vpx/vp9/common/vp9_reconintra4x4.c

448 lines
15 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "./vpx_config.h"
2010-05-18 11:58:33 -04:00
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9_rtcd.h"
2010-05-18 11:58:33 -04:00
#if CONFIG_NEWBINTRAMODES
static int find_grad_measure(uint8_t *x, int stride, int n, int tx, int ty,
int dx, int dy) {
int i, j;
int count = 0, gsum = 0, gdiv;
/* TODO: Make this code more efficient by breaking up into two loops */
for (i = -ty; i < n; ++i)
for (j = -tx; j < n; ++j) {
int g;
if (i >= 0 && j >= 0) continue;
if (i + dy >= 0 && j + dx >= 0) continue;
if (i + dy < -ty || i + dy >= n || j + dx < -tx || j + dx >= n) continue;
g = abs(x[(i + dy) * stride + j + dx] - x[i * stride + j]);
gsum += g * g;
count++;
}
gdiv = (dx * dx + dy * dy) * count;
return ((gsum << 8) + (gdiv >> 1)) / gdiv;
}
#if CONTEXT_PRED_REPLACEMENTS == 6
B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr,
int stride, int n,
int tx, int ty) {
int g[8], i, imin, imax;
g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1);
g[2] = find_grad_measure(ptr, stride, n, tx, ty, 1, 1);
g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2);
g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2);
g[6] = find_grad_measure(ptr, stride, n, tx, ty, -1, 1);
g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1);
imin = 1;
for (i = 2; i < 8; i += 1 + (i == 3))
imin = (g[i] < g[imin] ? i : imin);
imax = 1;
for (i = 2; i < 8; i += 1 + (i == 3))
imax = (g[i] > g[imax] ? i : imax);
/*
printf("%d %d %d %d %d %d = %d %d\n",
g[1], g[2], g[3], g[5], g[6], g[7], imin, imax);
*/
switch (imin) {
case 1:
return B_D153_PRED;
case 2:
return B_D135_PRED;
case 3:
return B_D117_PRED;
case 5:
return B_D63_PRED;
case 6:
return B_D45_PRED;
case 7:
return B_D27_PRED;
default:
assert(0);
}
}
#elif CONTEXT_PRED_REPLACEMENTS == 4
B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr,
int stride, int n,
int tx, int ty) {
int g[8], i, imin, imax;
g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1);
g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2);
g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2);
g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1);
imin = 1;
for (i = 3; i < 8; i+=2)
imin = (g[i] < g[imin] ? i : imin);
imax = 1;
for (i = 3; i < 8; i+=2)
imax = (g[i] > g[imax] ? i : imax);
/*
printf("%d %d %d %d = %d %d\n",
g[1], g[3], g[5], g[7], imin, imax);
*/
switch (imin) {
case 1:
return B_D153_PRED;
case 3:
return B_D117_PRED;
case 5:
return B_D63_PRED;
case 7:
return B_D27_PRED;
default:
assert(0);
}
}
#elif CONTEXT_PRED_REPLACEMENTS == 0
B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr,
int stride, int n,
int tx, int ty) {
int g[8], i, imin, imax;
g[0] = find_grad_measure(ptr, stride, n, tx, ty, 1, 0);
g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1);
g[2] = find_grad_measure(ptr, stride, n, tx, ty, 1, 1);
g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2);
g[4] = find_grad_measure(ptr, stride, n, tx, ty, 0, 1);
g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2);
g[6] = find_grad_measure(ptr, stride, n, tx, ty, -1, 1);
g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1);
imax = 0;
for (i = 1; i < 8; i++)
imax = (g[i] > g[imax] ? i : imax);
imin = 0;
for (i = 1; i < 8; i++)
imin = (g[i] < g[imin] ? i : imin);
switch (imin) {
case 0:
return B_H_PRED;
case 1:
return B_D153_PRED;
case 2:
return B_D135_PRED;
case 3:
return B_D117_PRED;
case 4:
return B_V_PRED;
case 5:
return B_D63_PRED;
case 6:
return B_D45_PRED;
case 7:
return B_D27_PRED;
default:
assert(0);
}
}
#endif
B_PREDICTION_MODE vp9_find_bpred_context(MACROBLOCKD *xd, BLOCKD *x) {
const int block_idx = x - xd->block;
const int have_top = (block_idx >> 2) || xd->up_available;
const int have_left = (block_idx & 3) || xd->left_available;
uint8_t *ptr = *(x->base_dst) + x->dst;
int stride = x->dst_stride;
int tx = have_left ? 4 : 0;
int ty = have_top ? 4 : 0;
if (!have_left && !have_top)
return B_DC_PRED;
return vp9_find_dominant_direction(ptr, stride, 4, tx, ty);
}
#endif
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 09:35:28 -08:00
void vp9_intra4x4_predict(MACROBLOCKD *xd,
BLOCKD *x,
int b_mode,
uint8_t *predictor,
int ps) {
int i, r, c;
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 09:35:28 -08:00
const int block_idx = x - xd->block;
const int have_top = (block_idx >> 2) || xd->up_available;
const int have_left = (block_idx & 3) || xd->left_available;
const int have_right = (block_idx & 3) != 3 || xd->right_available;
uint8_t left[4], above[8], top_left;
/*
* 127 127 127 .. 127 127 127 127 127 127
* 129 A B .. Y Z
* 129 C D .. W X
* 129 E F .. U V
* 129 G H .. S T T T T T
* ..
