv_row -= 1;
else
mv_row += 1;
if (mv_col < 0)
mv_col -= 1;
else
mv_col += 1;
mv_row /= 2;
mv_col /= 2;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7) {
vp9_sub_pixel_variance8x8(uptr, pre_stride, (mv_col & 7) << 1,
(mv_row & 7) << 1, upred_ptr, uv_stride, &sse2);
vp9_sub_pixel_variance8x8(vptr, pre_stride, (mv_col & 7) << 1,
(mv_row & 7) << 1, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
} else {
vp9_variance8x8(uptr, pre_stride, upred_ptr, uv_stride, &sse2);
vp9_variance8x8(vptr, pre_stride, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
2010-05-18 17:58:33 +02:00
}
#if CONFIG_NEWCOEFCONTEXT
#define PT pn
#else
#define PT pt
#endif
static int cost_coeffs(MACROBLOCK *mb,
BLOCKD *b, PLANE_TYPE type,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
TX_SIZE tx_size) {
int pt;
const int eob = b->eob;
MACROBLOCKD *xd = &mb->e_mbd;
const int ib = (int)(b - xd->block);
int c = (type == PLANE_TYPE_Y_NO_DC) ? 1 : 0;
int cost = 0, seg_eob;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
const int *scan, *band;
int16_t *qcoeff_ptr = b->qcoeff;
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type(xd, b) : DCT_DCT;
#if CONFIG_NEWCOEFCONTEXT
const int *neighbors;
int pn;
#endif
ENTROPY_CONTEXT a_ec = *a, l_ec = *l;
switch (tx_size) {
case TX_4X4:
scan = vp9_default_zig_zag1d_4x4;
band = vp9_coef_bands_4x4;
seg_eob = 16;
if (type == PLANE_TYPE_Y_WITH_DC) {
if (tx_type == ADST_DCT) {
scan = vp9_row_scan_4x4;
} else if (tx_type == DCT_ADST) {
scan = vp9_col_scan_4x4;
}
}
break;
case TX_8X8:
if (type == PLANE_TYPE_Y2) {
scan = vp9_default_zig_zag1d_4x4;
band = vp9_coef_bands_4x4;
seg_eob = 4;
} else {
scan = vp9_default_zig_zag1d_8x8;
band = vp9_coef_bands_8x8;
seg_eob = 64;
}
break;
case TX_16X16:
scan = vp9_default_zig_zag1d_16x16;
band = vp9_coef_bands_16x16;
seg_eob = 256;
if (type == PLANE_TYPE_UV) {
const int uv_idx = ib - 16;
qcoeff_ptr = xd->sb_coeff_data.qcoeff + 1024 + 64 * uv_idx;
}
break;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
case TX_32X32:
scan = vp9_default_zig_zag1d_32x32;
band = vp9_coef_bands_32x32;
seg_eob = 1024;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
qcoeff_ptr = xd->sb_coeff_data.qcoeff;
break;
default:
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
abort();
break;
}
VP9_COMBINEENTROPYCONTEXTS(pt, a_ec, l_ec);
#if CONFIG_NEWCOEFCONTEXT
neighbors = vp9_get_coef_neighbors_handle(scan);
pn = pt;
#endif
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB))
seg_eob = vp9_get_segdata(xd, segment_id, SEG_LVL_EOB);
if (tx_type != DCT_DCT) {
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp9_dct_value_tokens_ptr[v].Token;
cost += mb->hybrid_token_costs[tx_size][type][band[c]][PT][t];
cost += vp9_dct_value_cost_ptr[v];
pt = vp9_prev_token_class[t];
#if CONFIG_NEWCOEFCONTEXT
if (c < seg_eob - 1 && NEWCOEFCONTEXT_BAND_COND(band[c + 1]))
pn = vp9_get_coef_neighbor_context(
qcoeff_ptr, (type == PLANE_TYPE_Y_NO_DC), neighbors, scan[c + 1]);
else
pn = pt;
#endif
}
if (c < seg_eob)
cost += mb->hybrid_token_costs[tx_size][type][band[c]]
[PT][DCT_EOB_TOKEN];
} else {
for (; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp9_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs[tx_size][type][band[c]][pt][t];
cost += vp9_dct_value_cost_ptr[v];
pt = vp9_prev_token_class[t];
#if CONFIG_NEWCOEFCONTEXT
if (c < seg_eob - 1 && NEWCOEFCONTEXT_BAND_COND(band[c + 1]))
pn = vp9_get_coef_neighbor_context(
qcoeff_ptr, (type == PLANE_TYPE_Y_NO_DC), neighbors, scan[c + 1]);
else
pn = pt;
#endif
}
if (c < seg_eob)
cost += mb->token_costs[tx_size][type][band[c]]
[PT][DCT_EOB_TOKEN];
}
// is eob first coefficient;
pt = (c > !type);
*a = *l = pt;
return cost;
}
static int rdcost_mby_4x4(MACROBLOCK *mb, int has_2nd_order, int backup) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
}
2010-05-18 17:58:33 +02:00
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, xd->block + b,
(has_2nd_order ?
PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC),
ta + vp9_block2above[TX_4X4][b],
tl + vp9_block2left[TX_4X4][b],
TX_4X4);
2010-05-18 17:58:33 +02:00
if (has_2nd_order)
cost += cost_coeffs(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp9_block2above[TX_4X4][24],
tl + vp9_block2left[TX_4X4][24],
TX_4X4);
2010-05-18 17:58:33 +02:00
return cost;
2010-05-18 17:58:33 +02:00
}
static void macro_block_yrd_4x4(MACROBLOCK *mb,
int *Rate,
int *Distortion,
int *skippable, int backup) {
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
int d, has_2nd_order;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
has_2nd_order = get_2nd_order_usage(xd);
// Fdct and building the 2nd order block
vp9_transform_mby_4x4(mb);
vp9_quantize_mby_4x4(mb);
d = vp9_mbblock_error(mb, has_2nd_order);
if (has_2nd_order)
d += vp9_block_error(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = rdcost_mby_4x4(mb, has_2nd_order, backup);
*skippable = vp9_mby_is_skippable_4x4(&mb->e_mbd, has_2nd_order);
}
2010-05-18 17:58:33 +02:00
static int rdcost_mby_8x8(MACROBLOCK *mb, int has_2nd_order, int backup) {
int cost = 0;
int b;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (backup) {
vpx_memcpy(&t_above,xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)mb->e_mbd.above_context;
tl = (ENTROPY_CONTEXT *)mb->e_mbd.left_context;
}
for (b = 0; b < 16; b += 4)
cost += cost_coeffs(mb, xd->block + b,
(has_2nd_order ?
PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC),
ta + vp9_block2above[TX_8X8][b],
tl + vp9_block2left[TX_8X8][b],
TX_8X8);
if (has_2nd_order)
cost += cost_coeffs(mb, xd->block + 24, PLANE_TYPE_Y2,
ta + vp9_block2above[TX_8X8][24],
tl + vp9_block2left[TX_8X8][24],
TX_8X8);
return cost;
Improved coding using 8x8 transform In summary, this commit encompasses a series of changes in attempt to improve the 8x8 transform based coding to help overall compression quality, please refer to the detailed commit history below for what are the rationale underly the series of changes: a. A frame level flag to indicate if 8x8 transform is used at all. b. 8x8 transform is not used for key frames and small image size. c. On inter coded frame, macroblocks using modes B_PRED, SPLIT_MV and I8X8_PRED are forced to using 4x4 transform based coding, the rest uses 8x8 transform based coding. d. Encoder and decoder has the same assumption on the relationship between prediction modes and transform size, therefore no signaling is encoded in bitstream. e. Mode decision process now calculate the rate and distortion scores using their respective transforms. Overall test results: 1. HD set http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120206.html (avg psnr: 3.09% glb psnr: 3.22%, ssim: 3.90%) 2. Cif set: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120206.html (avg psnr: -0.03%, glb psnr: -0.02%, ssim: -0.04%) It should be noted here, as 8x8 transform coding itself is disabled for cif size clips, the 0.03% loss is purely from the 1 bit/frame flag overhead on if 8x8 transform is used or not for the frame. ---patch history for future reference--- Patch 1: this commit tries to select transform size based on macroblock prediction mode. If the size of a prediction mode is 16x16, then the macroblock is forced to use 8x8 transform. If the prediction mode is B_PRED, SPLITMV or I8X8_PRED, then the macroblock is forced to use 4x4 transform. Tests on the following HD clips showed mixed results: (all hd clips only used first 100 frames in the test) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_log.html while the results are mixed and overall negative, it is interesting to see 8x8 helped a few of the clips. Patch 2: this patch tries to hard-wire selection of transform size based on prediction modes without using segmentation to signal the transform size. encoder and decoder both takes the same assumption that all macroblocks use 8x8 transform except when prediciton mode is B_PRED, I8X8_PRED or SPLITMV. Test results are as follows: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cifmodebase8x8_0125.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_0125log.html Interestingly, by removing the overhead or coding the segmentation, the results on this limited HD set have turn positive on average. Patch 3: this patch disabled the usage of 8x8 transform on key frames, and kept the logic from patch 2 for inter frames only. test results on HD set turned decidedly positive with 8x8 transform enabled on inter frame with 16x16 prediction modes: (avg psnr: .81% glb psnr: .82 ssim: .55%) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdintermode8x8_0125.html results on cif set still negative overall Patch 4: continued from last patch, but now in mode decision process, the rate and distortion estimates are computed based on 8x8 transform results for MBs with modes associated with 8x8 transform. This patch also fixed a problem related to segment based eob coding when 8x8 transform is used. The patch significantly improved the results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd8x8RDintermode.html (avg psnr: 2.70% glb psnr: 2.76% ssim: 3.34%) results on cif also improved, though they are still negative compared to baseline that uses 4x4 transform only: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif8x8RDintermode.html (avg psnr: -.78% glb psnr: -.86% ssim: -.19%) Patch 5: This patch does 3 things: a. a bunch of decoder bug fixes, encodings and decodings were verified to have matched recon buffer on a number of encodes on cif size mobile and hd version of _pedestrian. b. the patch further improved the rate distortion calculation of MBS that use 8x8 transform. This provided some further gain on compression. c. the patch also got the experimental work SEG_LVL_EOB to work with 8x8 transformed macroblock, test results indicates it improves the cif set but hurt the HD set slightly. Tests results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120201.html (avg psnr: 3.19% glb psnr: 3.30% ssim: 3.93%) Test results on cif clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120201.html (avg psnr: -.47% glb psnr: -.51% ssim: +.28%) Patch 6: Added a frame level flag to indicate if 8x8 transform is allowed at all. temporarily the decision is based on frame size, can be optimized later one. This get the cif results to basically unchanged, with one bit per frame overhead on both cif and hd clips. Patch 8: Rebase and Merge to head by PGW. Fixed some suspect 4s that look like hey should be 64s in regard to segmented EOB. Perhaps #defines would be bette. Bulit and tested without T8x8 enabled and produces unchanged output. Patch 9: Corrected misalligned code/decode of "txfm_mode" bit. Limited testing for correct encode and decode with T8x8 configured on derf clips. Change-Id: I156e1405d25f81579d579dff8ab9af53944ec49c
2012-02-10 01:12:23 +01:00
}
static void macro_block_yrd_8x8(MACROBLOCK *mb,
int *Rate,
int *Distortion,
int *skippable, int backup) {
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = xd->block + 24;
int d, has_2nd_order;
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
vp9_transform_mby_8x8(mb);
vp9_quantize_mby_8x8(mb);
has_2nd_order = get_2nd_order_usage(xd);
d = vp9_mbblock_error_8x8_c(mb, has_2nd_order);
if (has_2nd_order)
d += vp9_block_error(mb_y2->coeff, x_y2->dqcoeff, 16);
*Distortion = (d >> 2);
// rate
*Rate = rdcost_mby_8x8(mb, has_2nd_order, backup);
*skippable = vp9_mby_is_skippable_8x8(&mb->e_mbd, has_2nd_order);
Improved coding using 8x8 transform In summary, this commit encompasses a series of changes in attempt to improve the 8x8 transform based coding to help overall compression quality, please refer to the detailed commit history below for what are the rationale underly the series of changes: a. A frame level flag to indicate if 8x8 transform is used at all. b. 8x8 transform is not used for key frames and small image size. c. On inter coded frame, macroblocks using modes B_PRED, SPLIT_MV and I8X8_PRED are forced to using 4x4 transform based coding, the rest uses 8x8 transform based coding. d. Encoder and decoder has the same assumption on the relationship between prediction modes and transform size, therefore no signaling is encoded in bitstream. e. Mode decision process now calculate the rate and distortion scores using their respective transforms. Overall test results: 1. HD set http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120206.html (avg psnr: 3.09% glb psnr: 3.22%, ssim: 3.90%) 2. Cif set: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120206.html (avg psnr: -0.03%, glb psnr: -0.02%, ssim: -0.04%) It should be noted here, as 8x8 transform coding itself is disabled for cif size clips, the 0.03% loss is purely from the 1 bit/frame flag overhead on if 8x8 transform is used or not for the frame. ---patch history for future reference--- Patch 1: this commit tries to select transform size based on macroblock prediction mode. If the size of a prediction mode is 16x16, then the macroblock is forced to use 8x8 transform. If the prediction mode is B_PRED, SPLITMV or I8X8_PRED, then the macroblock is forced to use 4x4 transform. Tests on the following HD clips showed mixed results: (all hd clips only used first 100 frames in the test) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_log.html while the results are mixed and overall negative, it is interesting to see 8x8 helped a few of the clips. Patch 2: this patch tries to hard-wire selection of transform size based on prediction modes without using segmentation to signal the transform size. encoder and decoder both takes the same assumption that all macroblocks use 8x8 transform except when prediciton mode is B_PRED, I8X8_PRED or SPLITMV. Test results are as follows: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cifmodebase8x8_0125.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_0125log.html Interestingly, by removing the overhead or coding the segmentation, the results on this limited HD set have turn positive on average. Patch 3: this patch disabled the usage of 8x8 transform on key frames, and kept the logic from patch 2 for inter frames only. test results on HD set turned decidedly positive with 8x8 transform enabled on inter frame with 16x16 prediction modes: (avg psnr: .81% glb psnr: .82 ssim: .55%) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdintermode8x8_0125.html results on cif set still negative overall Patch 4: continued from last patch, but now in mode decision process, the rate and distortion estimates are computed based on 8x8 transform results for MBs with modes associated with 8x8 transform. This patch also fixed a problem related to segment based eob coding when 8x8 transform is used. The patch significantly improved the results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd8x8RDintermode.html (avg psnr: 2.70% glb psnr: 2.76% ssim: 3.34%) results on cif also improved, though they are still negative compared to baseline that uses 4x4 transform only: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif8x8RDintermode.html (avg psnr: -.78% glb psnr: -.86% ssim: -.19%) Patch 5: This patch does 3 things: a. a bunch of decoder bug fixes, encodings and decodings were verified to have matched recon buffer on a number of encodes on cif size mobile and hd version of _pedestrian. b. the patch further improved the rate distortion calculation of MBS that use 8x8 transform. This provided some further gain on compression. c. the patch also got the experimental work SEG_LVL_EOB to work with 8x8 transformed macroblock, test results indicates it improves the cif set but hurt the HD set slightly. Tests results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120201.html (avg psnr: 3.19% glb psnr: 3.30% ssim: 3.93%) Test results on cif clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120201.html (avg psnr: -.47% glb psnr: -.51% ssim: +.28%) Patch 6: Added a frame level flag to indicate if 8x8 transform is allowed at all. temporarily the decision is based on frame size, can be optimized later one. This get the cif results to basically unchanged, with one bit per frame overhead on both cif and hd clips. Patch 8: Rebase and Merge to head by PGW. Fixed some suspect 4s that look like hey should be 64s in regard to segmented EOB. Perhaps #defines would be bette. Bulit and tested without T8x8 enabled and produces unchanged output. Patch 9: Corrected misalligned code/decode of "txfm_mode" bit. Limited testing for correct encode and decode with T8x8 configured on derf clips. Change-Id: I156e1405d25f81579d579dff8ab9af53944ec49c
2012-02-10 01:12:23 +01:00
}
static int rdcost_mby_16x16(MACROBLOCK *mb, int backup) {
int cost;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
}
cost = cost_coeffs(mb, xd->block, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_16X16);
return cost;
}
static void macro_block_yrd_16x16(MACROBLOCK *mb, int *Rate, int *Distortion,
int *skippable, int backup) {
int d;
MACROBLOCKD *xd = &mb->e_mbd;
xd->mode_info_context->mbmi.txfm_size = TX_16X16;
vp9_transform_mby_16x16(mb);
vp9_quantize_mby_16x16(mb);
// TODO(jingning) is it possible to quickly determine whether to force
// trailing coefficients to be zero, instead of running trellis
// optimization in the rate-distortion optimization loop?
