vpx/vp9/encoder/vp9_pickmode.c

447 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
static void full_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
int ref = mbmi->ref_frame[0];
const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
int i;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp9_set_mv_search_range(x, &ref_mv);
// TODO(jingning) exploiting adaptive motion search control in non-RD
// mode decision too.
step_param = 6;
for (i = LAST_FRAME; i <= LAST_FRAME && cpi->common.show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
return;
}
}
assert(x->mv_best_ref_index[ref] <= 2);
if (x->mv_best_ref_index[ref] < 2)
mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
else
mvp_full = x->pred_mv[ref].as_mv;
mvp_full.col >>= 3;
mvp_full.row >>= 3;
if (cpi->sf.search_method == FAST_DIAMOND) {
// NOTE: this returns SAD
vp9_fast_dia_search(x, &mvp_full, step_param, sadpb, 0,
&cpi->fn_ptr[bsize], 1,
&ref_mv, &tmp_mv->as_mv);
} else if (cpi->sf.search_method == FAST_HEX) {
// NOTE: this returns SAD
vp9_fast_hex_search(x, &mvp_full, step_param, sadpb, 0,
&cpi->fn_ptr[bsize], 1,
&ref_mv, &tmp_mv->as_mv);
} else if (cpi->sf.search_method == HEX) {
// NOTE: this returns SAD
vp9_hex_search(x, &mvp_full, step_param, sadpb, 1,
&cpi->fn_ptr[bsize], 1,
&ref_mv, &tmp_mv->as_mv);
} else if (cpi->sf.search_method == SQUARE) {
// NOTE: this returns SAD
vp9_square_search(x, &mvp_full, step_param, sadpb, 1,
&cpi->fn_ptr[bsize], 1,
&ref_mv, &tmp_mv->as_mv);
} else if (cpi->sf.search_method == BIGDIA) {
// NOTE: this returns SAD
vp9_bigdia_search(x, &mvp_full, step_param, sadpb, 1,
&cpi->fn_ptr[bsize], 1,
&ref_mv, &tmp_mv->as_mv);
} else {
int further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
// NOTE: this returns variance
vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[bsize],
&ref_mv, &tmp_mv->as_mv);
}
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv->as_mv.row * 8;
mvp_full.col = tmp_mv->as_mv.col * 8;
*rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
static void sub_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MV *tmp_mv) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
int ref = mbmi->ref_frame[0];
MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
int dis;
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.subpel_force_stop,
cpi->sf.subpel_iters_per_step,
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref]);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
x->pred_mv[ref].as_mv = *tmp_mv;
}
static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
vp9_model_rd_from_var_lapndz(sse + var, 1 << num_pels_log2_lookup[bsize],
pd->dequant[1] >> 3, &rate, &dist);
*out_rate_sum = rate;
*out_dist_sum = dist << 3;
}
// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
const TileInfo *const tile,
int mi_row, int mi_col,
int *returnrate,
int64_t *returndistortion,
BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
MB_PREDICTION_MODE this_mode, best_mode = ZEROMV;
MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
INTERP_FILTER best_pred_filter = EIGHTTAP;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int64_t best_rd = INT64_MAX;
int64_t this_rd = INT64_MAX;
int rate = INT_MAX;
int64_t dist = INT64_MAX;
VP9_COMMON *cm = &cpi->common;
int intra_cost_penalty = 20 * vp9_dc_quant(cm->base_qindex, cm->y_dc_delta_q);
const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
intra_cost_penalty, 0);
const int64_t intra_mode_cost = 50;
unsigned char segment_id = mbmi->segment_id;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = cpi->rd.thresh_freq_fact[bsize];
// Mode index conversion form THR_MODES to MB_PREDICTION_MODE for a ref frame.
int mode_idx[MB_MODE_COUNT] = {0};
INTERP_FILTER filter_ref = SWITCHABLE;
int bsl = mi_width_log2_lookup[bsize];
int pred_filter_search = (((mi_row + mi_col) >> bsl) +
cpi->sf.chessboard_index) & 0x01;
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
x->skip = 0;
if (!x->in_active_map)
x->skip = 1;
// initialize mode decisions
*returnrate = INT_MAX;
*returndistortion = INT64_MAX;
vpx_memset(mbmi, 0, sizeof(MB_MODE_INFO));
mbmi->sb_type = bsize;
mbmi->ref_frame[0] = NONE;
mbmi->ref_frame[1] = NONE;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
mbmi->interp_filter = cpi->common.interp_filter == SWITCHABLE ?