*/
if (have_left) {
uint8_t *left_ptr = *(x->base_dst) + x->dst - 1;
const int stride = x->dst_stride;
left[0] = left_ptr[0 * stride];
left[1] = left_ptr[1 * stride];
left[2] = left_ptr[2 * stride];
left[3] = left_ptr[3 * stride];
} else {
left[0] = left[1] = left[2] = left[3] = 129;
}
if (have_top) {
uint8_t *above_ptr = *(x->base_dst) + x->dst - x->dst_stride;
top_left = have_left ? above_ptr[-1] : 127;
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 09:35:28 -08:00
above[0] = above_ptr[0];
above[1] = above_ptr[1];
above[2] = above_ptr[2];
above[3] = above_ptr[3];
if (((block_idx & 3) != 3) ||
(have_right && block_idx == 3 &&
((xd->mb_index != 3 && xd->sb_index != 3) ||
((xd->mb_index & 1) == 0 && xd->sb_index == 3)))) {
above[4] = above_ptr[4];
above[5] = above_ptr[5];
above[6] = above_ptr[6];
above[7] = above_ptr[7];
} else if (have_right) {
uint8_t *above_right = above_ptr + 4;
if (xd->sb_index == 3 && (xd->mb_index & 1))
above_right -= 32 * x->dst_stride;
if (xd->mb_index == 3)
above_right -= 16 * x->dst_stride;
above_right -= (block_idx & ~3) * x->dst_stride;
/* use a more distant above-right (from closest available top-right
* corner), but with a "localized DC" (similar'ish to TM-pred):
*
* A B C D E F G H
* I J K L
* M N O P
* Q R S T
* U V W X x1 x2 x3 x4
*
* Where:
* x1 = clip_pixel(E + X - D)
* x2 = clip_pixel(F + X - D)
* x3 = clip_pixel(G + X - D)
* x4 = clip_pixel(H + X - D)
*
* This is applied anytime when we use a "distant" above-right edge
* that is not immediately top-right to the block that we're going
* to do intra prediction for.
*/
above[4] = clip_pixel(above_right[0] + above_ptr[3] - above_right[-1]);
above[5] = clip_pixel(above_right[1] + above_ptr[3] - above_right[-1]);
above[6] = clip_pixel(above_right[2] + above_ptr[3] - above_right[-1]);
above[7] = clip_pixel(above_right[3] + above_ptr[3] - above_right[-1]);
} else {
// extend edge
above[4] = above[5] = above[6] = above[7] = above[3];
}
} else {
above[0] = above[1] = above[2] = above[3] = 127;
above[4] = above[5] = above[6] = above[7] = 127;
top_left = 127;
}
2010-05-18 11:58:33 -04:00
#if CONFIG_NEWBINTRAMODES
if (b_mode == B_CONTEXT_PRED)
b_mode = x->bmi.as_mode.context;
#endif
switch (b_mode) {
case B_DC_PRED: {
int expected_dc = 0;
2010-05-18 11:58:33 -04:00
for (i = 0; i < 4; i++) {
expected_dc += above[i];
expected_dc += left[i];
}
2010-05-18 11:58:33 -04:00
expected_dc = ROUND_POWER_OF_TWO(expected_dc, 3);
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
predictor[c] = expected_dc;
predictor += ps;
}
2010-05-18 11:58:33 -04:00
}
break;
case B_TM_PRED: {
/* prediction similar to true_motion prediction */
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
predictor[c] = clip_pixel(above[c] - top_left + left[r]);
predictor += ps;
}
2010-05-18 11:58:33 -04:00
}
break;
case B_V_PRED:
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
predictor[c] = above[c];
predictor += ps;
}
break;
case B_H_PRED:
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++)
predictor[c] = left[r];
predictor += ps;
}
break;
case B_D45_PRED: {
uint8_t *p = above;
predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2);
predictor[0 * ps + 1] =
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[0 * ps + 2] =
predictor[1 * ps + 1] =
predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2);
predictor[0 * ps + 3] =
predictor[1 * ps + 2] =
predictor[2 * ps + 1] =
predictor[3 * ps + 0] =
ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2);
predictor[1 * ps + 3] =
predictor[2 * ps + 2] =
predictor[3 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2);
predictor[2 * ps + 3] =
predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2);
predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[7], 2);
2010-05-18 11:58:33 -04:00
}
break;
case B_D135_PRED: {
uint8_t p[9] = { left[3], left[2], left[1], left[0],
top_left,
above[0], above[1], above[2], above[3] };
predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2);
predictor[3 * ps + 1] =
predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[3 * ps + 2] =
