vpx/vp8/common/entropymv.h

77 lines
2.8 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#ifndef __INC_ENTROPYMV_H
#define __INC_ENTROPYMV_H
#include "treecoder.h"
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
#include "vpx_config.h"
2010-05-18 17:58:33 +02:00
enum
{
mv_max = 1023, /* max absolute value of a MV component */
MVvals = (2 * mv_max) + 1, /* # possible values "" */
mvlong_width = 10, /* Large MVs have 9 bit magnitudes */
mvnum_short = 8, /* magnitudes 0 through 7 */
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 18:29:54 +01:00
mvnum_short_bits = 3, /* number of bits for short mvs */
mvfp_max = 255, /* max absolute value of a full pixel MV component */
MVfpvals = (2 * mvfp_max) + 1, /* # possible full pixel MV values */
2010-05-18 17:58:33 +02:00
/* probability offsets for coding each MV component */
mvpis_short = 0, /* short (<= 7) vs long (>= 8) */
MVPsign, /* sign for non-zero */
MVPshort, /* 8 short values = 7-position tree */
MVPbits = MVPshort + mvnum_short - 1, /* mvlong_width long value bits */
MVPcount = MVPbits + mvlong_width /* (with independent probabilities) */
};
typedef struct mv_context
{
vp8_prob prob[MVPcount]; /* often come in row, col pairs */
} MV_CONTEXT;
extern const MV_CONTEXT vp8_mv_update_probs[2], vp8_default_mv_context[2];
#if CONFIG_HIGH_PRECISION_MV
enum
{
mv_max_hp = 2047, /* max absolute value of a MV component */
MVvals_hp = (2 * mv_max_hp) + 1, /* # possible values "" */
mvlong_width_hp = 11, /* Large MVs have 9 bit magnitudes */
mvnum_short_hp = 16, /* magnitudes 0 through 15 */
mvnum_short_bits_hp = 4, /* number of bits for short mvs */
mvfp_max_hp = 255, /* max absolute value of a full pixel MV component */
MVfpvals_hp = (2 * mvfp_max_hp) + 1, /* # possible full pixel MV values */
/* probability offsets for coding each MV component */
mvpis_short_hp = 0, /* short (<= 7) vs long (>= 8) */
MVPsign_hp, /* sign for non-zero */
MVPshort_hp, /* 8 short values = 7-position tree */
MVPbits_hp = MVPshort_hp + mvnum_short_hp - 1, /* mvlong_width long value bits */
MVPcount_hp = MVPbits_hp + mvlong_width_hp /* (with independent probabilities) */
};
typedef struct mv_context_hp
{
vp8_prob prob[MVPcount_hp]; /* often come in row, col pairs */
} MV_CONTEXT_HP;
extern const MV_CONTEXT_HP vp8_mv_update_probs_hp[2], vp8_default_mv_context_hp[2];
#endif /* CONFIG_HIGH_PRECISION_MV */
2010-05-18 17:58:33 +02:00
#endif