if (mb->e_mbd.mode_info_context->mbmi.mode < I8X8_PRED)
vp9_optimize_mby_16x16(mb);
d = vp9_mbblock_error(mb, 0);
*Distortion = (d >> 2);
// rate
*Rate = rdcost_mby_16x16(mb, backup);
*skippable = vp9_mby_is_skippable_16x16(&mb->e_mbd);
}
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int (*r)[2], int *rate,
int *d, int *distortion,
int *s, int *skip,
int64_t txfm_cache[NB_TXFM_MODES],
TX_SIZE max_txfm_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = cm->mb_no_coeff_skip ?
vp9_get_pred_prob(cm, xd, PRED_MBSKIP) : 128;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(cm->prob_tx[m]);
else
r[n][1] += vp9_cost_one(cm->prob_tx[m]);
}
}
if (cm->mb_no_coeff_skip) {
int s0, s1;
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (s[n]) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
} else {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (n = TX_4X4; n <= max_txfm_size; n++) {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0], d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1], d[n]);
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (max_txfm_size == TX_32X32 &&
(cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if ( cm->txfm_mode == ALLOW_16X16 ||
(max_txfm_size == TX_16X16 && cm->txfm_mode == ALLOW_32X32) ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode == ALLOW_8X8 ||
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
(cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
assert(cm->txfm_mode == ONLY_4X4 || cm->txfm_mode == TX_MODE_SELECT);
mbmi->txfm_size = TX_4X4;
}
*distortion = d[mbmi->txfm_size];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
txfm_cache[ALLOW_16X16] = rd[TX_16X16][0];
txfm_cache[ALLOW_32X32] = rd[max_txfm_size][0];
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
else if (rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
else
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
rd[TX_4X4][1] : rd[TX_8X8][1];
}
static void macro_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int *skippable,
int64_t txfm_cache[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int r[TX_SIZE_MAX_MB][2], d[TX_SIZE_MAX_MB], s[TX_SIZE_MAX_MB];
vp9_subtract_mby(x->src_diff, *(x->block[0].base_src), xd->predictor,
x->block[0].src_stride);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
macro_block_yrd_16x16(x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], 1);
macro_block_yrd_8x8(x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], 1);
macro_block_yrd_4x4(x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], 1);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skippable,
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache, TX_16X16);
}
static void copy_predictor(uint8_t *dst, const uint8_t *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[4] = p[4];
d[8] = p[8];
d[12] = p[12];
}
static int rdcost_sby_32x32(MACROBLOCK *x, int backup) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
MACROBLOCKD * const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (backup) {
ta = (ENTROPY_CONTEXT *) &t_above,
tl = (ENTROPY_CONTEXT *) &t_left;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
} else {
ta = (ENTROPY_CONTEXT *) xd->above_context;
tl = (ENTROPY_CONTEXT *) xd->left_context;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
return cost_coeffs(x, xd->block, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_32X32);
}
static int vp9_sb_block_error_c(int16_t *coeff, int16_t *dqcoeff,
int block_size) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
unsigned int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error > INT_MAX ? INT_MAX : (int)error;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
#define DEBUG_ERROR 0
static void super_block_yrd_32x32(MACROBLOCK *x,
int *rate, int *distortion, int *skippable,
int backup) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
SUPERBLOCK * const x_sb = &x->sb_coeff_data;
MACROBLOCKD * const xd = &x->e_mbd;
SUPERBLOCKD * const xd_sb = &xd->sb_coeff_data;
#if DEBUG_ERROR || CONFIG_DWTDCTHYBRID
int16_t out[1024];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#endif
vp9_transform_sby_32x32(x);
vp9_quantize_sby_32x32(x);
#if DEBUG_ERROR || CONFIG_DWTDCTHYBRID
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
vp9_short_idct32x32(xd_sb->dqcoeff, out, 64);
#endif
#if !CONFIG_DWTDCTHYBRID
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*distortion = vp9_sb_block_error_c(x_sb->coeff, xd_sb->dqcoeff, 1024);
#else
*distortion = vp9_block_error_c(x_sb->src_diff, out, 1024) << 4;
#endif
#if DEBUG_ERROR
printf("IDCT/FDCT error 32x32: %d (d: %d)\n",
vp9_block_error_c(x_sb->src_diff, out, 1024), *distortion);
#endif
*rate = rdcost_sby_32x32(x, backup);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*skippable = vp9_sby_is_skippable_32x32(&x->e_mbd);
}
static void super_block_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int *distortion,
int *skip,
int64_t txfm_cache[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB], n;
const uint8_t *src = x->src.y_buffer, *dst = xd->dst.y_buffer;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->dst.y_stride;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
ENTROPY_CONTEXT_PLANES t_above[TX_SIZE_MAX_MB][2],
*orig_above = xd->above_context;
ENTROPY_CONTEXT_PLANES t_left[TX_SIZE_MAX_MB][2],
*orig_left = xd->left_context;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (n = TX_4X4; n < TX_SIZE_MAX_MB; n++) {
vpx_memcpy(t_above[n], xd->above_context, sizeof(t_above[n]));
vpx_memcpy(t_left[n], xd->left_context, sizeof(t_left[n]));
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
r[n][0] = 0;
d[n] = 0;
s[n] = 1;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
vp9_subtract_sby_s_c(x->sb_coeff_data.src_diff, src, src_y_stride,
dst, dst_y_stride);
super_block_yrd_32x32(x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32], 1);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if DEBUG_ERROR
int err[3] = { 0, 0, 0 };
#endif
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
int r_tmp, d_tmp, s_tmp;
vp9_subtract_mby_s_c(x->src_diff,
src + x_idx * 16 + y_idx * 16 * src_y_stride,
src_y_stride,
dst + x_idx * 16 + y_idx * 16 * dst_y_stride,
dst_y_stride);
xd->above_context = &t_above[TX_16X16][x_idx];
xd->left_context = &t_left[TX_16X16][y_idx];
macro_block_yrd_16x16(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_16X16] += d_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
r[TX_16X16][0] += r_tmp;
s[TX_16X16] = s[TX_16X16] && s_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if DEBUG_ERROR
vp9_inverse_transform_mby_16x16(xd);
err[2] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
xd->above_context = &t_above[TX_4X4][x_idx];
xd->left_context = &t_left[TX_4X4][y_idx];
macro_block_yrd_4x4(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_4X4] += d_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
r[TX_4X4][0] += r_tmp;
s[TX_4X4] = s[TX_4X4] && s_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if DEBUG_ERROR
vp9_inverse_transform_mby_4x4(xd);
err[0] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
xd->above_context = &t_above[TX_8X8][x_idx];
xd->left_context = &t_left[TX_8X8][y_idx];
macro_block_yrd_8x8(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_8X8] += d_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
r[TX_8X8][0] += r_tmp;
s[TX_8X8] = s[TX_8X8] && s_tmp;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if DEBUG_ERROR
vp9_inverse_transform_mby_8x8(xd);
err[1] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if DEBUG_ERROR
printf("IDCT/FDCT error 16x16: %d (d: %d)\n", err[2], d[2]);
printf("IDCT/FDCT error 8x8: %d (d: %d)\n", err[1], d[1]);
printf("IDCT/FDCT error 4x4: %d (d: %d)\n", err[0], d[0]);
#endif
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache,
TX_SIZE_MAX_SB - 1);
xd->above_context = orig_above;
xd->left_context = orig_left;
}
static void super_block_64_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int *distortion,
int *skip,
int64_t txfm_cache[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB], n;
const uint8_t *src = x->src.y_buffer, *dst = xd->dst.y_buffer;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->dst.y_stride;
ENTROPY_CONTEXT_PLANES t_above[TX_SIZE_MAX_SB][4],
*orig_above = xd->above_context;
ENTROPY_CONTEXT_PLANES t_left[TX_SIZE_MAX_SB][4],
*orig_left = xd->left_context;
for (n = TX_4X4; n < TX_SIZE_MAX_SB; n++) {
vpx_memcpy(t_above[n], xd->above_context, sizeof(t_above[n]));
vpx_memcpy(t_left[n], xd->left_context, sizeof(t_left[n]));
r[n][0] = 0;
d[n] = 0;
s[n] = 1;
}
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
int r_tmp, d_tmp, s_tmp;
xd->above_context = &t_above[TX_32X32][x_idx << 1];
xd->left_context = &t_left[TX_32X32][y_idx << 1];
vp9_subtract_sby_s_c(x->sb_coeff_data.src_diff,
src + 32 * x_idx + 32 * y_idx * src_y_stride,
src_y_stride,
dst + 32 * x_idx + 32 * y_idx * dst_y_stride,
dst_y_stride);
super_block_yrd_32x32(x, &r_tmp, &d_tmp, &s_tmp, 0);
r[TX_32X32][0] += r_tmp;
d[TX_32X32] += d_tmp;
s[TX_32X32] = s[TX_32X32] && s_tmp;
}
#if DEBUG_ERROR
int err[3] = { 0, 0, 0 };
#endif
for (n = 0; n < 16; n++) {
int x_idx = n & 3, y_idx = n >> 2;
int r_tmp, d_tmp, s_tmp;
vp9_subtract_mby_s_c(x->src_diff,
src + x_idx * 16 + y_idx * 16 * src_y_stride,
src_y_stride,
dst + x_idx * 16 + y_idx * 16 * dst_y_stride,
dst_y_stride);
xd->above_context = &t_above[TX_16X16][x_idx];
xd->left_context = &t_left[TX_16X16][y_idx];
macro_block_yrd_16x16(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_16X16] += d_tmp;
r[TX_16X16][0] += r_tmp;
s[TX_16X16] = s[TX_16X16] && s_tmp;
#if DEBUG_ERROR
vp9_inverse_transform_mby_16x16(xd);
err[2] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
xd->above_context = &t_above[TX_4X4][x_idx];
xd->left_context = &t_left[TX_4X4][y_idx];
macro_block_yrd_4x4(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_4X4] += d_tmp;
r[TX_4X4][0] += r_tmp;
s[TX_4X4] = s[TX_4X4] && s_tmp;
#if DEBUG_ERROR
vp9_inverse_transform_mby_4x4(xd);
err[0] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
xd->above_context = &t_above[TX_8X8][x_idx];
xd->left_context = &t_left[TX_8X8][y_idx];
macro_block_yrd_8x8(x, &r_tmp, &d_tmp, &s_tmp, 0);
d[TX_8X8] += d_tmp;
r[TX_8X8][0] += r_tmp;
s[TX_8X8] = s[TX_8X8] && s_tmp;
#if DEBUG_ERROR
vp9_inverse_transform_mby_8x8(xd);
err[1] += vp9_block_error_c(xd->diff, x->src_diff, 256);
#endif
}
#if DEBUG_ERROR
printf("IDCT/FDCT error 16x16: %d (d: %d)\n", err[2], d[2]);
printf("IDCT/FDCT error 8x8: %d (d: %d)\n", err[1], d[1]);
printf("IDCT/FDCT error 4x4: %d (d: %d)\n", err[0], d[0]);
#endif
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache,
TX_SIZE_MAX_SB - 1);
xd->above_context = orig_above;
xd->left_context = orig_left;
}
static void copy_predictor_8x8(uint8_t *dst, const uint8_t *predictor) {
const unsigned int *p = (const unsigned int *)predictor;
unsigned int *d = (unsigned int *)dst;
d[0] = p[0];
d[1] = p[1];
d[4] = p[4];
d[5] = p[5];
d[8] = p[8];
d[9] = p[9];
d[12] = p[12];
d[13] = p[13];
d[16] = p[16];
d[17] = p[17];
d[20] = p[20];
d[21] = p[21];
d[24] = p[24];
d[25] = p[25];
d[28] = p[28];
d[29] = p[29];
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, BLOCK *be,
BLOCKD *b, B_PREDICTION_MODE *best_mode,
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
B_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int rate = 0;
int distortion;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
TX_TYPE tx_type = DCT_DCT;
TX_TYPE best_tx_type = DCT_DCT;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 4x4 block
* */
DECLARE_ALIGNED_ARRAY(16, uint8_t, best_predictor, 16 * 4);
DECLARE_ALIGNED_ARRAY(16, int16_t, best_dqcoeff, 16);
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.context = vp9_find_bpred_context(b);
#endif
for (mode = B_DC_PRED; mode < LEFT4X4; mode++) {
int64_t this_rd;
int ratey;
#if CONFIG_NEWBINTRAMODES
if (xd->frame_type == KEY_FRAME) {
if (mode == B_CONTEXT_PRED) continue;
} else {
if (mode >= B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS &&
mode < B_CONTEXT_PRED)
continue;
}
#endif
b->bmi.as_mode.first = mode;
#if CONFIG_NEWBINTRAMODES
rate = bmode_costs[
mode == B_CONTEXT_PRED ? mode - CONTEXT_PRED_REPLACEMENTS : mode];
#else
rate = bmode_costs[mode];
#endif
vp9_intra4x4_predict(b, mode, b->predictor);
vp9_subtract_b(be, b, 16);
b->bmi.as_mode.first = mode;
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_fht(be->src_diff, 32, be->coeff, tx_type, 4);
vp9_ht_quantize_b_4x4(be, b, tx_type);
} else {
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b);
}
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4);
rate += ratey;
distortion = vp9_block_error(be->coeff, b->dqcoeff, 16) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
best_tx_type = tx_type;
*a = tempa;
*l = templ;
copy_predictor(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 32);
2010-05-18 17:58:33 +02:00
}
}
b->bmi.as_mode.first = (B_PREDICTION_MODE)(*best_mode);
// inverse transform
if (best_tx_type != DCT_DCT)
vp9_ihtllm(best_dqcoeff, b->diff, 32, best_tx_type, 4, b->eob);
else
xd->inv_xform4x4_x8(best_dqcoeff, b->diff, 32);
vp9_recon_b(best_predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
2010-05-18 17:58:33 +02:00
return best_rd;
2010-05-18 17:58:33 +02:00
}
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd,
int update_contexts) {
int i;
MACROBLOCKD *const xd = &mb->e_mbd;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *bmode_costs;
if (update_contexts) {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
} else {
vpx_memcpy(&t_above, xd->above_context,
sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
}
2010-05-18 17:58:33 +02:00
xd->mode_info_context->mbmi.mode = B_PRED;
bmode_costs = mb->inter_bmode_costs;
for (i = 0; i < 16; i++) {
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
2010-05-18 17:58:33 +02:00
if (xd->frame_type == KEY_FRAME) {
const B_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const B_PREDICTION_MODE L = left_block_mode(mic, i);
bmode_costs = mb->bmode_costs[A][L];
}
#if CONFIG_NEWBINTRAMODES
mic->bmi[i].as_mode.context = vp9_find_bpred_context(xd->block + i);
