vpx/vp9/decoder/vp9_decodframe.c

1722 lines
58 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
2010-05-18 11:58:33 -04:00
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
2010-05-18 11:58:33 -04:00
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
2011-10-05 11:26:00 +01:00
2010-05-18 11:58:33 -04:00
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
return (p[1] << 8) | p[0];
}
static int read_le32(const uint8_t *p) {
return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len,
const uint8_t *end) {
return start + len > start && start + len <= end;
}
static TXFM_MODE read_txfm_mode(vp9_reader *r) {
TXFM_MODE mode = vp9_read_literal(r, 2);
if (mode == ALLOW_32X32)
mode += vp9_read_bit(r);
return mode;
}
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
return vp9_inv_recenter_nonneg(v + 1, m);
} else {
return n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m);
}
}
static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) {
int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_de_quantizer(VP9D_COMP *pbi) {
int i;
int q;
VP9_COMMON *const pc = &pbi->common;
for (q = 0; q < QINDEX_RANGE; q++) {
pc->y_dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y1dc_delta_q);
pc->uv_dequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uvdc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
const int rc = vp9_default_zig_zag1d_4x4[i];
pc->y_dequant[q][rc] = (int16_t)vp9_ac_yquant(q);
pc->uv_dequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uvac_delta_q);
2010-05-18 11:58:33 -04:00
}
}
2010-05-18 11:58:33 -04:00
}
static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) {
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) {
const int data = vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q);
return mb->mb_segment_abs_delta == SEGMENT_ABSDATA ?
data : // Abs value
clamp(base_qindex + data, 0, MAXQ); // Delta value
} else {
return base_qindex;
}
}
static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) {
int i;
VP9_COMMON *const pc = &pbi->common;
const int segment_id = mb->mode_info_context->mbmi.segment_id;
const int qindex = get_qindex(mb, segment_id, pc->base_qindex);
mb->q_index = qindex;
for (i = 0; i < 16; i++)
mb->block[i].dequant = pc->y_dequant[qindex];
2010-05-18 11:58:33 -04:00
for (i = 16; i < 24; i++)
mb->block[i].dequant = pc->uv_dequant[qindex];
2010-05-18 11:58:33 -04:00
if (mb->lossless) {
assert(qindex == 0);
mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
mb->inv_txm4x4 = vp9_short_iwalsh4x4;
mb->itxm_add = vp9_dequant_idct_add_lossless_c;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c;
} else {
mb->inv_txm4x4_1 = vp9_short_idct4x4_1;
mb->inv_txm4x4 = vp9_short_idct4x4;
mb->itxm_add = vp9_dequant_idct_add;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block;
}
2010-05-18 11:58:33 -04:00
}
#if CONFIG_CODE_NONZEROCOUNT
static void propagate_nzcs(VP9_COMMON *cm, MACROBLOCKD *xd) {
MODE_INFO *m = xd->mode_info_context;
BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type;
const int mis = cm->mode_info_stride;
int n;
if (sb_type == BLOCK_SIZE_SB64X64) {
for (n = 0; n < 16; ++n) {
int i = n >> 2;
int j = n & 3;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
} else if (sb_type == BLOCK_SIZE_SB32X32) {
for (n = 0; n < 4; ++n) {
int i = n >> 1;
int j = n & 1;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
}
}
#endif
static void skip_recon_sb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize) {
MODE_INFO *m = xd->mode_info_context;
if (m->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sbuv_s(xd, bsize);
vp9_build_intra_predictors_sby_s(xd, bsize);
} else {
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
}
#if CONFIG_CODE_NONZEROCOUNT
vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0]));
propagate_nzcs(&pbi->common, xd);
#endif
2010-05-18 11:58:33 -04:00
}
static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
const TX_TYPE tx_type = get_tx_type_16x16(xd, 0);
vp9_dequant_iht_add_16x16_c(tx_type, xd->plane[0].qcoeff,
xd->block[0].dequant, xd->dst.y_buffer,
xd->dst.y_stride, xd->plane[0].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[20].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs[0]);
}
static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// luma
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, 0);
if (tx_type != DCT_DCT || mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
int16_t *q = BLOCK_OFFSET(xd->plane[0].qcoeff, idx, 16);
int16_t *dq = xd->block[0].dequant;
uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
if (mode == I8X8_PRED) {
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, dst, stride);
}
tx_type = get_tx_type_8x8(xd, ib);
vp9_dequant_iht_add_8x8_c(tx_type, q, dq, dst, stride,
xd->plane[0].eobs[idx]);
}
} else {
vp9_dequant_idct_add_y_block_8x8(xd->plane[0].qcoeff,
xd->block[0].dequant, xd->dst.y_buffer,
xd->dst.y_stride, xd);
}
// chroma
if (mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == SPLITMV) {
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else {
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs[0]);
}
}