EIGHTTAP : cpi->common.interp_filter;
mbmi->skip = 0;
mbmi->segment_id = segment_id;
for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
vp9_setup_buffer_inter(cpi, x, tile,
ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
if (xd->up_available)
filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
else if (xd->left_available)
filter_ref = xd->mi[-1]->mbmi.interp_filter;
for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
continue;
// Select prediction reference frames.
xd->plane[0].pre[0] = yv12_mb[ref_frame][0];
clamp_mv2(&frame_mv[NEARESTMV][ref_frame].as_mv, xd);
clamp_mv2(&frame_mv[NEARMV][ref_frame].as_mv, xd);
mbmi->ref_frame[0] = ref_frame;
// Set conversion index for LAST_FRAME.
if (ref_frame == LAST_FRAME) {
mode_idx[NEARESTMV] = THR_NEARESTMV; // LAST_FRAME, NEARESTMV
mode_idx[NEARMV] = THR_NEARMV; // LAST_FRAME, NEARMV
mode_idx[ZEROMV] = THR_ZEROMV; // LAST_FRAME, ZEROMV
mode_idx[NEWMV] = THR_NEWMV; // LAST_FRAME, NEWMV
}
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
int rate_mv = 0;
if (cpi->sf.disable_inter_mode_mask[bsize] &
(1 << INTER_OFFSET(this_mode)))
continue;
if (best_rd < ((int64_t)rd_threshes[mode_idx[this_mode]] *
rd_thresh_freq_fact[this_mode] >> 5) ||
rd_threshes[mode_idx[this_mode]] == INT_MAX)
continue;
if (this_mode == NEWMV) {
int rate_mode = 0;
if (this_rd < (int64_t)(1 << num_pels_log2_lookup[bsize]))
continue;
full_pixel_motion_search(cpi, x, tile, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame], &rate_mv);
if (frame_mv[NEWMV][ref_frame].as_int == INVALID_MV)
continue;
rate_mode = x->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
if (RDCOST(x->rdmult, x->rddiv, rate_mv + rate_mode, 0) > best_rd)
continue;
sub_pixel_motion_search(cpi, x, tile, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame].as_mv);
}
if (this_mode != NEARESTMV)
if (frame_mv[this_mode][ref_frame].as_int ==
frame_mv[NEARESTMV][ref_frame].as_int)
continue;
mbmi->mode = this_mode;
mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
// Search for the best prediction filter type, when the resulting
// motion vector is at sub-pixel accuracy level for luma component, i.e.,
// the last three bits are all zeros.
if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
pred_filter_search &&
((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
(mbmi->mv[0].as_mv.col & 0x07) != 0)) {
int64_t tmp_rdcost1 = INT64_MAX;
int64_t tmp_rdcost2 = INT64_MAX;
int64_t tmp_rdcost3 = INT64_MAX;
int pf_rate[3];
int64_t pf_dist[3];
mbmi->interp_filter = EIGHTTAP;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP],
&pf_dist[EIGHTTAP]);
tmp_rdcost1 = RDCOST(x->rdmult, x->rddiv,
vp9_get_switchable_rate(x) + pf_rate[EIGHTTAP],
pf_dist[EIGHTTAP]);
mbmi->interp_filter = EIGHTTAP_SHARP;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP_SHARP],
&pf_dist[EIGHTTAP_SHARP]);
tmp_rdcost2 = RDCOST(x->rdmult, x->rddiv,
vp9_get_switchable_rate(x) + pf_rate[EIGHTTAP_SHARP],
pf_dist[EIGHTTAP_SHARP]);
mbmi->interp_filter = EIGHTTAP_SMOOTH;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[EIGHTTAP_SMOOTH],
&pf_dist[EIGHTTAP_SMOOTH]);
tmp_rdcost3 = RDCOST(x->rdmult, x->rddiv,
vp9_get_switchable_rate(x) + pf_rate[EIGHTTAP_SMOOTH],
pf_dist[EIGHTTAP_SMOOTH]);
if (tmp_rdcost2 < tmp_rdcost1) {
if (tmp_rdcost2 < tmp_rdcost3)
mbmi->interp_filter = EIGHTTAP_SHARP;
else
mbmi->interp_filter = EIGHTTAP_SMOOTH;
} else {
if (tmp_rdcost1 < tmp_rdcost3)
mbmi->interp_filter = EIGHTTAP;
else
mbmi->interp_filter = EIGHTTAP_SMOOTH;
}
rate = pf_rate[mbmi->interp_filter];
dist = pf_dist[mbmi->interp_filter];
} else {
mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP: filter_ref;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist);
}
rate += rate_mv;
rate += x->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (this_rd < best_rd) {
best_rd = this_rd;
*returnrate = rate;
*returndistortion = dist;
best_mode = this_mode;
best_pred_filter = mbmi->interp_filter;
best_ref_frame = ref_frame;
}
}
}
mbmi->mode = best_mode;
mbmi->interp_filter = best_pred_filter;
mbmi->ref_frame[0] = best_ref_frame;
mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
if (best_rd > inter_mode_thresh) {
for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
vp9_predict_intra_block(xd, 0, b_width_log2(bsize),
mbmi->tx_size, this_mode,
&p->src.buf[0], p->src.stride,
&pd->dst.buf[0], pd->dst.stride, 0, 0, 0);
model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist);
rate += x->mbmode_cost[this_mode];
rate += intra_cost_penalty;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (this_rd + intra_mode_cost < best_rd) {
best_rd = this_rd;
*returnrate = rate;
*returndistortion = dist;
mbmi->mode = this_mode;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->uv_mode = this_mode;
mbmi->mv[0].as_int = INVALID_MV;
}
}
}
return INT64_MAX;
}