#endif
total_rd += rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode,
bmode_costs, ta + vp9_block2above[TX_4X4][i],
tl + vp9_block2left[TX_4X4][i], &r, &ry, &d);
2010-05-18 17:58:33 +02:00
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
#if 0 // CONFIG_NEWBINTRAMODES
printf("%d %d\n", mic->bmi[i].as_mode.first, mic->bmi[i].as_mode.context);
#endif
if (total_rd >= best_rd)
break;
}
2010-05-18 17:58:33 +02:00
if (total_rd >= best_rd)
return INT64_MAX;
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
2010-05-18 17:58:33 +02:00
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
2010-05-18 17:58:33 +02:00
}
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int this_rate, this_rate_tokenonly;
int this_distortion, s;
int64_t best_rd = INT64_MAX, this_rd;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.mode = mode;
vp9_build_intra_predictors_sby_s(&x->e_mbd);
super_block_yrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, txfm_cache);
this_rate = this_rate_tokenonly +
x->mbmode_cost[x->e_mbd.frame_type]
[x->e_mbd.mode_info_context->mbmi.mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
return best_rd;
}
static int64_t rd_pick_intra_sb64y_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int this_rate, this_rate_tokenonly;
int this_distortion, s;
int64_t best_rd = INT64_MAX, this_rd;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.mode = mode;
vp9_build_intra_predictors_sb64y_s(&x->e_mbd);
super_block_64_yrd(cpi, x, &this_rate_tokenonly,
&this_distortion, &s, txfm_cache);
this_rate = this_rate_tokenonly +
x->mbmode_cost[x->e_mbd.frame_type]
[x->e_mbd.mode_info_context->mbmi.mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
return best_rd;
}
static int64_t rd_pick_intra16x16mby_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *Rate,
int *rate_y,
int *Distortion,
int *skippable,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
TX_SIZE txfm_size = 0;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int rate, ratey;
int distortion, skip;
int64_t best_rd = INT64_MAX;
int64_t this_rd;
2010-05-18 17:58:33 +02:00
int i;
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
// Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_txfm_cache[NB_TXFM_MODES];
mbmi->mode = mode;
vp9_build_intra_predictors_mby(xd);
2010-05-18 17:58:33 +02:00
macro_block_yrd(cpi, x, &ratey, &distortion, &skip, local_txfm_cache);
// FIXME add compoundmode cost
// FIXME add rate for mode2
rate = ratey + x->mbmode_cost[xd->frame_type][mbmi->mode];
2010-05-18 17:58:33 +02:00
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
2010-05-18 17:58:33 +02:00
if (this_rd < best_rd) {
mode_selected = mode;
txfm_size = mbmi->txfm_size;
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = distortion;
*skippable = skip;
}
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = this_rd + local_txfm_cache[i] -
local_txfm_cache[cpi->common.txfm_mode];
if (adj_rd < txfm_cache[i]) {
txfm_cache[i] = adj_rd;
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
mbmi->txfm_size = txfm_size;
mbmi->mode = mode_selected;
return best_rd;
2010-05-18 17:58:33 +02:00
}
static int64_t rd_pick_intra8x8block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
B_PREDICTION_MODE *best_mode,
int *mode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int *bestdistortion) {
MB_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int distortion = 0, rate = 0;
BLOCK *be = x->block + ib;
BLOCKD *b = xd->block + ib;
ENTROPY_CONTEXT ta0, ta1, besta0 = 0, besta1 = 0;
ENTROPY_CONTEXT tl0, tl1, bestl0 = 0, bestl1 = 0;
/*
* The predictor buffer is a 2d buffer with a stride of 16. Create
* a temp buffer that meets the stride requirements, but we are only
* interested in the left 8x8 block
* */
DECLARE_ALIGNED_ARRAY(16, uint8_t, best_predictor, 16 * 8);
DECLARE_ALIGNED_ARRAY(16, int16_t, best_dqcoeff, 16 * 4);
// perform transformation of dimension 8x8
// note the input and output index mapping
int idx = (ib & 0x02) ? (ib + 2) : ib;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t this_rd;
int rate_t = 0;
// FIXME rate for compound mode and second intrapred mode
rate = mode_costs[mode];
b->bmi.as_mode.first = mode;
vp9_intra8x8_predict(b, mode, b->predictor);
vp9_subtract_4b_c(be, b, 16);
assert(get_2nd_order_usage(xd) == 0);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
TX_TYPE tx_type = get_tx_type_8x8(xd, b);
if (tx_type != DCT_DCT)
vp9_fht(be->src_diff, 32, (x->block + idx)->coeff, tx_type, 8);
else
x->vp9_short_fdct8x8(be->src_diff, (x->block + idx)->coeff, 32);
x->quantize_b_8x8(x->block + idx, xd->block + idx);
// compute quantization mse of 8x8 block
distortion = vp9_block_error_c((x->block + idx)->coeff,
(xd->block + idx)->dqcoeff, 64);
ta0 = a[vp9_block2above[TX_8X8][idx]];
tl0 = l[vp9_block2left[TX_8X8][idx]];
rate_t = cost_coeffs(x, xd->block + idx, PLANE_TYPE_Y_WITH_DC,
&ta0, &tl0, TX_8X8);
rate += rate_t;
ta1 = ta0;
tl1 = tl0;
} else {
static const int iblock[4] = {0, 1, 4, 5};
TX_TYPE tx_type;
int i;
ta0 = a[vp9_block2above[TX_4X4][ib]];
ta1 = a[vp9_block2above[TX_4X4][ib + 1]];
tl0 = l[vp9_block2left[TX_4X4][ib]];
tl1 = l[vp9_block2left[TX_4X4][ib + 4]];
distortion = 0;
rate_t = 0;
for (i = 0; i < 4; ++i) {
b = &xd->block[ib + iblock[i]];
be = &x->block[ib + iblock[i]];
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_fht_c(be->src_diff, 32, be->coeff, tx_type, 4);
vp9_ht_quantize_b_4x4(be, b, tx_type);
} else {
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, b);
}
distortion += vp9_block_error_c(be->coeff, b->dqcoeff, 16);
rate_t += cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC,
// i&1 ? &ta1 : &ta0, i&2 ? &tl1 : &tl0,
&ta0, &tl0,
TX_4X4);
}
rate += rate_t;
}
distortion >>= 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = rate_t;
*bestdistortion = distortion;
besta0 = ta0;
besta1 = ta1;
bestl0 = tl0;
bestl1 = tl1;
best_rd = this_rd;
*best_mode = mode;
copy_predictor_8x8(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 64);
vpx_memcpy(best_dqcoeff + 32, b->dqcoeff + 64, 64);
}
}
b->bmi.as_mode.first = (*best_mode);
vp9_encode_intra8x8(x, ib);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
a[vp9_block2above[TX_8X8][idx]] = besta0;
a[vp9_block2above[TX_8X8][idx] + 1] = besta1;
l[vp9_block2left[TX_8X8][idx]] = bestl0;
l[vp9_block2left[TX_8X8][idx] + 1] = bestl1;
} else {
a[vp9_block2above[TX_4X4][ib]] = besta0;
a[vp9_block2above[TX_4X4][ib + 1]] = besta1;
l[vp9_block2left[TX_4X4][ib]] = bestl0;
l[vp9_block2left[TX_4X4][ib + 4]] = bestl1;
}
return best_rd;
}
static int64_t rd_pick_intra8x8mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int *Distortion, int64_t best_rd) {
MACROBLOCKD *const xd = &mb->e_mbd;
int i, ib;
int cost = mb->mbmode_cost [xd->frame_type] [I8X8_PRED];
int distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
int *i8x8mode_costs;
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
xd->mode_info_context->mbmi.mode = I8X8_PRED;
i8x8mode_costs = mb->i8x8_mode_costs;
for (i = 0; i < 4; i++) {
MODE_INFO *const mic = xd->mode_info_context;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
ib = vp9_i8x8_block[i];
total_rd += rd_pick_intra8x8block(
cpi, mb, ib, &best_mode,
i8x8mode_costs, ta, tl, &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[ib].as_mode.first = best_mode;
}
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
2010-05-18 17:58:33 +02:00
static int rd_cost_mbuv_4x4(MACROBLOCK *mb, int backup) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
}
2010-05-18 17:58:33 +02:00
for (b = 16; b < 24; b++)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp9_block2above[TX_4X4][b],
tl + vp9_block2left[TX_4X4][b],
TX_4X4);
2010-05-18 17:58:33 +02:00
return cost;
2010-05-18 17:58:33 +02:00
}
static int64_t rd_inter16x16_uv_4x4(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel, int *skip,
int do_ctx_backup) {
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
*rate = rd_cost_mbuv_4x4(x, do_ctx_backup);
*distortion = vp9_mbuverror(x) / 4;
*skip = vp9_mbuv_is_skippable_4x4(&x->e_mbd);
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int rd_cost_mbuv_8x8(MACROBLOCK *mb, int backup) {
int b;
int cost = 0;
MACROBLOCKD *xd = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
} else {
ta = (ENTROPY_CONTEXT *)mb->e_mbd.above_context;
tl = (ENTROPY_CONTEXT *)mb->e_mbd.left_context;
}
for (b = 16; b < 24; b += 4)
cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV,
ta + vp9_block2above[TX_8X8][b],
tl + vp9_block2left[TX_8X8][b], TX_8X8);
return cost;
}
static int64_t rd_inter16x16_uv_8x8(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel, int *skip,
int do_ctx_backup) {
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
*rate = rd_cost_mbuv_8x8(x, do_ctx_backup);
*distortion = vp9_mbuverror(x) / 4;
*skip = vp9_mbuv_is_skippable_8x8(&x->e_mbd);
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int rd_cost_sbuv_16x16(MACROBLOCK *x, int backup) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int b;
int cost = 0;
MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (backup) {
vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES));
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
ta = (ENTROPY_CONTEXT *) &t_above;
tl = (ENTROPY_CONTEXT *) &t_left;
} else {
ta = (ENTROPY_CONTEXT *)xd->above_context;
tl = (ENTROPY_CONTEXT *)xd->left_context;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (b = 16; b < 24; b += 4)
cost += cost_coeffs(x, xd->block + b, PLANE_TYPE_UV,
ta + vp9_block2above[TX_8X8][b],
tl + vp9_block2left[TX_8X8][b], TX_16X16);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
return cost;
}
static void rd_inter32x32_uv_16x16(MACROBLOCK *x, int *rate,
int *distortion, int *skip,
int backup) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
MACROBLOCKD *const xd = &x->e_mbd;
vp9_transform_sbuv_16x16(x);
vp9_quantize_sbuv_16x16(x);
*rate = rd_cost_sbuv_16x16(x, backup);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*distortion = vp9_block_error_c(x->sb_coeff_data.coeff + 1024,
xd->sb_coeff_data.dqcoeff + 1024, 512) >> 2;
*skip = vp9_sbuv_is_skippable_16x16(xd);
}
static int64_t rd_inter32x32_uv(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel, int *skip) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const uint8_t *usrc = x->src.u_buffer, *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer, *vdst = xd->dst.v_buffer;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (mbmi->txfm_size == TX_32X32) {
vp9_subtract_sbuv_s_c(x->sb_coeff_data.src_diff,
usrc, vsrc, src_uv_stride,
udst, vdst, dst_uv_stride);
rd_inter32x32_uv_16x16(x, rate, distortion, skip, 1);
} else {
int n, r = 0, d = 0;
int skippable = 1;
ENTROPY_CONTEXT_PLANES t_above[2], t_left[2];
ENTROPY_CONTEXT_PLANES *ta = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl = xd->left_context;
memcpy(t_above, xd->above_context, sizeof(t_above));
memcpy(t_left, xd->left_context, sizeof(t_left));
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
int d_tmp, s_tmp, r_tmp;
xd->above_context = ta + x_idx;
xd->left_context = tl + y_idx;
vp9_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
if (mbmi->txfm_size == TX_4X4) {
rd_inter16x16_uv_4x4(cpi, x, &r_tmp, &d_tmp, fullpixel, &s_tmp, 0);
} else {
rd_inter16x16_uv_8x8(cpi, x, &r_tmp, &d_tmp, fullpixel, &s_tmp, 0);
}
r += r_tmp;
d += d_tmp;
skippable = skippable && s_tmp;
}
*rate = r;
*distortion = d;
*skip = skippable;
xd->left_context = tl;
xd->above_context = ta;
memcpy(xd->above_context, t_above, sizeof(t_above));
memcpy(xd->left_context, t_left, sizeof(t_left));
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void super_block_64_uvrd(MACROBLOCK *x, int *rate,
int *distortion, int *skip);
static int64_t rd_inter64x64_uv(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int fullpixel, int *skip) {
super_block_64_uvrd(x, rate, distortion, skip);
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static int64_t rd_inter4x4_uv(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *distortion, int *skip, int fullpixel) {
vp9_build_inter4x4_predictors_mbuv(&x->e_mbd);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
return rd_inter16x16_uv_4x4(cpi, x, rate, distortion, fullpixel, skip, 1);
2010-05-18 17:58:33 +02:00
}
static void rd_pick_intra_mbuv_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to, UNINITIALIZED_IS_SAFE(skip);
2010-05-18 17:58:33 +02:00
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int rate;
int distortion;
int64_t this_rd;
2010-05-18 17:58:33 +02:00
mbmi->uv_mode = mode;
vp9_build_intra_predictors_mbuv(&x->e_mbd);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
2010-05-18 17:58:33 +02:00
rate_to = rd_cost_mbuv_4x4(x, 1);
rate = rate_to
+ x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
2010-05-18 17:58:33 +02:00
distortion = vp9_mbuverror(x) / 4;
2010-05-18 17:58:33 +02:00
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
2010-05-18 17:58:33 +02:00
if (this_rd < best_rd) {
skip = vp9_mbuv_is_skippable_4x4(xd);
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
*rate = r;
*distortion = d;
*skippable = skip;
2010-05-18 17:58:33 +02:00
mbmi->uv_mode = mode_selected;
2010-05-18 17:58:33 +02:00
}
static void rd_pick_intra_mbuv_mode_8x8(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MACROBLOCKD *xd = &x->e_mbd;
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t best_rd = INT64_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to, UNINITIALIZED_IS_SAFE(skip);
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int rate;
int distortion;
int64_t this_rd;
mbmi->uv_mode = mode;
vp9_build_intra_predictors_mbuv(&x->e_mbd);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
rate_to = rd_cost_mbuv_8x8(x, 1);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode];
distortion = vp9_mbuverror(x) / 4;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
skip = vp9_mbuv_is_skippable_8x8(xd);
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
*skippable = skip;
mbmi->uv_mode = mode_selected;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
// TODO(rbultje) very similar to rd_inter32x32_uv(), merge?