static INLINE void dequant_add_y(MACROBLOCKD *xd, TX_TYPE tx_type, int idx) {
BLOCKD *const b = &xd->block[idx];
struct mb_plane *const y = &xd->plane[0];
if (tx_type != DCT_DCT) {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
} else {
xd->itxm_add(BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
}
}
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
TX_TYPE tx_type;
int i = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
for (j = 0; j < 4; j++) {
tx_type = get_tx_type_4x4(xd, ib + iblock[j]);
dequant_add_y(xd, tx_type, ib + iblock[j]);
}
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == I4X4_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context =
vp9_find_bpred_context(xd, b);
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i);
#endif
vp9_intra4x4_predict(xd, b, b_mode, *(b->base_dst) + b->dst,
b->dst_stride);
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
#if CONFIG_NEWBINTRAMODES
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc);
#endif
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) {
xd->itxm_add_y_block(xd->plane[0].qcoeff,
xd->block[0].dequant,
xd->dst.y_buffer, xd->dst.y_stride, xd);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else {
for (i = 0; i < 16; i++) {
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs);
}
}
static INLINE void decode_sby_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) - 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 32) * mb->dst.y_stride + (x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[0].qcoeff, n, 1024),
mb->block[0].dequant ,
mb->dst.y_buffer + y_offset, mb->dst.y_stride,
mb->plane[0].eobs[n * 64]);
}
}
static INLINE void decode_sbuv_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize) - 1, bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 32) * mb->dst.uv_stride + (x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 1024),
mb->block[16].dequant,
mb->dst.u_buffer + uv_offset,
mb->dst.uv_stride, mb->plane[1].eobs[n * 64]);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 1024),
mb->block[20].dequant,
mb->dst.v_buffer + uv_offset,
mb->dst.uv_stride, mb->plane[2].eobs[n * 64]);
}
}
static INLINE void decode_sby_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 16) * mb->dst.y_stride + (x_idx * 16);
const TX_TYPE tx_type = get_tx_type_16x16(mb,
(y_idx * (4 * bw) + x_idx) * 4);
vp9_dequant_iht_add_16x16_c(tx_type,
BLOCK_OFFSET(mb->plane[0].qcoeff, n, 256),
mb->block[0].dequant,
mb->dst.y_buffer + y_offset,
mb->dst.y_stride,
mb->plane[0].eobs[n * 16]);
}
}
static INLINE void decode_sbuv_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize), bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
assert(bsize >= BLOCK_SIZE_SB32X32);
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 16) * mb->dst.uv_stride + (x_idx * 16);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 256),
mb->block[16].dequant,
mb->dst.u_buffer + uv_offset, mb->dst.uv_stride,
mb->plane[1].eobs[n * 16]);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 256),
mb->block[20].dequant,
mb->dst.v_buffer + uv_offset, mb->dst.uv_stride,
mb->plane[2].eobs[n * 16]);
}
}
static INLINE void decode_sby_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
// luma
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 8) * xd->dst.y_stride + (x_idx * 8);
const TX_TYPE tx_type = get_tx_type_8x8(xd,
(y_idx * (2 * bw) + x_idx) * 2);
vp9_dequant_iht_add_8x8_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 64),
xd->block[0].dequant,
xd->dst.y_buffer + y_offset, xd->dst.y_stride,
xd->plane[0].eobs[n * 4]);
}
}
static INLINE void decode_sbuv_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
// chroma
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 8) * xd->dst.uv_stride + (x_idx * 8);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 64),
xd->block[16].dequant,
xd->dst.u_buffer + uv_offset, xd->dst.uv_stride,
xd->plane[1].eobs[n * 4]);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 64),
xd->block[20].dequant,
xd->dst.v_buffer + uv_offset, xd->dst.uv_stride,
xd->plane[2].eobs[n * 4]);
}
}
static INLINE void decode_sby_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 4) * xd->dst.y_stride + (x_idx * 4);
const TX_TYPE tx_type = get_tx_type_4x4(xd, n);
if (tx_type == DCT_DCT) {
xd->itxm_add(BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant,
xd->dst.y_buffer + y_offset, xd->dst.y_stride,
xd->plane[0].eobs[n]);
} else {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant, xd->dst.y_buffer + y_offset,
xd->dst.y_stride, xd->plane[0].eobs[n]);
}
}
}
static INLINE void decode_sbuv_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 4) * xd->dst.uv_stride + (x_idx * 4);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 16),
xd->block[16].dequant,
xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->plane[1].eobs[n]);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 16),
xd->block[20].dequant,
xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->plane[2].eobs[n]);
}
}
// TODO(jingning): combine luma and chroma dequantization and inverse
// transform into a single function looping over planes.
static void decode_sb_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_32x32(mb, bsize);
if (bsize == BLOCK_SIZE_SB64X64)
decode_sbuv_32x32(mb, bsize);
else
decode_sbuv_16x16(mb, bsize);
}
static void decode_sb_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_16x16(mb, bsize);
if (bsize >= BLOCK_SIZE_SB32X32)
decode_sbuv_16x16(mb, bsize);
else
decode_sbuv_8x8(mb, bsize);
}
static void decode_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col,
BOOL_DECODER* const bc, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
const int bw = 1 << bwl, bh = 1 << bhl;
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
const int mis = pc->mode_info_stride;
assert(mi->mbmi.sb_type == bsize);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (mi->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
// Special case: Force the loopfilter to skip when eobtotal and
// mb_skip_coeff are zero.
skip_recon_sb(pbi, xd, mb_row, mb_col, bsize);
return;
}
// generate prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd, bsize);
vp9_build_intra_predictors_sbuv_s(xd, bsize);
} else {
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
}
// dequantization and idct
eobtotal = vp9_decode_tokens(pbi, xd, bc, bsize);
if (eobtotal == 0) { // skip loopfilter
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows)
mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
}
} else {
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
decode_sb_32x32(xd, bsize);
break;
case TX_16X16:
decode_sb_16x16(xd, bsize);
break;
case TX_8X8:
decode_sby_8x8(xd, bsize);
decode_sbuv_8x8(xd, bsize);
break;
case TX_4X4:
decode_sby_4x4(xd, bsize);
decode_sbuv_4x4(xd, bsize);
break;
default: assert(0);
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
#if CONFIG_CODE_NONZEROCOUNT
propagate_nzcs(&pbi->common, xd);
#endif
}
// TODO(jingning): Need to merge SB and MB decoding. The MB decoding currently
// couples special handles on I8x8, B_PRED, and splitmv modes.
static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
int eobtotal = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int tx_size = xd->mode_info_context->mbmi.txfm_size;
assert(!xd->mode_info_context->mbmi.sb_type);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, BLOCK_SIZE_MB16X16);
} else if (!bool_error(bc)) {
#if CONFIG_NEWBINTRAMODES
if (mode != I4X4_PRED)
#endif
eobtotal = vp9_decode_tokens(pbi, xd, bc, BLOCK_SIZE_MB16X16);
}
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
if (eobtotal == 0 &&
mode != I4X4_PRED &&
mode != SPLITMV &&
mode != I8X8_PRED &&
!bool_error(bc)) {
// Special case: Force the loopfilter to skip when eobtotal and
// mb_skip_coeff are zero.