static void super_block_uvrd(MACROBLOCK *x,
int *rate,
int *distortion,
int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const uint8_t *usrc = x->src.u_buffer, *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer, *vdst = xd->dst.v_buffer;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (mbmi->txfm_size == TX_32X32) {
vp9_subtract_sbuv_s_c(x->sb_coeff_data.src_diff,
usrc, vsrc, src_uv_stride,
udst, vdst, dst_uv_stride);
rd_inter32x32_uv_16x16(x, rate, distortion, skippable, 1);
} else {
int d = 0, r = 0, n, s = 1;
ENTROPY_CONTEXT_PLANES t_above[2], t_left[2];
ENTROPY_CONTEXT_PLANES *ta_orig = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl_orig = xd->left_context;
memcpy(t_above, xd->above_context, sizeof(t_above));
memcpy(t_left, xd->left_context, sizeof(t_left));
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
vp9_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
if (mbmi->txfm_size == TX_4X4) {
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
s &= vp9_mbuv_is_skippable_4x4(xd);
} else {
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
s &= vp9_mbuv_is_skippable_8x8(xd);
}
d += vp9_mbuverror(x) >> 2;
xd->above_context = t_above + x_idx;
xd->left_context = t_left + y_idx;
if (mbmi->txfm_size == TX_4X4) {
r += rd_cost_mbuv_4x4(x, 0);
} else {
r += rd_cost_mbuv_8x8(x, 0);
}
}
xd->above_context = ta_orig;
xd->left_context = tl_orig;
*distortion = d;
*rate = r;
*skippable = s;
}
}
static void super_block_64_uvrd(MACROBLOCK *x,
int *rate,
int *distortion,
int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const uint8_t *usrc = x->src.u_buffer, *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer, *vdst = xd->dst.v_buffer;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
ENTROPY_CONTEXT_PLANES t_above[4], t_left[4];
ENTROPY_CONTEXT_PLANES *ta_orig = xd->above_context;
ENTROPY_CONTEXT_PLANES *tl_orig = xd->left_context;
int d = 0, r = 0, n, s = 1;
memcpy(t_above, xd->above_context, sizeof(t_above));
memcpy(t_left, xd->left_context, sizeof(t_left));
if (mbmi->txfm_size == TX_32X32) {
int n;
*rate = 0;
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
int r_tmp, d_tmp, s_tmp;
vp9_subtract_sbuv_s_c(x->sb_coeff_data.src_diff,
usrc + x_idx * 16 + y_idx * 16 * src_uv_stride,
vsrc + x_idx * 16 + y_idx * 16 * src_uv_stride,
src_uv_stride,
udst + x_idx * 16 + y_idx * 16 * dst_uv_stride,
vdst + x_idx * 16 + y_idx * 16 * dst_uv_stride,
dst_uv_stride);
xd->above_context = t_above + x_idx * 2;
xd->left_context = t_left + y_idx * 2;
rd_inter32x32_uv_16x16(x, &r_tmp, &d_tmp, &s_tmp, 0);
r += r_tmp;
d += d_tmp;
s = s && s_tmp;
}
} else {
for (n = 0; n < 16; n++) {
int x_idx = n & 3, y_idx = n >> 2;
vp9_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
if (mbmi->txfm_size == TX_4X4) {
vp9_transform_mbuv_4x4(x);
vp9_quantize_mbuv_4x4(x);
s &= vp9_mbuv_is_skippable_4x4(xd);
} else {
vp9_transform_mbuv_8x8(x);
vp9_quantize_mbuv_8x8(x);
s &= vp9_mbuv_is_skippable_8x8(xd);
}
xd->above_context = t_above + x_idx;
xd->left_context = t_left + y_idx;
d += vp9_mbuverror(x) >> 2;
if (mbmi->txfm_size == TX_4X4) {
r += rd_cost_mbuv_4x4(x, 0);
} else {
r += rd_cost_mbuv_8x8(x, 0);
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
*distortion = d;
*rate = r;
*skippable = s;
xd->left_context = tl_orig;
xd->above_context = ta_orig;
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate;
int this_distortion, s;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp9_build_intra_predictors_sbuv_s(&x->e_mbd);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
super_block_uvrd(x, &this_rate_tokenonly,
&this_distortion, &s);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
static int64_t rd_pick_intra_sb64uv_mode(VP9_COMP *cpi,
MACROBLOCK *x,
int *rate,
int *rate_tokenonly,
int *distortion,
int *skippable) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate;
int this_distortion, s;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp9_build_intra_predictors_sb64uv_s(&x->e_mbd);
super_block_64_uvrd(x, &this_rate_tokenonly,
&this_distortion, &s);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
int vp9_cost_mv_ref(VP9_COMP *cpi,
MB_PREDICTION_MODE m,
const int mode_context) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// If the mode coding is done entirely at the segment level
// we should not account for it at the per mb level in rd code.
// Note that if the segment level coding is expanded from single mode
// to multiple mode masks as per reference frame coding we will need
// to do something different here.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
VP9_COMMON *pc = &cpi->common;
vp9_prob p [VP9_MVREFS - 1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp9_mv_ref_probs(pc, p, mode_context);
return cost_token(vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
2010-05-18 17:58:33 +02:00
}
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
2010-05-18 17:58:33 +02:00
}
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv seg_mvs[MAX_REF_FRAMES - 1],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int *mvjcost, int *mvcost[2]) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
const int mis = xd->mode_info_stride;
int i, cost = 0, thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
for (i = 0; i < 16; ++i) {
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i - 1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i - 4])
m = ABOVE4X4;
else {
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEW4X4 :
if (mbmi->second_ref_frame > 0) {
this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int;
this_second_mv->as_int =
seg_mvs[mbmi->second_ref_frame - 1].as_int;
}
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame > 0) {
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvjcost, mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case LEFT4X4:
this_mv->as_int = col ? d[-1].bmi.as_mv.first.as_int : left_block_mv(mic, i);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = col ? d[-1].bmi.as_mv.second.as_int : left_block_second_mv(mic, i);
break;
case ABOVE4X4:
this_mv->as_int = row ? d[-4].bmi.as_mv.first.as_int : above_block_mv(mic, i, mis);
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = row ? d[-4].bmi.as_mv.second.as_int : above_block_second_mv(mic, i, mis);
break;
case ZERO4X4:
this_mv->as_int = 0;
if (mbmi->second_ref_frame > 0)
this_second_mv->as_int = 0;
break;
default:
break;
}
2010-05-18 17:58:33 +02:00
if (m == ABOVE4X4) { // replace above with left if same
int_mv left_mv, left_second_mv;
left_second_mv.as_int = 0;
left_mv.as_int = col ? d[-1].bmi.as_mv.first.as_int :
left_block_mv(mic, i);
if (mbmi->second_ref_frame > 0)
left_second_mv.as_int = col ? d[-1].bmi.as_mv.second.as_int :
left_block_second_mv(mic, i);
2010-05-18 17:58:33 +02:00
if (left_mv.as_int == this_mv->as_int &&
(mbmi->second_ref_frame <= 0 ||
left_second_mv.as_int == this_second_mv->as_int))
m = LEFT4X4;
}
2010-05-18 17:58:33 +02:00
#if CONFIG_NEWBINTRAMODES
cost = x->inter_bmode_costs[
m == B_CONTEXT_PRED ? m - CONTEXT_PRED_REPLACEMENTS : m];
#else
cost = x->inter_bmode_costs[m];
#endif
}
2010-05-18 17:58:33 +02:00
d->bmi.as_mv.first.as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
d->bmi.as_mv.second.as_int = this_second_mv->as_int;
2010-05-18 17:58:33 +02:00
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
}
2010-05-18 17:58:33 +02:00
cost += thismvcost;
return cost;
2010-05-18 17:58:33 +02:00
}
static int64_t encode_inter_mb_segment(MACROBLOCK *x,
int const *labels,
int which_label,
int *labelyrate,
int *distortion,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
*labelyrate = 0;
*distortion = 0;
for (i = 0; i < 16; i++) {
if (labels[i] == which_label) {
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
int thisdistortion;
vp9_build_inter_predictors_b(bd, 16, xd->subpixel_predict4x4);
if (xd->mode_info_context->mbmi.second_ref_frame > 0)
vp9_build_2nd_inter_predictors_b(bd, 16, xd->subpixel_predict_avg4x4);
vp9_subtract_b(be, bd, 16);
x->vp9_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4(be, bd);
thisdistortion = vp9_block_error(be->coeff, bd->dqcoeff, 16);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(x, bd, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][i],
tl + vp9_block2left[TX_4X4][i], TX_4X4);
}
}
*distortion >>= 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
2010-05-18 17:58:33 +02:00
}
static int64_t encode_inter_mb_segment_8x8(MACROBLOCK *x,
int const *labels,
int which_label,
int *labelyrate,
int *distortion,
int64_t *otherrd,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int i, j;
MACROBLOCKD *xd = &x->e_mbd;
const int iblock[4] = { 0, 1, 4, 5 };
int othercost = 0, otherdist = 0;
ENTROPY_CONTEXT_PLANES tac, tlc;
ENTROPY_CONTEXT *tacp = (ENTROPY_CONTEXT *) &tac,
*tlcp = (ENTROPY_CONTEXT *) &tlc;
if (otherrd) {
memcpy(&tac, ta, sizeof(ENTROPY_CONTEXT_PLANES));
memcpy(&tlc, tl, sizeof(ENTROPY_CONTEXT_PLANES));
}
*distortion = 0;
*labelyrate = 0;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
if (labels[ib] == which_label) {
int idx = (ib & 8) + ((ib & 2) << 1);
BLOCKD *bd = &xd->block[ib], *bd2 = &xd->block[idx];
BLOCK *be = &x->block[ib], *be2 = &x->block[idx];
int thisdistortion;
vp9_build_inter_predictors4b(xd, bd, 16);
if (xd->mode_info_context->mbmi.second_ref_frame > 0)
vp9_build_2nd_inter_predictors4b(xd, bd, 16);
vp9_subtract_4b_c(be, bd, 16);
if (xd->mode_info_context->mbmi.txfm_size == TX_4X4) {
if (otherrd) {
x->vp9_short_fdct8x8(be->src_diff, be2->coeff, 32);
x->quantize_b_8x8(be2, bd2);
thisdistortion = vp9_block_error_c(be2->coeff, bd2->dqcoeff, 64);
otherdist += thisdistortion;
othercost += cost_coeffs(x, bd2, PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_8X8][idx],
tlcp + vp9_block2left[TX_8X8][idx],
TX_8X8);
}
for (j = 0; j < 4; j += 2) {
bd = &xd->block[ib + iblock[j]];
be = &x->block[ib + iblock[j]];
x->vp9_short_fdct8x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4_pair(be, be + 1, bd, bd + 1);
thisdistortion = vp9_block_error_c(be->coeff, bd->dqcoeff, 32);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(x, bd, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][ib + iblock[j]],
tl + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4);
*labelyrate += cost_coeffs(x, bd + 1, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][ib + iblock[j] + 1],
tl + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4);
}
} else /* 8x8 */ {
if (otherrd) {
for (j = 0; j < 4; j += 2) {
BLOCKD *bd = &xd->block[ib + iblock[j]];
BLOCK *be = &x->block[ib + iblock[j]];
x->vp9_short_fdct8x4(be->src_diff, be->coeff, 32);
x->quantize_b_4x4_pair(be, be + 1, bd, bd + 1);
thisdistortion = vp9_block_error_c(be->coeff, bd->dqcoeff, 32);
otherdist += thisdistortion;
othercost += cost_coeffs(x, bd, PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_4X4][ib + iblock[j]],
tlcp + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4);
othercost += cost_coeffs(x, bd + 1, PLANE_TYPE_Y_WITH_DC,
tacp + vp9_block2above[TX_4X4][ib + iblock[j] + 1],
tlcp + vp9_block2left[TX_4X4][ib + iblock[j]],
TX_4X4);
}
}
x->vp9_short_fdct8x8(be->src_diff, be2->coeff, 32);
x->quantize_b_8x8(be2, bd2);
thisdistortion = vp9_block_error_c(be2->coeff, bd2->dqcoeff, 64);
*distortion += thisdistortion;
*labelyrate += cost_coeffs(x, bd2, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_8X8][idx],
tl + vp9_block2left[TX_8X8][idx], TX_8X8);
}
}
}
*distortion >>= 2;
if (otherrd) {
otherdist >>= 2;
*otherrd = RDCOST(x->rdmult, x->rddiv, othercost, otherdist);
}
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
SPLITMV_PARTITIONING_TYPE segment_num;
TX_SIZE txfm_size;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
int_mv mvs[16], second_mvs[16];
int eobs[16];
int mvthresh;
int *mdcounts;
int_mv sv_mvp[4]; // save 4 mvp from 8x8
int sv_istep[2]; // save 2 initial step_param for 16x8/8x16
} BEST_SEG_INFO;
static __inline
int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
SPLITMV_PARTITIONING_TYPE segmentation,
TX_SIZE tx_size, int64_t *otherrds,
int64_t *rds, int *completed,
/* 16 = n_blocks */
int_mv seg_mvs[16 /* n_blocks */]
[MAX_REF_FRAMES - 1]) {
int i, j;
int const *labels;
int br = 0, bd = 0;
B_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int label_count;
int64_t this_segment_rd = 0, other_segment_rd;
int label_mv_thresh;
int rate = 0;
int sbr = 0, sbd = 0;
int segmentyrate = 0;
int best_eobs[16] = { 0 };
vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b, *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp9_mbsplits[segmentation];
label_count = vp9_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
rate = cost_token(vp9_mbsplit_tree, vp9_mbsplit_probs,
vp9_mbsplit_encodings + segmentation);
rate += vp9_cost_mv_ref(cpi, SPLITMV,
mbmi->mb_mode_context[mbmi->ref_frame]);
this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
br += rate;
other_segment_rd = this_segment_rd;
mbmi->txfm_size = tx_size;
for (i = 0; i < label_count && this_segment_rd < bsi->segment_rd; i++) {
int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT];
int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) {
int64_t this_rd, other_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
// motion search for newmv (single predictor case only)
if (mbmi->second_ref_frame <= 0 && this_mode == NEW4X4) {
int sseshift, n;
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
BLOCK *c;
BLOCKD *e;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
if (segmentation == PARTITIONING_8X16 ||
segmentation == PARTITIONING_16X8) {
bsi->mvp.as_int = bsi->sv_mvp[i].as_int;
if (i == 1 && segmentation == PARTITIONING_16X8)
bsi->mvp.as_int = bsi->sv_mvp[2].as_int;
step_param = bsi->sv_istep[i];
}
// use previous block's result as next block's MV predictor.