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_sb(pbi, xd, mb_row, mb_col, BLOCK_SIZE_MB16X16);
return;
}
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size);
#endif
// moved to be performed before detokenization
// if (xd->segmentation_enabled)
// mb_init_dequantizer(pbi, xd);
// do prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (mode != I8X8_PRED) {
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
if (mode != I4X4_PRED)
vp9_build_intra_predictors_sby_s(xd, BLOCK_SIZE_MB16X16);
2010-05-18 11:58:33 -04:00
}
} else {
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d interp %d\n",
xd->mode_info_context->mbmi.mode, tx_size,
xd->mode_info_context->mbmi.interp_filter);
#endif
vp9_build_inter_predictors_mb_s(xd, mb_row, mb_col);
}
if (tx_size == TX_16X16) {
decode_16x16(pbi, xd, bc);
} else if (tx_size == TX_8X8) {
decode_8x8(pbi, xd, bc);
} else {
decode_4x4(pbi, xd, bc);
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("\n");
printf("predictor y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->predictor[i * 16 + j]);
printf("\n");
}
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
2010-05-18 11:58:33 -04:00
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
}
2010-05-18 11:58:33 -04:00
static int get_delta_q(vp9_reader *r, int *dq) {
const int old_value = *dq;
if (vp9_read_bit(r)) { // Update bit
const int value = vp9_read_literal(r, 4);
*dq = vp9_read_and_apply_sign(r, value);
}
2010-05-18 11:58:33 -04:00
// Trigger a quantizer update if the delta-q value has changed
return old_value != *dq;
2010-05-18 11:58:33 -04:00
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize,
int mb_row, int mb_col) {
const int bh = 1 << mb_height_log2(bsize);
const int bw = 1 << mb_width_log2(bsize);
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mb_idx = mb_row * cm->mode_info_stride + mb_col;
const YV12_BUFFER_CONFIG *dst_fb = &cm->yv12_fb[cm->new_fb_idx];
const int recon_yoffset = (16 * mb_row) * dst_fb->y_stride + (16 * mb_col);
const int recon_uvoffset = (8 * mb_row) * dst_fb->uv_stride + (8 * mb_col);
xd->mode_info_context = cm->mi + mb_idx;
xd->mode_info_context->mbmi.sb_type = bsize;
xd->prev_mode_info_context = cm->prev_mi + mb_idx;
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + mb_row % 4;
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mb_row(cm, xd, mb_row, bh);
set_mb_col(cm, xd, mb_col, bw);
xd->dst.y_buffer = dst_fb->y_buffer + recon_yoffset;
xd->dst.u_buffer = dst_fb->u_buffer + recon_uvoffset;
xd->dst.v_buffer = dst_fb->v_buffer + recon_uvoffset;
}
static void set_refs(VP9D_COMP *pbi, int mb_row, int mb_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1];
const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
setup_pred_block(&xd->pre, cfg, mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
xd->corrupted |= cfg->corrupted;
if (mbmi->second_ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx];
xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
setup_pred_block(&xd->second_pre, second_cfg, mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
xd->corrupted |= second_cfg->corrupted;
}
}
}
static void decode_modes_b(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &pbi->mb;
set_offsets(pbi, bsize, mb_row, mb_col);
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, r);
set_refs(pbi, mb_row, mb_col);
// TODO(jingning): merge decode_sb_ and decode_mb_
if (bsize > BLOCK_SIZE_MB16X16)
decode_sb(pbi, xd, mb_row, mb_col, r, bsize);
else
decode_mb(pbi, xd, mb_row, mb_col, r);
xd->corrupted |= bool_error(r);
}
static void decode_modes_sb(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader* r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int bsl = mb_width_log2(bsize), bs = (1 << bsl) / 2;
int n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mb_row >= pc->mb_rows || mb_col >= pc->mb_cols)
return;
if (bsize > BLOCK_SIZE_MB16X16) {
// read the partition information
partition = treed_read(r, vp9_partition_tree,
pc->fc.partition_prob[bsl - 1]);
pc->fc.partition_counts[bsl - 1][partition]++;
}
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
break;
#if CONFIG_SBSEGMENT
case PARTITION_HORZ:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB64X32 :
BLOCK_SIZE_SB32X16;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_row + bs) < pc->mb_rows)
decode_modes_b(pbi, mb_row + bs, mb_col, r, subsize);
break;
case PARTITION_VERT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X64 :
BLOCK_SIZE_SB16X32;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_col + bs) < pc->mb_cols)
decode_modes_b(pbi, mb_row, mb_col + bs, r, subsize);
break;
#endif
case PARTITION_SPLIT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X32 :
BLOCK_SIZE_MB16X16;
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
if (subsize == BLOCK_SIZE_SB32X32)
xd->sb_index = n;
else
xd->mb_index = n;
decode_modes_sb(pbi, mb_row + j * bs, mb_col + i * bs, r, subsize);
}
break;
default:
assert(0);
}
}
/* Decode a row of Superblocks (4x4 region of MBs) */
static void decode_sb_row(VP9D_COMP *pbi, int mb_row, vp9_reader* r) {
VP9_COMMON *const pc = &pbi->common;
int mb_col;
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 09:35:28 -08:00
for (mb_col = pc->cur_tile_mb_col_start;
mb_col < pc->cur_tile_mb_col_end; mb_col += 4) {
decode_modes_sb(pbi, mb_row, mb_col, r, BLOCK_SIZE_SB64X64);
}
2010-05-18 11:58:33 -04:00
}
static void setup_token_decoder(VP9D_COMP *pbi,
const uint8_t *data,
vp9_reader *r) {
VP9_COMMON *pc = &pbi->common;
const uint8_t *data_end = pbi->source + pbi->source_sz;
const size_t partition_size = data_end - data;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
if (vp9_start_decode(r, data, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
2010-05-18 11:58:33 -04:00
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
2010-05-18 11:58:33 -04:00
if (pc->frame_type == KEY_FRAME) {
vp9_setup_past_independence(pc, xd);
// All buffers are implicitly updated on key frames.
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
2010-05-18 11:58:33 -04:00
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0;
2010-05-18 11:58:33 -04:00
}
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
BOOL_DECODER* const bc,
TX_SIZE tx_size) {
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!get_nzc_used(tx_size)) return;
if (!vp9_read_bit(bc)) return;
if (tx_size == TX_32X32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (tx_size == TX_16X16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (tx_size == TX_8X8) {
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) {
int c, t, b;
vp9_prob upd = NZC_UPDATE_PROB_PCAT;
if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) ||
get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32)))
return;
if (!vp9_read_bit(bc)) {
return;
}
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (t = 0; t < NZC_TOKENS_EXTRA; ++t) {
int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA];
for (b = 0; b < bits; ++b) {
vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm,
BOOL_DECODER* const bc) {
read_nzc_probs_common(cm, bc, TX_4X4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, bc, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, bc, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, bc, TX_32X32);
#ifdef NZC_PCAT_UPDATE
read_nzc_pcat_probs(cm, bc);
#endif
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(VP9D_COMP *pbi,
BOOL_DECODER* const bc,
vp9_coeff_probs *coef_probs,
TX_SIZE tx_size) {
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 11:03:17 -07:00
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
int i, j, k, l, m;
if (vp9_read_bit(bc)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
#if CONFIG_CODE_NONZEROCOUNT
const int mstart = get_nzc_used(tx_size);
#else
const int mstart = 0;
#endif
if (l >= 3 && k == 0)
continue;
for (m = mstart; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 11:03:17 -07:00
if (vp9_read(bc, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(bc, *p);
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 11:03:17 -07:00
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (m == UNCONSTRAINED_NODES - 1)
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 11:03:17 -07:00
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
}
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) {
VP9_COMMON *const pc = &pbi->common;
read_coef_probs_common(pbi, bc, pc->fc.coef_probs_4x4, TX_4X4);
if (pbi->common.txfm_mode != ONLY_4X4)
read_coef_probs_common(pbi, bc, pc->fc.coef_probs_8x8, TX_8X8);
if (pbi->common.txfm_mode > ALLOW_8X8)
read_coef_probs_common(pbi, bc, pc->fc.coef_probs_16x16, TX_16X16);
if (pbi->common.txfm_mode > ALLOW_16X16)
read_coef_probs_common(pbi, bc, pc->fc.coef_probs_32x32, TX_32X32);
}
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
const int width = multiple16(cm->width);
const int height = multiple16(cm->height);
cm->mb_rows = height / 16;
cm->mb_cols = width / 16;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
int i, j;
xd->segmentation_enabled = vp9_read_bit(r);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly updated
// this frame.