if (segmentation == PARTITIONING_4X4 && i > 0) {
bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.as_mv.first.as_int;
if (i == 4 || i == 8 || i == 12)
bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.as_mv.first.as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
{
int sadpb = x->sadperbit4;
int_mv mvp_full;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// find first label
n = vp9_mbsplit_offset[segmentation][i];
c = &x->block[n];
e = &x->e_mbd.block[n];
bestsme = vp9_full_pixel_diamond(cpi, x, c, e, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEW4X4]);
2010-05-18 17:58:33 +02:00
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) {
/* Check if mvp_full is within the range. */
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, c, e, &mvp_full,
sadpb, 16, v_fn_ptr,
x->nmvjointcost, x->mvcost,
bsi->ref_mv);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEW4X4].as_int = e->bmi.as_mv.first.as_int;
} else {
/* The full search result is actually worse so re-instate the
* previous best vector */
e->bmi.as_mv.first.as_int = mode_mv[NEW4X4].as_int;
}
}
}
2010-05-18 17:58:33 +02:00
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr,
x->nmvjointcost, x->mvcost,
&distortion, &sse);
2010-05-18 17:58:33 +02:00
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int;
}
} else if (mbmi->second_ref_frame > 0 && this_mode == NEW4X4) {
/* NEW4X4 */
/* motion search not completed? Then skip newmv for this block with
* comppred */
if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) {
continue;
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->second_ref_frame > 0 &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
if (segmentation == PARTITIONING_4X4) {
this_rd = encode_inter_mb_segment(x, labels, i, &labelyrate,
&distortion, ta_s, tl_s);
other_rd = this_rd;
} else {
this_rd = encode_inter_mb_segment_8x8(x, labels, i, &labelyrate,
&distortion, &other_rd,
ta_s, tl_s);
}
this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
rate += labelyrate;
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
if (x->e_mbd.mode_info_context->mbmi.txfm_size == TX_4X4) {
for (j = 0; j < 16; j++)
if (labels[j] == i)
best_eobs[j] = x->e_mbd.block[j].eob;
} else {
for (j = 0; j < 4; j++) {
int ib = vp9_i8x8_block[j], idx = j * 4;
if (labels[ib] == i)
best_eobs[idx] = x->e_mbd.block[idx].eob;
}
}
if (other_rd < best_other_rd)
best_other_rd = other_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
2010-05-18 17:58:33 +02:00
}
} /*for each 4x4 mode*/
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost);
2010-05-18 17:58:33 +02:00
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
other_segment_rd += best_other_rd;
if (rds)
rds[i] = this_segment_rd;
if (otherrds)
otherrds[i] = other_segment_rd;
} /* for each label */
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
bsi->txfm_size = mbmi->txfm_size;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++) {
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->second_ref_frame > 0)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = best_eobs[i];
2010-05-18 17:58:33 +02:00
}
}
if (completed) {
*completed = i;
}
}
static void rd_check_segment(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
unsigned int segmentation,
/* 16 = n_blocks */
int_mv seg_mvs[16][MAX_REF_FRAMES - 1],
int64_t txfm_cache[NB_TXFM_MODES]) {
int i, n, c = vp9_mbsplit_count[segmentation];
if (segmentation == PARTITIONING_4X4) {
int64_t rd[16];
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_4X4, NULL,
rd, &n, seg_mvs);
if (n == c) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (rd[c - 1] < txfm_cache[i])
txfm_cache[i] = rd[c - 1];
}
}
} else {
int64_t diff, base_rd;
int cost4x4 = vp9_cost_bit(cpi->common.prob_tx[0], 0);
int cost8x8 = vp9_cost_bit(cpi->common.prob_tx[0], 1);
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
int64_t rd4x4[4], rd8x8[4];
int n4x4, n8x8, nmin;
BEST_SEG_INFO bsi4x4, bsi8x8;
/* factor in cost of cost4x4/8x8 in decision */
vpx_memcpy(&bsi4x4, bsi, sizeof(*bsi));
vpx_memcpy(&bsi8x8, bsi, sizeof(*bsi));
rd_check_segment_txsize(cpi, x, &bsi4x4, segmentation,
TX_4X4, NULL, rd4x4, &n4x4, seg_mvs);
rd_check_segment_txsize(cpi, x, &bsi8x8, segmentation,
TX_8X8, NULL, rd8x8, &n8x8, seg_mvs);
if (bsi4x4.segment_num == segmentation) {
bsi4x4.segment_rd += RDCOST(x->rdmult, x->rddiv, cost4x4, 0);
if (bsi4x4.segment_rd < bsi->segment_rd)
vpx_memcpy(bsi, &bsi4x4, sizeof(*bsi));
}
if (bsi8x8.segment_num == segmentation) {
bsi8x8.segment_rd += RDCOST(x->rdmult, x->rddiv, cost8x8, 0);
if (bsi8x8.segment_rd < bsi->segment_rd)
vpx_memcpy(bsi, &bsi8x8, sizeof(*bsi));
}
n = n4x4 > n8x8 ? n4x4 : n8x8;
if (n == c) {
nmin = n4x4 < n8x8 ? n4x4 : n8x8;
diff = rd8x8[nmin - 1] - rd4x4[nmin - 1];
if (n == n4x4) {
base_rd = rd4x4[c - 1];
} else {
base_rd = rd8x8[c - 1] - diff;
}
}
} else {
int64_t rd[4], otherrd[4];
if (cpi->common.txfm_mode == ONLY_4X4) {
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_4X4, otherrd,
rd, &n, seg_mvs);
if (n == c) {
base_rd = rd[c - 1];
diff = otherrd[c - 1] - rd[c - 1];
}
} else /* use 8x8 transform */ {
rd_check_segment_txsize(cpi, x, bsi, segmentation, TX_8X8, otherrd,
rd, &n, seg_mvs);
if (n == c) {
diff = rd[c - 1] - otherrd[c - 1];
base_rd = otherrd[c - 1];
}
}
}
if (n == c) {
if (base_rd < txfm_cache[ONLY_4X4]) {
txfm_cache[ONLY_4X4] = base_rd;
}
if (base_rd + diff < txfm_cache[1]) {
txfm_cache[ALLOW_8X8] = txfm_cache[ALLOW_16X16] = base_rd + diff;
}
if (diff < 0) {
base_rd += diff + RDCOST(x->rdmult, x->rddiv, cost8x8, 0);
} else {
base_rd += RDCOST(x->rdmult, x->rddiv, cost4x4, 0);
}
if (base_rd < txfm_cache[TX_MODE_SELECT]) {
txfm_cache[TX_MODE_SELECT] = base_rd;
}
}
}
}
static __inline void cal_step_param(int sr, int *sp) {
int step = 0;
if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP;
else if (sr < 1) sr = 1;
while (sr >>= 1)
step++;
*sp = MAX_MVSEARCH_STEPS - 1 - step;
}
static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd,
int *mdcounts,
int *returntotrate,
int *returnyrate,
int *returndistortion,
int *skippable, int mvthresh,
int_mv seg_mvs[NB_PARTITIONINGS]
[16 /* n_blocks */]
[MAX_REF_FRAMES - 1],
int64_t txfm_cache[NB_TXFM_MODES]) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
bsi.txfm_size = TX_4X4;
for (i = 0; i < 16; i++)
bsi.modes[i] = ZERO4X4;
if (cpi->compressor_speed == 0) {
/* for now, we will keep the original segmentation order
when in best quality mode */
rd_check_segment(cpi, x, &bsi, PARTITIONING_16X8,
seg_mvs[PARTITIONING_16X8], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X16,
seg_mvs[PARTITIONING_8X16], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X8,
seg_mvs[PARTITIONING_8X8], txfm_cache);
rd_check_segment(cpi, x, &bsi, PARTITIONING_4X4,
seg_mvs[PARTITIONING_4X4], txfm_cache);
} else {
int sr;
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X8,
seg_mvs[PARTITIONING_8X8], txfm_cache);
if (bsi.segment_rd < best_rd) {
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp9_clamp_mv_min_max(x, best_ref_mv);
/* Get 8x8 result */
bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int;
bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int;
bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int;
bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int;
/* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range
* according to the closeness of 2 MV. */
/* block 8X16 */
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, PARTITIONING_8X16,
seg_mvs[PARTITIONING_8X16], txfm_cache);
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
/* block 16X8 */
sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[0]);
sr = MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3,
(abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3);
cal_step_param(sr, &bsi.sv_istep[1]);
rd_check_segment(cpi, x, &bsi, PARTITIONING_16X8,
seg_mvs[PARTITIONING_16X8], txfm_cache);
/* If 8x8 is better than 16x8/8x16, then do 4x4 search */
/* Not skip 4x4 if speed=0 (good quality) */
if (cpi->sf.no_skip_block4x4_search ||
bsi.segment_num == PARTITIONING_8X8) {
/* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */
bsi.mvp.as_int = bsi.sv_mvp[0].as_int;
rd_check_segment(cpi, x, &bsi, PARTITIONING_4X4,
seg_mvs[PARTITIONING_4X4], txfm_cache);
}
/* restore UMV window */
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
}
}
/* set it to the best */
for (i = 0; i < 16; i++) {
BLOCKD *bd = &x->e_mbd.block[i];
2010-05-18 17:58:33 +02:00
bd->bmi.as_mv.first.as_int = bsi.mvs[i].as_int;
if (mbmi->second_ref_frame > 0)
bd->bmi.as_mv.second.as_int = bsi.second_mvs[i].as_int;
bd->eob = bsi.eobs[i];
}
2010-05-18 17:58:33 +02:00
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
*skippable = bsi.txfm_size == TX_4X4 ?
vp9_mby_is_skippable_4x4(&x->e_mbd, 0) :
vp9_mby_is_skippable_8x8(&x->e_mbd, 0);
2010-05-18 17:58:33 +02:00
/* save partitions */
mbmi->txfm_size = bsi.txfm_size;
mbmi->partitioning = bsi.segment_num;
x->partition_info->count = vp9_mbsplit_count[bsi.segment_num];
2010-05-18 17:58:33 +02:00
for (i = 0; i < x->partition_info->count; i++) {
int j;
2010-05-18 17:58:33 +02:00
j = vp9_mbsplit_offset[bsi.segment_num][i];
2010-05-18 17:58:33 +02:00
x->partition_info->bmi[i].mode = bsi.modes[j];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[j].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int;
if (mbmi->second_ref_frame > 0)
x->partition_info->bmi[15].second_mv.as_int = bsi.second_mvs[15].as_int;
return (int)(bsi.segment_rd);
2010-05-18 17:58:33 +02:00
}
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, enum BlockSize block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int_mv this_mv;
int i;
int zero_seen = FALSE;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
BLOCK *b = &x->block[0];
uint8_t *src_y_ptr = *(b->base_src);
uint8_t *ref_y_ptr;
int row_offset, col_offset;
// Get the sad for each candidate reference mv
for (i = 0; i < 4; i++) {
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
// The list is at an end if we see 0 for a second time.
if (!this_mv.as_int && zero_seen)
break;
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
col_offset = this_mv.as_mv.col >> 3;
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, b->src_stride,
ref_y_ptr, ref_y_stride,
0x7fffffff);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
}
static void set_i8x8_block_modes(MACROBLOCK *x, int modes[4]) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
xd->mode_info_context->bmi[ib + 0].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 1].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 4].as_mode.first = modes[i];
xd->mode_info_context->bmi[ib + 5].as_mode.first = modes[i];
// printf("%d,%d,%d,%d\n",
// modes[0], modes[1], modes[2], modes[3]);
}
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
extern void vp9_calc_ref_probs(int *count, vp9_prob *probs);
static void estimate_curframe_refprobs(VP9_COMP *cpi, vp9_prob mod_refprobs[3], int pred_ref) {
int norm_cnt[MAX_REF_FRAMES];
const int *const rfct = cpi->count_mb_ref_frame_usage;
int intra_count = rfct[INTRA_FRAME];
int last_count = rfct[LAST_FRAME];
int gf_count = rfct[GOLDEN_FRAME];
int arf_count = rfct[ALTREF_FRAME];
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
if (pred_ref == INTRA_FRAME) {
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[0] = 0; // This branch implicit
} else if (pred_ref == LAST_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[1] = 0; // This branch implicit
} else if (pred_ref == GOLDEN_FRAME) {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
} else {
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
vp9_calc_ref_probs(norm_cnt, mod_refprobs);
mod_refprobs[2] = 0; // This branch implicit
}
}
static __inline unsigned weighted_cost(vp9_prob *tab0, vp9_prob *tab1, int idx, int val, int weight) {
unsigned cost0 = tab0[idx] ? vp9_cost_bit(tab0[idx], val) : 0;
unsigned cost1 = tab1[idx] ? vp9_cost_bit(tab1[idx], val) : 0;
// weight is 16-bit fixed point, so this basically calculates:
// 0.5 + weight * cost1 + (1.0 - weight) * cost0
return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16;
}
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id, unsigned int *ref_costs) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
vp9_prob *mod_refprobs;
unsigned int cost;
int pred_ref;
int pred_flag;
int pred_ctx;
int i;
vp9_prob pred_prob, new_pred_prob;
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Get the predicted reference for this mb
pred_ref = vp9_get_pred_ref(cm, xd);
// Get the context probability for the prediction flag (based on last frame)
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Predict probability for current frame based on stats so far
pred_ctx = vp9_get_pred_context(cm, xd, PRED_REF);
new_pred_prob = get_binary_prob(cpi->ref_pred_count[pred_ctx][0],
cpi->ref_pred_count[pred_ctx][1]);
// Get the set of probabilities to use if prediction fails
mod_refprobs = cm->mod_refprobs[pred_ref];
// For each possible selected reference frame work out a cost.
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (seg_ref_active && seg_ref_count == 1) {
cost = 0;
} else {
pred_flag = (i == pred_ref);
// Get the prediction for the current mb
cost = weighted_cost(&pred_prob, &new_pred_prob, 0,
pred_flag, cpi->seg0_progress);
if (cost > 1024) cost = 768; // i.e. account for 4 bits max.
// for incorrectly predicted cases
if (! pred_flag) {
vp9_prob curframe_mod_refprobs[3];
if (cpi->seg0_progress) {
estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref);
} else {
vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs));
}
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0,
(i != INTRA_FRAME), cpi->seg0_progress);
if (i != INTRA_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1,
(i != LAST_FRAME), cpi->seg0_progress);
if (i != LAST_FRAME) {
cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2,
(i != GOLDEN_FRAME), cpi->seg0_progress);
}
}
}
}
ref_costs[i] = cost;
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
int64_t txfm_size_diff[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
vpx_memcpy(&ctx->mic, xd->mode_info_context,
sizeof(MODE_INFO));
if (partition)
vpx_memcpy(&ctx->partition_info, partition,
sizeof(PARTITION_INFO));
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
}
static void inter_mode_cost(VP9_COMP *cpi, MACROBLOCK *x,
int *rate2, int *distortion2, int *rate_y,
int *distortion, int* rate_uv, int *distortion_uv,
int *skippable, int64_t txfm_cache[NB_TXFM_MODES]) {
int y_skippable, uv_skippable;
// Y cost and distortion
macro_block_yrd(cpi, x, rate_y, distortion, &y_skippable, txfm_cache);
*rate2 += *rate_y;
*distortion2 += *distortion;
// UV cost and distortion
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
if (x->e_mbd.mode_info_context->mbmi.txfm_size != TX_4X4)
rd_inter16x16_uv_8x8(cpi, x, rate_uv, distortion_uv,
cpi->common.full_pixel, &uv_skippable, 1);
else
rd_inter16x16_uv_4x4(cpi, x, rate_uv, distortion_uv,
cpi->common.full_pixel, &uv_skippable, 1);
*rate2 += *rate_uv;
*distortion2 += *distortion_uv;
*skippable = y_skippable && uv_skippable;
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int idx, MV_REFERENCE_FRAME frame_type,
int block_size,
int recon_yoffset, int recon_uvoffset,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
int frame_mdcounts[4][4],
uint8_t *y_buffer[4],
uint8_t *u_buffer[4],
uint8_t *v_buffer[4]) {
YV12_BUFFER_CONFIG *yv12 = &cpi->common.yv12_fb[idx];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
y_buffer[frame_type] = yv12->y_buffer + recon_yoffset;
u_buffer[frame_type] = yv12->u_buffer + recon_uvoffset;
v_buffer[frame_type] = yv12->v_buffer + recon_uvoffset;
// Gets an initial list of candidate vectors from neighbours and orders them
vp9_find_mv_refs(xd, xd->mode_info_context,
xd->prev_mode_info_context,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd, y_buffer[frame_type],
yv12->y_stride,
mbmi->ref_mvs[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
mv_pred(cpi, x, y_buffer[frame_type], yv12->y_stride,
frame_type, block_size);
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
enum BlockSize block_size,
int *saddone, int near_sadidx[],
int mdcounts[4], int64_t txfm_cache[],
int *rate2, int *distortion, int *skippable,
int *compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
int *compmode_interintra_cost,
#endif
int *rate_y, int *distortion_y,
int *rate_uv, int *distortion_uv,
int *mode_excluded, int *disable_skip,
int recon_yoffset, int mode_index,
int_mv frame_mv[MB_MODE_COUNT]
[MAX_REF_FRAMES]) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
BLOCK *b = &x->block[0];
BLOCKD *d = &xd->block[0];
const int is_comp_pred = (mbmi->second_ref_frame > 0);
#if CONFIG_COMP_INTERINTRA_PRED
const int is_comp_interintra_pred = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
int i;
int refs[2] = { mbmi->ref_frame,
(mbmi->second_ref_frame < 0 ? 0 : mbmi->second_ref_frame) };
int_mv cur_mv[2];
int_mv ref_mv[2];
int64_t this_rd = 0;
switch (this_mode) {
case NEWMV:
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
if (is_comp_pred) {
if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV ||
frame_mv[NEWMV][refs[1]].as_int == INVALID_MV)
return INT64_MAX;
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[0]],
&ref_mv[0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
*rate2 += vp9_mv_bit_cost(&frame_mv[NEWMV][refs[1]],
&ref_mv[1],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
} else {
int bestsme = INT_MAX;
int further_steps, step_param = cpi->sf.first_step;
int sadpb = x->sadperbit16;
int_mv mvp_full, tmp_mv;
int sr = 0;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
vp9_clamp_mv_min_max(x, &ref_mv[0]);
// mvp_full.as_int = ref_mv[0].as_int;
mvp_full.as_int =
mbmi->ref_mvs[refs[0]][x->mv_best_ref_index[refs[0]]].as_int;
mvp_full.as_mv.col >>= 3;
mvp_full.as_mv.row >>= 3;
if (mvp_full.as_int != mvp_full.as_int) {
mvp_full.as_int = mvp_full.as_int;
}
// adjust search range according to sr from mv prediction
step_param = MAX(step_param, sr);
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp9_full_pixel_diamond(cpi, x, b, d, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[block_size],
&ref_mv[0], &tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, b, d, &tmp_mv,
&ref_mv[0],
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse);
}
d->bmi.as_mv.first.as_int = tmp_mv.as_int;
frame_mv[NEWMV][refs[0]].as_int = d->bmi.as_mv.first.as_int;
// Add the new motion vector cost to our rolling cost variable
*rate2 += vp9_mv_bit_cost(&tmp_mv, &ref_mv[0],
x->nmvjointcost, x->mvcost,
96, xd->allow_high_precision_mv);
}
break;
case NEARESTMV:
case NEARMV:
// Do not bother proceeding if the vector (from newmv, nearest or
// near) is 0,0 as this should then be coded using the zeromv mode.