xd->update_mb_segmentation_map = vp9_read_bit(r);
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled. Read the probs used to
// decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
// Read the prediction probs needed to decode the segment id
pc->temporal_update = vp9_read_bit(r);
if (pc->temporal_update) {
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs;
const int c0 = p[0] * p[1];
const int c1 = p[0] * (256 - p[1]);
const int c2 = (256 - p[0]) * p[2];
const int c3 = (256 - p[0]) * (256 - p[2]);
p_mod[0] = get_binary_prob(c1, c2 + c3);
p_mod[1] = get_binary_prob(c0, c2 + c3);
p_mod[2] = get_binary_prob(c0 + c1, c3);
p_mod[3] = get_binary_prob(c0 + c1, c2);
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = 255;
}
}
xd->update_mb_segmentation_data = vp9_read_bit(r);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_read_bit(r);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_read_bit(r);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = vp9_decode_unsigned_max(r, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_read_and_apply_sign(r, data);
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
}
static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) {
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
int i;
for (i = 0; i < PREDICTION_PROBS; ++i)
if (vp9_read_bit(r))
pc->ref_pred_probs[i] = vp9_read_prob(r);
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r);
pc->filter_level = vp9_read_literal(r, 6);
pc->sharpness_level = vp9_read_literal(r, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(r))
pc->dering_enabled = 1 + vp9_read_literal(r, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->ref_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->mode_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
}
}
}
static void setup_quantization(VP9D_COMP *pbi, vp9_reader *r) {
// Read the default quantizers
VP9_COMMON *const pc = &pbi->common;
pc->base_qindex = vp9_read_literal(r, QINDEX_BITS);
if (get_delta_q(r, &pc->y1dc_delta_q) |
get_delta_q(r, &pc->uvdc_delta_q) |
get_delta_q(r, &pc->uvac_delta_q))
vp9_init_de_quantizer(pbi);
mb_init_dequantizer(pbi, &pbi->mb); // MB level dequantizer setup
}
static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data,
const uint8_t *data_end,
int *width, int *height) {
if (data + 4 < data_end) {
*width = read_le16(data);
*height = read_le16(data + 2);
data += 4;
} else {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to read frame size");
}
return data;
}
static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active,
const uint8_t *data,
const uint8_t *data_end) {
// If error concealment is enabled we should only parse the new size
// if we have enough data. Otherwise we will end up with the wrong size.
VP9_COMMON *const pc = &pbi->common;
int display_width = pc->display_width;
int display_height = pc->display_height;
int width = pc->width;
int height = pc->height;
if (scaling_active)
data = read_frame_size(pc, data, data_end, &display_width, &display_height);
data = read_frame_size(pc, data, data_end, &width, &height);
if (pc->width != width || pc->height != height) {
if (width <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
if (height <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, width, height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
pc->width = width;
pc->height = height;
pc->display_width = scaling_active ? display_width : width;
pc->display_height = scaling_active ? display_height : height;
update_frame_size(pbi);
}
return data;
}
static void update_frame_context(VP9D_COMP *pbi, vp9_reader *r) {
FRAME_CONTEXT *const fc = &pbi->common.fc;
vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4);
vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8);
vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16);
vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32);
vp9_copy(fc->pre_ymode_prob, fc->ymode_prob);
vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_bmode_prob, fc->bmode_prob);
vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob);
vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob);
vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
vp9_copy(fc->pre_partition_prob, fc->partition_prob);
fc->pre_nmvc = fc->nmvc;
vp9_zero(fc->coef_counts_4x4);
vp9_zero(fc->coef_counts_8x8);
vp9_zero(fc->coef_counts_16x16);
vp9_zero(fc->coef_counts_32x32);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->ymode_counts);
vp9_zero(fc->sb_ymode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->bmode_counts);
vp9_zero(fc->i8x8_mode_counts);
vp9_zero(fc->sub_mv_ref_counts);
vp9_zero(fc->mbsplit_counts);
vp9_zero(fc->NMVcount);
vp9_zero(fc->mv_ref_ct);
vp9_zero(fc->partition_counts);
#if CONFIG_COMP_INTERINTRA_PRED
fc->pre_interintra_prob = fc->interintra_prob;
vp9_zero(fc->interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4);
vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8);
vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16);
vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32);
vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs);
vp9_zero(fc->nzc_counts_4x4);
vp9_zero(fc->nzc_counts_8x8);
vp9_zero(fc->nzc_counts_16x16);
vp9_zero(fc->nzc_counts_32x32);
vp9_zero(fc->nzc_pcat_counts);
#endif
read_coef_probs(pbi, r);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, r);
#endif
}
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, int first_partition_size,
BOOL_DECODER *header_bc, BOOL_DECODER *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
int tile_row, tile_col, delta_log2_tiles;
int mb_row;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc);
// Decode a row of superblocks
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, mb_row, residual_bc);
}
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
// Setup decoder
setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc);
// Decode a row of superblocks
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, mb_row, residual_bc);
}
if (has_more) {
const int size = read_le32(data_ptr);
data_ptr += 4 + size;
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
BOOL_DECODER header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *data_end = data + pbi->source_sz;
size_t first_partition_size = 0;
int i, corrupt_tokens = 0;
// printf("Decoding frame %d\n", pc->current_video_frame);
xd->corrupted = 0; // start with no corruption of current frame
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
} else {
int scaling_active;
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
first_partition_size = read_le16(data + 1);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
// When error concealment is enabled we should only check the sync
// code if we have enough bits available
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
data = setup_frame_size(pbi, scaling_active, data, data_end);
}
2010-05-18 11:58:33 -04:00
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
return -1;
}
init_frame(pbi);
2010-05-18 11:58:33 -04:00
// Reset the frame pointers to the current frame size
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
pc->width, pc->height,
VP9BORDERINPIXELS);
if (vp9_start_decode(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
2010-05-18 11:58:33 -04:00
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
setup_segmentation(pc, xd, &header_bc);
setup_pred_probs(pc, &header_bc);
xd->lossless = vp9_read_bit(&header_bc);
pc->txfm_mode = xd->lossless ? ONLY_4X4 : read_txfm_mode(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_prob(&header_bc);
pc->prob_tx[1] = vp9_read_prob(&header_bc);
pc->prob_tx[2] = vp9_read_prob(&header_bc);
}
2010-05-18 11:58:33 -04:00
setup_loopfilter(pc, xd, &header_bc);
// Dummy read for now
vp9_read_literal(&header_bc, 2);
setup_quantization(pbi, &header_bc);
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type == KEY_FRAME) {
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
pc->active_ref_idx[i] = pc->new_fb_idx;
} else {
// Should the GF or ARF be updated from the current frame
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
// Select active reference frames
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
// Is high precision mv allowed
xd->allow_high_precision_mv = vp9_read_bit(&header_bc);
// Read the type of subpel filter to use
pc->mcomp_filter_type = vp9_read_bit(&header_bc)
? SWITCHABLE
: vp9_read_literal(&header_bc, 2);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
// Calculate scaling factors for each of the 3 available references
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int idx = pc->active_ref_idx[i];
struct scale_factors *sf = &pc->active_ref_scale[i];
if (idx >= NUM_YV12_BUFFERS)
memset(sf, 0, sizeof(*sf));
else
vp9_setup_scale_factors_for_frame(sf, &pc->yv12_fb[idx],
pc->width, pc->height);
}
// To enable choice of different interpolation filters
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
if (vp9_read(&header_bc, 252))
pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc);
}
#if CONFIG_MODELCOEFPROB
if (pc->frame_type == KEY_FRAME) {
vp9_default_coef_probs(pc);
}
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 11:03:17 -07:00
#endif
#if CONFIG_NEW_MVREF
// If Key frame reset mv ref id probabilities to defaults
if (pc->frame_type != KEY_FRAME) {
// Read any mv_ref index probability updates
int i, j;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
// Skip the dummy entry for intra ref frame.
if (i == INTRA_FRAME)
continue;
// Read any updates to probabilities
for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j)
if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB))
xd->mb_mv_ref_probs[i][j] = vp9_read_prob(&header_bc);
}
}
#endif
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,R:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pbi->refresh_frame_flags,
pc->base_qindex);
fclose(z);
}
2010-05-18 11:58:33 -04:00
update_frame_context(pbi, &header_bc);
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx],
sizeof(YV12_BUFFER_CONFIG));
2010-05-18 11:58:33 -04:00
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
// set up frame new frame for intra coded blocks
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
2010-05-18 11:58:33 -04:00
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
2010-05-18 11:58:33 -04:00
// clear out the coeff buffer
vpx_memset(xd->plane[0].qcoeff, 0, sizeof(xd->plane[0].qcoeff));
vpx_memset(xd->plane[1].qcoeff, 0, sizeof(xd->plane[1].qcoeff));
vpx_memset(xd->plane[2].qcoeff, 0, sizeof(xd->plane[2].qcoeff));
2010-05-18 11:58:33 -04:00
vp9_read_bit(&header_bc); // unused
2010-05-18 11:58:33 -04:00
vp9_decode_mode_mvs_init(pbi, &header_bc);
2010-05-18 11:58:33 -04:00
decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc);
corrupt_tokens |= xd->corrupted;
// keep track of the last coded dimensions
pc->last_width = pc->width;
pc->last_height = pc->height;
// Collect information about decoder corruption.
// 1. Check first boolean decoder for errors.
// 2. Check the macroblock information
pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) |
corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
}
if (pc->frame_type != KEY_FRAME) {
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
}
2010-05-18 11:58:33 -04:00
if (pc->refresh_entropy_probs) {
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
}
2010-05-18 11:58:33 -04:00
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
2010-05-18 11:58:33 -04:00
#endif
*p_data_end = vp9_reader_find_end(&residual_bc);
return 0;
2010-05-18 11:58:33 -04:00
}