for (i = 0; i < num_refs; ++i)
if (frame_mv[this_mode][refs[i]].as_int == 0)
return INT64_MAX;
case ZEROMV:
default:
break;
}
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[this_mode][refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
*rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
*compmode_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP),
is_comp_pred);
*rate2 += vp9_cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame]);
#if CONFIG_COMP_INTERINTRA_PRED
if (!is_comp_pred) {
*compmode_interintra_cost = vp9_cost_bit(cm->fc.interintra_prob,
is_comp_interintra_pred);
if (is_comp_interintra_pred) {
*compmode_interintra_cost +=
x->mbmode_cost[xd->frame_type][mbmi->interintra_mode];
#if SEPARATE_INTERINTRA_UV
*compmode_interintra_cost +=
x->intra_uv_mode_cost[xd->frame_type][mbmi->interintra_uv_mode];
#endif
}
}
#endif
if (block_size == BLOCK_64X64) {
vp9_build_inter64x64_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
} else if (block_size == BLOCK_32X32) {
vp9_build_inter32x32_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
} else {
assert(block_size == BLOCK_16X16);
vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
if (is_comp_pred)
vp9_build_2nd_inter16x16_predictors_mby(xd, xd->predictor, 16);
#if CONFIG_COMP_INTERINTRA_PRED
if (is_comp_interintra_pred) {
vp9_build_interintra_16x16_predictors_mby(xd, xd->predictor, 16);
}
#endif
}
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int sse, var;
int threshold = (xd->block[0].dequant[1]
* xd->block[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
if (block_size == BLOCK_64X64) {
var = vp9_variance64x64(*(b->base_src), b->src_stride,
xd->dst.y_buffer, xd->dst.y_stride, &sse);
} else if (block_size == BLOCK_32X32) {
var = vp9_variance32x32(*(b->base_src), b->src_stride,
xd->dst.y_buffer, xd->dst.y_stride, &sse);
} else {
assert(block_size == BLOCK_16X16);
var = vp9_variance16x16(*(b->base_src), b->src_stride,
xd->predictor, 16, &sse);
}
if ((int)sse < threshold) {
unsigned int q2dc = xd->block[24].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc * q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2;
if (block_size == BLOCK_64X64) {
unsigned int sse2u, sse2v;
var = vp9_variance32x32(x->src.u_buffer, x->src.uv_stride,
xd->dst.u_buffer, xd->dst.uv_stride, &sse2u);
var = vp9_variance32x32(x->src.v_buffer, x->src.uv_stride,
xd->dst.v_buffer, xd->dst.uv_stride, &sse2v);
sse2 = sse2u + sse2v;
} else if (block_size == BLOCK_32X32) {
unsigned int sse2u, sse2v;
var = vp9_variance16x16(x->src.u_buffer, x->src.uv_stride,
xd->dst.u_buffer, xd->dst.uv_stride, &sse2u);
var = vp9_variance16x16(x->src.v_buffer, x->src.uv_stride,
xd->dst.v_buffer, xd->dst.uv_stride, &sse2v);
sse2 = sse2u + sse2v;
} else {
assert(block_size == BLOCK_16X16);
sse2 = vp9_uvsse(x);
}
if (sse2 * 2 < threshold) {
x->skip = 1;
*distortion = sse + sse2;
*rate2 = 500;
/* for best_yrd calculation */
*rate_uv = 0;
*distortion_uv = sse2;
*disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
}
}
}
}
if (!(*mode_excluded)) {
if (is_comp_pred) {
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
} else {
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
}
#if CONFIG_COMP_INTERINTRA_PRED
if (is_comp_interintra_pred && !cm->use_interintra) *mode_excluded = 1;
#endif
}
if (!x->skip) {
if (block_size == BLOCK_64X64) {
int skippable_y, skippable_uv;
// Y cost and distortion
super_block_64_yrd(cpi, x, rate_y, distortion_y,
&skippable_y, txfm_cache);
*rate2 += *rate_y;
*distortion += *distortion_y;
rd_inter64x64_uv(cpi, x, rate_uv, distortion_uv,
cm->full_pixel, &skippable_uv);
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
} else if (block_size == BLOCK_32X32) {
int skippable_y, skippable_uv;
// Y cost and distortion
super_block_yrd(cpi, x, rate_y, distortion_y,
&skippable_y, txfm_cache);
*rate2 += *rate_y;
*distortion += *distortion_y;
rd_inter32x32_uv(cpi, x, rate_uv, distortion_uv,
cm->full_pixel, &skippable_uv);
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
} else {
assert(block_size == BLOCK_16X16);
vp9_build_1st_inter16x16_predictors_mbuv(xd, &xd->predictor[256],
&xd->predictor[320], 8);
if (is_comp_pred)
vp9_build_2nd_inter16x16_predictors_mbuv(xd, &xd->predictor[256],
&xd->predictor[320], 8);
#if CONFIG_COMP_INTERINTRA_PRED
if (is_comp_interintra_pred) {
vp9_build_interintra_16x16_predictors_mbuv(xd, &xd->predictor[256],
&xd->predictor[320], 8);
}
#endif
inter_mode_cost(cpi, x, rate2, distortion,
rate_y, distortion_y, rate_uv, distortion_uv,
skippable, txfm_cache);
}
}
return this_rd; // if 0, this will be re-calculated by caller
}
static void rd_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate, int *returndistortion,
int64_t *returnintra) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
union b_mode_info best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
int_mv best_ref_mv, second_best_ref_mv;
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
int i, best_mode_index = 0;
int mode8x8[4];
unsigned char segment_id = mbmi->segment_id;
int mode_index;
int mdcounts[4];
int rate, distortion;
int rate2, distortion2;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
int64_t best_rd = INT64_MAX, best_intra_rd = INT64_MAX;
#if CONFIG_COMP_INTERINTRA_PRED
int is_best_interintra = 0;
int64_t best_intra16_rd = INT64_MAX;
int best_intra16_mode = DC_PRED, best_intra16_uv_mode = DC_PRED;
#endif
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int uv_intra_skippable = 0;
int uv_intra_rate_8x8 = 0, uv_intra_distortion_8x8 = 0, uv_intra_rate_tokenonly_8x8 = 0;
int uv_intra_skippable_8x8 = 0;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
int distortion_uv = INT_MAX;
int64_t best_yrd = INT64_MAX;
int switchable_filter_index = 0;
MB_PREDICTION_MODE uv_intra_mode;
MB_PREDICTION_MODE uv_intra_mode_8x8 = 0;
int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int saddone = 0;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int frame_mdcounts[4][4];
uint8_t *y_buffer[4], *u_buffer[4], *v_buffer[4];
unsigned int ref_costs[MAX_REF_FRAMES];
int_mv seg_mvs[NB_PARTITIONINGS][16 /* n_blocks */][MAX_REF_FRAMES - 1];
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
cpi->common.y1dc_delta_q);
vpx_memset(mode8x8, 0, sizeof(mode8x8));
vpx_memset(&frame_mv, 0, sizeof(frame_mv));
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&best_bmodes, 0, sizeof(best_bmodes));
vpx_memset(&x->mb_context[xd->sb_index][xd->mb_index], 0,
sizeof(PICK_MODE_CONTEXT));
for (i = 0; i < MAX_REF_FRAMES; i++)
frame_mv[NEWMV][i].as_int = INVALID_MV;
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
for (i = 0; i < NB_PARTITIONINGS; i++) {
int j, k;
for (j = 0; j < 16; j++)
for (k = 0; k < MAX_REF_FRAMES - 1; k++)
seg_mvs[i][j][k].as_int = INVALID_MV;
}
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.lst_fb_idx, LAST_FRAME,
BLOCK_16X16, recon_yoffset, recon_uvoffset,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.gld_fb_idx, GOLDEN_FRAME,
BLOCK_16X16, recon_yoffset, recon_uvoffset,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
if (cpi->ref_frame_flags & VP9_ALT_FLAG) {
setup_buffer_inter(cpi, x, cpi->common.alt_fb_idx, ALTREF_FRAME,
BLOCK_16X16, recon_yoffset, recon_uvoffset,
frame_mv[NEARESTMV], frame_mv[NEARMV],
frame_mdcounts, y_buffer, u_buffer, v_buffer);
}
*returnintra = INT64_MAX;
mbmi->ref_frame = INTRA_FRAME;
/* Initialize zbin mode boost for uv costing */
cpi->zbin_mode_boost = 0;
vp9_update_zbin_extra(cpi, x);
rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate,
&uv_intra_rate_tokenonly, &uv_intra_distortion,
&uv_intra_skippable);
uv_intra_mode = mbmi->uv_mode;
/* rough estimate for now */
if (cpi->common.txfm_mode != ONLY_4X4) {
rd_pick_intra_mbuv_mode_8x8(cpi, x, &uv_intra_rate_8x8,
&uv_intra_rate_tokenonly_8x8,
&uv_intra_distortion_8x8,
&uv_intra_skippable_8x8);
uv_intra_mode_8x8 = mbmi->uv_mode;
}
// Get estimates of reference frame costs for each reference frame
// that depend on the current prediction etc.
estimate_ref_frame_costs(cpi, segment_id, ref_costs);
for (mode_index = 0; mode_index < MAX_MODES;
mode_index += (!switchable_filter_index)) {
int64_t this_rd = INT64_MAX;
int disable_skip = 0, skippable = 0;
int other_cost = 0;
int compmode_cost = 0;
#if CONFIG_COMP_INTERINTRA_PRED
int compmode_interintra_cost = 0;
#endif
int mode_excluded = 0;
int64_t txfm_cache[NB_TXFM_MODES] = { 0 };
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
rate_y = 0;
rate_uv = 0;
x->skip = 0;
this_mode = vp9_mode_order[mode_index].mode;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame = vp9_mode_order[mode_index].ref_frame;
mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
if (this_mode >= NEARESTMV && this_mode <= SPLITMV) {
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index++];
if (switchable_filter_index == VP9_SWITCHABLE_FILTERS)
switchable_filter_index = 0;
if ((cm->mcomp_filter_type != SWITCHABLE) &&
(cm->mcomp_filter_type != mbmi->interp_filter)) {
mode_excluded = 1;
}
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
}
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// current coding mode under rate-distortion optimization test loop
#if CONFIG_COMP_INTERINTRA_PRED
mbmi->interintra_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->interintra_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_check_segref(xd, segment_id, mbmi->ref_frame)) {
continue;
// If the segment mode feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
(this_mode !=
vp9_get_segdata(xd, segment_id, SEG_LVL_MODE))) {
continue;
// Disable this drop out case if either the mode or ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that the we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV ||
mbmi->ref_frame != ALTREF_FRAME) {
continue;
}
}
}
/* everything but intra */
if (mbmi->ref_frame) {
int ref = mbmi->ref_frame;
xd->pre.y_buffer = y_buffer[ref];
xd->pre.u_buffer = u_buffer[ref];
xd->pre.v_buffer = v_buffer[ref];
best_ref_mv = mbmi->ref_mvs[ref][0];
vpx_memcpy(mdcounts, frame_mdcounts[ref], sizeof(mdcounts));
}
if (mbmi->second_ref_frame > 0) {
int ref = mbmi->second_ref_frame;
xd->second_pre.y_buffer = y_buffer[ref];
xd->second_pre.u_buffer = u_buffer[ref];
xd->second_pre.v_buffer = v_buffer[ref];
second_best_ref_mv = mbmi->ref_mvs[ref][0];
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
if (cpi->zbin_mode_boost_enabled) {
if (vp9_mode_order[mode_index].ref_frame == INTRA_FRAME)
cpi->zbin_mode_boost = 0;
else {
if (vp9_mode_order[mode_index].mode == ZEROMV) {
if (vp9_mode_order[mode_index].ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (vp9_mode_order[mode_index].mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 17:58:33 +02:00
vp9_update_zbin_extra(cpi, x);
}
2010-05-18 17:58:33 +02:00
// Intra
if (!mbmi->ref_frame) {
switch (this_mode) {
default:
case V_PRED:
case H_PRED:
case D45_PRED:
case D135_PRED:
case D117_PRED:
case D153_PRED:
case D27_PRED:
case D63_PRED:
rate2 += intra_cost_penalty;
case DC_PRED:
case TM_PRED:
mbmi->ref_frame = INTRA_FRAME;
// FIXME compound intra prediction
vp9_build_intra_predictors_mby(&x->e_mbd);
macro_block_yrd(cpi, x, &rate_y, &distortion, &skippable, txfm_cache);
rate2 += rate_y;
distortion2 += distortion;
rate2 += x->mbmode_cost[xd->frame_type][mbmi->mode];
if (mbmi->txfm_size != TX_4X4) {
rate2 += uv_intra_rate_8x8;
rate_uv = uv_intra_rate_tokenonly_8x8;
distortion2 += uv_intra_distortion_8x8;
distortion_uv = uv_intra_distortion_8x8;
skippable = skippable && uv_intra_skippable_8x8;
} else {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
skippable = skippable && uv_intra_skippable;
}
break;
case B_PRED: {
int64_t tmp_rd;
// Note the rate value returned here includes the cost of coding
// the BPRED mode : x->mbmode_cost[xd->frame_type][BPRED];
mbmi->txfm_size = TX_4X4;
tmp_rd = rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
&distortion, best_yrd,
cpi->update_context);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion;
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
case I8X8_PRED: {
int cost0 = vp9_cost_bit(cm->prob_tx[0], 0);
int cost1 = vp9_cost_bit(cm->prob_tx[0], 1);
int64_t tmp_rd_4x4s, tmp_rd_8x8s;
int64_t tmp_rd_4x4, tmp_rd_8x8, tmp_rd;
int r4x4, tok4x4, d4x4, r8x8, tok8x8, d8x8;
mbmi->txfm_size = TX_4X4;
tmp_rd_4x4 = rd_pick_intra8x8mby_modes(cpi, x, &r4x4, &tok4x4,
&d4x4, best_yrd);
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
mbmi->txfm_size = TX_8X8;
tmp_rd_8x8 = rd_pick_intra8x8mby_modes(cpi, x, &r8x8, &tok8x8,
&d8x8, best_yrd);
txfm_cache[ONLY_4X4] = tmp_rd_4x4;
txfm_cache[ALLOW_8X8] = tmp_rd_8x8;
txfm_cache[ALLOW_16X16] = tmp_rd_8x8;
tmp_rd_4x4s = tmp_rd_4x4 + RDCOST(x->rdmult, x->rddiv, cost0, 0);
tmp_rd_8x8s = tmp_rd_8x8 + RDCOST(x->rdmult, x->rddiv, cost1, 0);
txfm_cache[TX_MODE_SELECT] = tmp_rd_4x4s < tmp_rd_8x8s ? tmp_rd_4x4s : tmp_rd_8x8s;
if (cm->txfm_mode == TX_MODE_SELECT) {
if (tmp_rd_4x4s < tmp_rd_8x8s) {
rate = r4x4 + cost0;
rate_y = tok4x4 + cost0;
distortion = d4x4;
mbmi->txfm_size = TX_4X4;
tmp_rd = tmp_rd_4x4s;
} else {
rate = r8x8 + cost1;
rate_y = tok8x8 + cost1;
distortion = d8x8;
mbmi->txfm_size = TX_8X8;
tmp_rd = tmp_rd_8x8s;
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
}
} else if (cm->txfm_mode == ONLY_4X4) {
rate = r4x4;
rate_y = tok4x4;
distortion = d4x4;
mbmi->txfm_size = TX_4X4;
tmp_rd = tmp_rd_4x4;
} else {
rate = r8x8;
rate_y = tok8x8;
distortion = d8x8;
mbmi->txfm_size = TX_8X8;
tmp_rd = tmp_rd_8x8;
mode8x8[0] = xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1] = xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2] = xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3] = xd->mode_info_context->bmi[10].as_mode.first;
}
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion;
/* TODO: uv rate maybe over-estimated here since there is UV intra
mode coded in I8X8_PRED prediction */
if (tmp_rd < best_yrd) {
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
distortion_uv = uv_intra_distortion;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
}
break;
}
}
// Split MV. The code is very different from the other inter modes so
// special case it.
else if (this_mode == SPLITMV) {
const int is_comp_pred = mbmi->second_ref_frame > 0;
int64_t tmp_rd, this_rd_thresh;
int_mv *second_ref = is_comp_pred ? &second_best_ref_mv : NULL;
this_rd_thresh =
(mbmi->ref_frame == LAST_FRAME) ?
cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh =
(mbmi->ref_frame == GOLDEN_FRAME) ?
cpi->rd_threshes[THR_NEWG] : this_rd_thresh;
tmp_rd = rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
second_ref, best_yrd, mdcounts,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs,
txfm_cache);
rate2 += rate;
distortion2 += distortion;
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
if (tmp_rd < best_yrd) {
int uv_skippable;
rd_inter4x4_uv(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
cpi->common.full_pixel);
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
} else {
this_rd = INT64_MAX;
disable_skip = 1;
}
if (!mode_excluded) {
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
compmode_cost =
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP), is_comp_pred);
mbmi->mode = this_mode;
}
else {
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->second_ref_frame == INTRA_FRAME) {
if (best_intra16_mode == DC_PRED - 1) continue;
mbmi->interintra_mode = best_intra16_mode;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = best_intra16_uv_mode;
#else
mbmi->interintra_uv_mode = best_intra16_mode;
#endif
}
#endif
this_rd = handle_inter_mode(cpi, x, BLOCK_16X16,
&saddone, near_sadidx, mdcounts, txfm_cache,
&rate2, &distortion2, &skippable,
&compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
&compmode_interintra_cost,
#endif
&rate_y, &distortion,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip, recon_yoffset,
mode_index, frame_mv);
if (this_rd == INT64_MAX)
continue;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra)
rate2 += compmode_interintra_cost;
#endif
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION)
rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[mbmi->ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
if (cpi->common.mb_no_coeff_skip) {
int mb_skip_allowed;
// Is Mb level skip allowed for this mb.
mb_skip_allowed =
!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB);
if (skippable) {
mbmi->mb_skip_coeff = 1;
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
2010-05-18 17:58:33 +02:00
}
// Add in the cost of the no skip flag.
else {
mbmi->mb_skip_coeff = 0;
if (mb_skip_allowed) {
int prob_skip_cost = vp9_cost_bit(
vp9_get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Keep record of best intra distortion
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#if CONFIG_COMP_INTERINTRA_PRED
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_mode <= TM_PRED) &&
(this_rd < best_intra16_rd)) {
best_intra16_rd = this_rd;
best_intra16_mode = this_mode;
best_intra16_uv_mode = (mbmi->txfm_size != TX_4X4 ?
uv_intra_mode_8x8 : uv_intra_mode);
}
#endif
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
2010-05-18 17:58:33 +02:00
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = mbmi->interp_filter;
best_mode = this_mode;
#if CONFIG_COMP_INTERINTRA_PRED
is_best_interintra = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
/*
if (mbmi->second_ref_frame == INTRA_FRAME) {
printf("rd %d best %d bestintra16 %d\n", this_rd, best_rd, best_intra16_rd);
}
*/
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= B_PRED) {
if (mbmi->txfm_size != TX_4X4
&& this_mode != B_PRED
&& this_mode != I8X8_PRED)
mbmi->uv_mode = uv_intra_mode_8x8;
else
mbmi->uv_mode = uv_intra_mode;
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
2010-05-18 17:58:33 +02:00
other_cost += ref_costs[mbmi->ref_frame];
2010-05-18 17:58:33 +02:00
/* Calculate the final y RD estimate for this mode */
best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost),
(distortion2 - distortion_uv));
2010-05-18 17:58:33 +02:00
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
2010-05-18 17:58:33 +02:00
if ((this_mode == B_PRED)
|| (this_mode == I8X8_PRED)
|| (this_mode == SPLITMV))
for (i = 0; i < 16; i++) {
best_bmodes[i] = xd->block[i].bmi;
}
}
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7) *
cpi->rd_thresh_mult[mode_index];
} else {
// If the mode did not help improve the best error case then raise the
// threshold for testing that mode next time around.
cpi->rd_thresh_mult[mode_index] += 4;
2010-05-18 17:58:33 +02:00
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
2010-05-18 17:58:33 +02:00
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
}
2010-05-18 17:58:33 +02:00
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd;
int single_rate, hybrid_rate;
2010-05-18 17:58:33 +02:00
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
2010-05-18 17:58:33 +02:00
if (mbmi->second_ref_frame <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd;
if (this_mode != B_PRED) {
const int64_t txfm_mode_diff =
txfm_cache[i] - txfm_cache[cm->txfm_mode];
adj_rd = this_rd + txfm_mode_diff;
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.mode <= B_PRED));
#if CONFIG_COMP_INTERINTRA_PRED
++cpi->interintra_select_count[is_best_interintra];
#endif
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if ((best_mode >= NEARESTMV) && (best_mode <= SPLITMV))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >=
(MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) *
cpi->rd_thresh_mult[best_mode_index];
}
// This code force Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame or mode is enabled for this
// segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
if (cm->txfm_mode <= ALLOW_8X8)
mbmi->txfm_size = cm->txfm_mode;
else
mbmi->txfm_size = TX_16X16;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff =
(cpi->common.mb_no_coeff_skip) ? 1 : 0;
mbmi->partitioning = 0;
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
if (best_mbmode.mode == B_PRED) {
for (i = 0; i < 16; i++) {
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
}
}
if (best_mbmode.mode == I8X8_PRED)
set_i8x8_block_modes(x, mode8x8);
if (best_mbmode.mode == SPLITMV) {
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.first.as_int = best_bmodes[i].as_mv.first.as_int;
if (mbmi->second_ref_frame > 0)
for (i = 0; i < 16; i++)
xd->mode_info_context->bmi[i].as_mv.second.as_int = best_bmodes[i].as_mv.second.as_int;
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = INT_MIN;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
store_coding_context(x, &x->mb_context[xd->sb_index][xd->mb_index],
best_mode_index, &best_partition,
&mbmi->ref_mvs[mbmi->ref_frame][0],
&mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 :
mbmi->second_ref_frame][0],
best_pred_diff, best_txfm_diff);
}
void vp9_rd_pick_intra_mode_sb32(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate,
int *returndist) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y = 0, rate_uv;
int rate_y_tokenonly = 0, rate_uv_tokenonly;
int dist_y = 0, dist_uv;
int y_skip = 0, uv_skip;
int64_t txfm_cache[NB_TXFM_MODES];
rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, txfm_cache);
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip);
if (cpi->common.mb_no_coeff_skip && y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
} else {
*returnrate = rate_y + rate_uv;
if (cpi->common.mb_no_coeff_skip)
*returnrate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
}
2010-05-18 17:58:33 +02:00
}
void vp9_rd_pick_intra_mode_sb64(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate,
int *returndist) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y = 0, rate_uv;
int rate_y_tokenonly = 0, rate_uv_tokenonly;
int dist_y = 0, dist_uv;
int y_skip = 0, uv_skip;
int64_t txfm_cache[NB_TXFM_MODES];
rd_pick_intra_sb64y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, txfm_cache);
rd_pick_intra_sb64uv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip);
if (cpi->common.mb_no_coeff_skip && y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
} else {
*returnrate = rate_y + rate_uv;
if (cm->mb_no_coeff_skip)
*returnrate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
}
}
void vp9_rd_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int *returndist) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int64_t error4x4, error16x16;
int rate4x4, rate16x16 = 0, rateuv, rateuv8x8;
int dist4x4 = 0, dist16x16 = 0, distuv = 0, distuv8x8 = 0;
int rate;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly = 0, rateuv8x8_tokenonly = 0;
int64_t error8x8;
int rate8x8_tokenonly=0;
int rate8x8, dist8x8;
int mode16x16;
int mode8x8[4];
int dist;
int modeuv, uv_intra_skippable, uv_intra_skippable_8x8;
int y_intra16x16_skippable = 0;
int64_t txfm_cache[NB_TXFM_MODES];
TX_SIZE txfm_size_16x16;
int i;
mbmi->ref_frame = INTRA_FRAME;
rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv,
&uv_intra_skippable);
modeuv = mbmi->uv_mode;
if (cpi->common.txfm_mode != ONLY_4X4) {
rd_pick_intra_mbuv_mode_8x8(cpi, x, &rateuv8x8, &rateuv8x8_tokenonly,
&distuv8x8, &uv_intra_skippable_8x8);
} else {
uv_intra_skippable_8x8 = uv_intra_skippable;
rateuv8x8 = rateuv;
distuv8x8 = distuv;
rateuv8x8_tokenonly = rateuv_tokenonly;
}
// current macroblock under rate-distortion optimization test loop
error16x16 = rd_pick_intra16x16mby_mode(cpi, x, &rate16x16,
&rate16x16_tokenonly, &dist16x16,
&y_intra16x16_skippable, txfm_cache);
mode16x16 = mbmi->mode;
txfm_size_16x16 = mbmi->txfm_size;
// FIXME(rbultje) support transform-size selection
mbmi->txfm_size = (cm->txfm_mode == ONLY_4X4) ? TX_4X4 : TX_8X8;
error8x8 = rd_pick_intra8x8mby_modes(cpi, x, &rate8x8, &rate8x8_tokenonly,
&dist8x8, error16x16);
mode8x8[0]= xd->mode_info_context->bmi[0].as_mode.first;
mode8x8[1]= xd->mode_info_context->bmi[2].as_mode.first;
mode8x8[2]= xd->mode_info_context->bmi[8].as_mode.first;
mode8x8[3]= xd->mode_info_context->bmi[10].as_mode.first;
Improved coding using 8x8 transform In summary, this commit encompasses a series of changes in attempt to improve the 8x8 transform based coding to help overall compression quality, please refer to the detailed commit history below for what are the rationale underly the series of changes: a. A frame level flag to indicate if 8x8 transform is used at all. b. 8x8 transform is not used for key frames and small image size. c. On inter coded frame, macroblocks using modes B_PRED, SPLIT_MV and I8X8_PRED are forced to using 4x4 transform based coding, the rest uses 8x8 transform based coding. d. Encoder and decoder has the same assumption on the relationship between prediction modes and transform size, therefore no signaling is encoded in bitstream. e. Mode decision process now calculate the rate and distortion scores using their respective transforms. Overall test results: 1. HD set http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120206.html (avg psnr: 3.09% glb psnr: 3.22%, ssim: 3.90%) 2. Cif set: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120206.html (avg psnr: -0.03%, glb psnr: -0.02%, ssim: -0.04%) It should be noted here, as 8x8 transform coding itself is disabled for cif size clips, the 0.03% loss is purely from the 1 bit/frame flag overhead on if 8x8 transform is used or not for the frame. ---patch history for future reference--- Patch 1: this commit tries to select transform size based on macroblock prediction mode. If the size of a prediction mode is 16x16, then the macroblock is forced to use 8x8 transform. If the prediction mode is B_PRED, SPLITMV or I8X8_PRED, then the macroblock is forced to use 4x4 transform. Tests on the following HD clips showed mixed results: (all hd clips only used first 100 frames in the test) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_log.html while the results are mixed and overall negative, it is interesting to see 8x8 helped a few of the clips. Patch 2: this patch tries to hard-wire selection of transform size based on prediction modes without using segmentation to signal the transform size. encoder and decoder both takes the same assumption that all macroblocks use 8x8 transform except when prediciton mode is B_PRED, I8X8_PRED or SPLITMV. Test results are as follows: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cifmodebase8x8_0125.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_0125log.html Interestingly, by removing the overhead or coding the segmentation, the results on this limited HD set have turn positive on average. Patch 3: this patch disabled the usage of 8x8 transform on key frames, and kept the logic from patch 2 for inter frames only. test results on HD set turned decidedly positive with 8x8 transform enabled on inter frame with 16x16 prediction modes: (avg psnr: .81% glb psnr: .82 ssim: .55%) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdintermode8x8_0125.html results on cif set still negative overall Patch 4: continued from last patch, but now in mode decision process, the rate and distortion estimates are computed based on 8x8 transform results for MBs with modes associated with 8x8 transform. This patch also fixed a problem related to segment based eob coding when 8x8 transform is used. The patch significantly improved the results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd8x8RDintermode.html (avg psnr: 2.70% glb psnr: 2.76% ssim: 3.34%) results on cif also improved, though they are still negative compared to baseline that uses 4x4 transform only: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif8x8RDintermode.html (avg psnr: -.78% glb psnr: -.86% ssim: -.19%) Patch 5: This patch does 3 things: a. a bunch of decoder bug fixes, encodings and decodings were verified to have matched recon buffer on a number of encodes on cif size mobile and hd version of _pedestrian. b. the patch further improved the rate distortion calculation of MBS that use 8x8 transform. This provided some further gain on compression. c. the patch also got the experimental work SEG_LVL_EOB to work with 8x8 transformed macroblock, test results indicates it improves the cif set but hurt the HD set slightly. Tests results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120201.html (avg psnr: 3.19% glb psnr: 3.30% ssim: 3.93%) Test results on cif clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120201.html (avg psnr: -.47% glb psnr: -.51% ssim: +.28%) Patch 6: Added a frame level flag to indicate if 8x8 transform is allowed at all. temporarily the decision is based on frame size, can be optimized later one. This get the cif results to basically unchanged, with one bit per frame overhead on both cif and hd clips. Patch 8: Rebase and Merge to head by PGW. Fixed some suspect 4s that look like hey should be 64s in regard to segmented EOB. Perhaps #defines would be bette. Bulit and tested without T8x8 enabled and produces unchanged output. Patch 9: Corrected misalligned code/decode of "txfm_mode" bit. Limited testing for correct encode and decode with T8x8 configured on derf clips. Change-Id: I156e1405d25f81579d579dff8ab9af53944ec49c
2012-02-10 01:12:23 +01:00
error4x4 = rd_pick_intra4x4mby_modes(cpi, x,
&rate4x4, &rate4x4_tokenonly,
&dist4x4, error16x16,
cpi->update_context);
mbmi->mb_skip_coeff = 0;
if (cpi->common.mb_no_coeff_skip &&
y_intra16x16_skippable && uv_intra_skippable_8x8) {
mbmi->mb_skip_coeff = 1;
mbmi->mode = mode16x16;
mbmi->uv_mode = modeuv;
rate = rateuv8x8 + rate16x16 - rateuv8x8_tokenonly - rate16x16_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
dist = dist16x16 + (distuv8x8 >> 2);
mbmi->txfm_size = txfm_size_16x16;
memset(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff, 0,
sizeof(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff));
} else if (error8x8 > error16x16) {
if (error4x4 < error16x16) {
rate = rateuv + rate4x4;
mbmi->mode = B_PRED;
mbmi->txfm_size = TX_4X4;
dist = dist4x4 + (distuv >> 2);
memset(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff, 0,
sizeof(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff));
} else {
mbmi->txfm_size = txfm_size_16x16;
mbmi->mode = mode16x16;
rate = rate16x16 + rateuv8x8;
dist = dist16x16 + (distuv8x8 >> 2);
for (i = 0; i < NB_TXFM_MODES; i++) {
x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff[i] =
error16x16 - txfm_cache[i];
}
}
if (cpi->common.mb_no_coeff_skip)
rate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
} else {
if (error4x4 < error8x8) {
rate = rateuv + rate4x4;
mbmi->mode = B_PRED;
mbmi->txfm_size = TX_4X4;
dist = dist4x4 + (distuv >> 2);
memset(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff, 0,
sizeof(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff));
} else {
// FIXME(rbultje) support transform-size selection
mbmi->mode = I8X8_PRED;
mbmi->txfm_size = (cm->txfm_mode == ONLY_4X4) ? TX_4X4 : TX_8X8;
set_i8x8_block_modes(x, mode8x8);
rate = rate8x8 + rateuv;
dist = dist8x8 + (distuv >> 2);
memset(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff, 0,
sizeof(x->mb_context[xd->sb_index][xd->mb_index].txfm_rd_diff));
}
if (cpi->common.mb_no_coeff_skip)
rate += vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
}
*returnrate = rate;
*returndist = dist;
}
static int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate,
int *returndistortion,
int block_size) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MV_REFERENCE_FRAME ref_frame;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int frame_mdcounts[4][4];
uint8_t *y_buffer[4];
uint8_t *u_buffer[4];
uint8_t *v_buffer[4];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int idx_list[4] = { 0, cpi->common.lst_fb_idx, cpi->common.gld_fb_idx,
cpi->common.alt_fb_idx };
int mdcounts[4];
int near_sadidx[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
int saddone = 0;
int64_t best_rd = INT64_MAX;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
MB_MODE_INFO best_mbmode;
int mode_index, best_mode_index = 0;
unsigned int ref_costs[MAX_REF_FRAMES];
#if CONFIG_COMP_INTERINTRA_PRED
int is_best_interintra = 0;
int64_t best_intra16_rd = INT64_MAX;
int best_intra16_mode = DC_PRED, best_intra16_uv_mode = DC_PRED;
#endif
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
int rate_uv_4x4 = 0, rate_uv_8x8 = 0, rate_uv_tokenonly_4x4 = 0,
rate_uv_tokenonly_8x8 = 0;
int dist_uv_4x4 = 0, dist_uv_8x8 = 0, uv_skip_4x4 = 0, uv_skip_8x8 = 0;
MB_PREDICTION_MODE mode_uv_4x4 = NEARESTMV, mode_uv_8x8 = NEARESTMV;
int switchable_filter_index = 0;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int rate_uv_16x16 = 0, rate_uv_tokenonly_16x16 = 0;
int dist_uv_16x16 = 0, uv_skip_16x16 = 0;
MB_PREDICTION_MODE mode_uv_16x16 = NEARESTMV;
x->skip = 0;
xd->mode_info_context->mbmi.segment_id = segment_id;
estimate_ref_frame_costs(cpi, segment_id, ref_costs);
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV],
frame_mv[NEARMV], frame_mdcounts,
y_buffer, u_buffer, v_buffer);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
if (block_size == BLOCK_64X64) {
mbmi->mode = DC_PRED;
if (cm->txfm_mode == ONLY_4X4 || cm->txfm_mode == TX_MODE_SELECT) {
mbmi->txfm_size = TX_4X4;
rd_pick_intra_sb64uv_mode(cpi, x, &rate_uv_4x4, &rate_uv_tokenonly_4x4,
&dist_uv_4x4, &uv_skip_4x4);
mode_uv_4x4 = mbmi->uv_mode;
}
if (cm->txfm_mode != ONLY_4X4) {
mbmi->txfm_size = TX_8X8;
rd_pick_intra_sb64uv_mode(cpi, x, &rate_uv_8x8, &rate_uv_tokenonly_8x8,
&dist_uv_8x8, &uv_skip_8x8);
mode_uv_8x8 = mbmi->uv_mode;
}
if (cm->txfm_mode >= ALLOW_32X32) {
mbmi->txfm_size = TX_32X32;
rd_pick_intra_sb64uv_mode(cpi, x, &rate_uv_16x16,
&rate_uv_tokenonly_16x16,
&dist_uv_16x16, &uv_skip_16x16);
mode_uv_16x16 = mbmi->uv_mode;
}
} else {
assert(block_size == BLOCK_32X32);
mbmi->mode = DC_PRED;
if (cm->txfm_mode == ONLY_4X4 || cm->txfm_mode == TX_MODE_SELECT) {
mbmi->txfm_size = TX_4X4;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_4x4, &rate_uv_tokenonly_4x4,
&dist_uv_4x4, &uv_skip_4x4);
mode_uv_4x4 = mbmi->uv_mode;
}
if (cm->txfm_mode != ONLY_4X4) {
mbmi->txfm_size = TX_8X8;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_8x8, &rate_uv_tokenonly_8x8,
&dist_uv_8x8, &uv_skip_8x8);
mode_uv_8x8 = mbmi->uv_mode;
}
if (cm->txfm_mode >= ALLOW_32X32) {
mbmi->txfm_size = TX_32X32;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_16x16, &rate_uv_tokenonly_16x16,
&dist_uv_16x16, &uv_skip_16x16);
mode_uv_16x16 = mbmi->uv_mode;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
for (mode_index = 0; mode_index < MAX_MODES;
mode_index += (!switchable_filter_index)) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int other_cost = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable;
int64_t txfm_cache[NB_TXFM_MODES];
#if CONFIG_COMP_INTERINTRA_PRED
int compmode_interintra_cost = 0;
#endif
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index] ||
cpi->rd_threshes[mode_index] == INT_MAX) {
switchable_filter_index = 0;
continue;
}
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame;
if (!(ref_frame == INTRA_FRAME ||
(cpi->ref_frame_flags & flag_list[ref_frame]))) {
continue;
}
mbmi->ref_frame = ref_frame;
mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
comp_pred = mbmi->second_ref_frame > INTRA_FRAME;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
#if CONFIG_COMP_INTERINTRA_PRED
mbmi->interintra_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
mbmi->interintra_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
if (this_mode >= NEARESTMV && this_mode <= SPLITMV) {
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index++];
if (switchable_filter_index == VP9_SWITCHABLE_FILTERS)
switchable_filter_index = 0;
if ((cm->mcomp_filter_type != SWITCHABLE) &&
(cm->mcomp_filter_type != mbmi->interp_filter)) {
mode_excluded = 1;
}
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
}
// if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
// continue;
if (this_mode == I8X8_PRED || this_mode == B_PRED || this_mode == SPLITMV)
continue;
// if (vp9_mode_order[mode_index].second_ref_frame == INTRA_FRAME)
// continue;
if (comp_pred) {
int second_ref;
if (ref_frame == ALTREF_FRAME) {
second_ref = LAST_FRAME;
} else {
second_ref = ref_frame + 1;
}
if (!(cpi->ref_frame_flags & flag_list[second_ref]))
continue;
mbmi->second_ref_frame = second_ref;
xd->second_pre.y_buffer = y_buffer[second_ref];
xd->second_pre.u_buffer = u_buffer[second_ref];
xd->second_pre.v_buffer = v_buffer[second_ref];
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
// mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame;
if (ref_frame != INTRA_FRAME) {
if (mbmi->second_ref_frame != INTRA_FRAME)
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
#if CONFIG_COMP_INTERINTRA_PRED
else
mode_excluded = mode_excluded ? mode_excluded : !cm->use_interintra;
#endif
}
}
xd->pre.y_buffer = y_buffer[ref_frame];
xd->pre.u_buffer = u_buffer[ref_frame];
xd->pre.v_buffer = v_buffer[ref_frame];
vpx_memcpy(mdcounts, frame_mdcounts[ref_frame], sizeof(mdcounts));
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_check_segref(xd, segment_id, ref_frame)) {
continue;
// If the segment mode feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
(this_mode != vp9_get_segdata(xd, segment_id, SEG_LVL_MODE))) {
continue;
// Disable this drop out case if either the mode or ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
continue;
}
}
}
if (ref_frame == INTRA_FRAME) {
if (block_size == BLOCK_64X64) {
vp9_build_intra_predictors_sb64y_s(xd);
super_block_64_yrd(cpi, x, &rate_y, &distortion_y,
&skippable, txfm_cache);
} else {
assert(block_size == BLOCK_32X32);
vp9_build_intra_predictors_sby_s(xd);
super_block_yrd(cpi, x, &rate_y, &distortion_y,
&skippable, txfm_cache);
}
if (mbmi->txfm_size == TX_4X4) {
rate_uv = rate_uv_4x4;
distortion_uv = dist_uv_4x4;
skippable = skippable && uv_skip_4x4;
mbmi->uv_mode = mode_uv_4x4;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
} else if (mbmi->txfm_size == TX_32X32) {
rate_uv = rate_uv_16x16;
distortion_uv = dist_uv_16x16;
skippable = skippable && uv_skip_16x16;
mbmi->uv_mode = mode_uv_16x16;
} else {
rate_uv = rate_uv_8x8;
distortion_uv = dist_uv_8x8;
skippable = skippable && uv_skip_8x8;
mbmi->uv_mode = mode_uv_8x8;
}
rate2 = rate_y + x->mbmode_cost[cm->frame_type][mbmi->mode] + rate_uv;
distortion2 = distortion_y + distortion_uv;
} else {
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->second_ref_frame == INTRA_FRAME) {
if (best_intra16_mode == DC_PRED - 1) continue;
mbmi->interintra_mode = best_intra16_mode;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = best_intra16_uv_mode;
#else
mbmi->interintra_uv_mode = best_intra16_mode;
#endif
}
#endif
this_rd = handle_inter_mode(cpi, x, block_size,
&saddone, near_sadidx, mdcounts, txfm_cache,
&rate2, &distortion2, &skippable,
&compmode_cost,
#if CONFIG_COMP_INTERINTRA_PRED
&compmode_interintra_cost,
#endif
&rate_y, &distortion_y,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip, recon_yoffset,
mode_index, frame_mv);
if (this_rd == INT64_MAX)
continue;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra) {
rate2 += compmode_interintra_cost;
}
#endif
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs[xd->mode_info_context->mbmi.ref_frame];
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
if (cpi->common.mb_no_coeff_skip) {
int mb_skip_allowed;
// Is Mb level skip allowed for this mb.
mb_skip_allowed =
!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB);
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
}
// Add in the cost of the no skip flag.
else if (mb_skip_allowed) {
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd,
PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
other_cost += prob_skip_cost;
}
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
#if 0
// Keep record of best intra distortion
if ((xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#endif
#if CONFIG_COMP_INTERINTRA_PRED
if ((mbmi->ref_frame == INTRA_FRAME) &&
(this_mode <= TM_PRED) &&
(this_rd < best_intra16_rd)) {
best_intra16_rd = this_rd;
best_intra16_mode = this_mode;
best_intra16_uv_mode = (mbmi->txfm_size != TX_4X4 ?
mode_uv_8x8 : mode_uv_4x4);
}
#endif
if (!disable_skip && mbmi->ref_frame == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = mbmi->interp_filter;
best_mode = this_mode;
#if CONFIG_COMP_INTERINTRA_PRED
is_best_interintra = (mbmi->second_ref_frame == INTRA_FRAME);
#endif
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (this_mode <= B_PRED) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
other_cost += ref_costs[xd->mode_info_context->mbmi.ref_frame];
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO));
}
#if 0
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
} else {
// If the mode did not help improve the best error case then
// raise the threshold for testing that mode next time around.
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->second_ref_frame <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->second_ref_frame > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd;
if (this_mode != B_PRED) {
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode];
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.mode <= B_PRED));
#if CONFIG_COMP_INTERINTRA_PRED
++cpi->interintra_select_count[is_best_interintra];
// if (is_best_interintra) printf("best_interintra\n");
#endif
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if ((best_mode >= NEARESTMV) && (best_mode <= SPLITMV))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// TODO(rbultje) integrate with RD thresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame or mode is enabled for this
// segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) {
mbmi->mode = ZEROMV;
mbmi->ref_frame = ALTREF_FRAME;
mbmi->second_ref_frame = INTRA_FRAME;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0;
mbmi->partitioning = 0;
mbmi->txfm_size = cm->txfm_mode == TX_MODE_SELECT ?
TX_16X16 : cm->txfm_mode;
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = INT_MIN;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
{
PICK_MODE_CONTEXT *p = (block_size == BLOCK_32X32) ?
&x->sb32_context[xd->sb_index] :
&x->sb64_context;
store_coding_context(x, p, best_mode_index, NULL,
&mbmi->ref_mvs[mbmi->ref_frame][0],
&mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 :
mbmi->second_ref_frame][0],
best_pred_diff, best_txfm_diff);
}
return best_rd;
}
int64_t vp9_rd_pick_inter_mode_sb32(VP9_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate,
int *returndistortion) {
return vp9_rd_pick_inter_mode_sb(cpi, x, recon_yoffset, recon_uvoffset,
returnrate, returndistortion, BLOCK_32X32);
}
int64_t vp9_rd_pick_inter_mode_sb64(VP9_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate,
int *returndistortion) {
return vp9_rd_pick_inter_mode_sb(cpi, x, recon_yoffset, recon_uvoffset,
returnrate, returndistortion, BLOCK_64X64);
}
void vp9_pick_mode_inter_macroblock(VP9_COMP *cpi, MACROBLOCK *x,
int recon_yoffset,
int recon_uvoffset,
int *totalrate, int *totaldist) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
int rate, distortion;
int64_t intra_error = 0;
unsigned char *segment_id = &mbmi->segment_id;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[*segment_id];
else
x->encode_breakout = cpi->oxcf.encode_breakout;
// if (cpi->sf.RD)
// For now this codebase is limited to a single rd encode path
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
}
// else
// The non rd encode path has been deleted from this code base
// to simplify development
// vp9_pick_inter_mode
// Store metrics so they can be added in to totals if this mode is picked
x->mb_context[xd->sb_index][xd->mb_index].distortion = distortion;
x->mb_context[xd->sb_index][xd->mb_index].intra_error = intra_error;
*totalrate = rate;
*totaldist = distortion;
}