predictor[2 * ps + 1] =
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2);
predictor[3 * ps + 3] =
predictor[2 * ps + 2] =
predictor[1 * ps + 1] =
predictor[0 * ps + 0] =
ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2);
predictor[2 * ps + 3] =
predictor[1 * ps + 2] =
predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2);
predictor[1 * ps + 3] =
predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2);
predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[8], 2);
2010-05-18 11:58:33 -04:00
}
break;
case B_D117_PRED: {
uint8_t p[9] = { left[3], left[2], left[1], left[0],
top_left,
above[0], above[1], above[2], above[3] };
predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2);
predictor[3 * ps + 1] =
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2);
predictor[2 * ps + 1] =
predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[4] + p[5], 1);
predictor[3 * ps + 2] =
predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2);
predictor[2 * ps + 2] =
predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[5] + p[6], 1);
predictor[3 * ps + 3] =
predictor[1 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2);
predictor[2 * ps + 3] =
predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[6] + p[7], 1);
predictor[1 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[8], 2);
predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[7] + p[8], 1);
2010-05-18 11:58:33 -04:00
}
break;
case B_D63_PRED: {
uint8_t *p = above;
predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1);
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2);
predictor[2 * ps + 0] =
predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[1] + p[2], 1);
predictor[1 * ps + 1] =
predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[2 * ps + 1] =
predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[2] + p[3], 1);
predictor[3 * ps + 1] =
predictor[1 * ps + 2] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2);
predictor[0 * ps + 3] =
predictor[2 * ps + 2] = ROUND_POWER_OF_TWO(p[3] + p[4], 1);
predictor[1 * ps + 3] =
predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2);
predictor[2 * ps + 3] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2);
predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2);
2010-05-18 11:58:33 -04:00
}
break;
case B_D153_PRED: {
uint8_t p[9] = { left[3], left[2], left[1], left[0],
top_left,
above[0], above[1], above[2], above[3] };
predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1);
predictor[3 * ps + 1] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2);
predictor[2 * ps + 0] =
predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[1] + p[2], 1);
predictor[2 * ps + 1] =
predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[2 * ps + 2] =
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3], 1);
predictor[2 * ps + 3] =
predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2);
predictor[1 * ps + 2] =
predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4], 1);
predictor[1 * ps + 3] =
predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2);
predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2);
predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2);
2010-05-18 11:58:33 -04:00
}
break;
case B_D27_PRED: {
uint8_t *p = left;
predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1);
predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2);
predictor[0 * ps + 2] =
predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2], 1);
predictor[0 * ps + 3] =
predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2);
predictor[1 * ps + 2] =
predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3], 1);
predictor[1 * ps + 3] =
predictor[2 * ps + 1] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[3], 2);
predictor[2 * ps + 2] =
predictor[2 * ps + 3] =
predictor[3 * ps + 0] =
predictor[3 * ps + 1] =
predictor[3 * ps + 2] =
predictor[3 * ps + 3] = p[3];
2010-05-18 11:58:33 -04:00
}
break;
#if CONFIG_NEWBINTRAMODES
case B_CONTEXT_PRED:
break;
/*
case B_CORNER_PRED:
corner_predictor(predictor, 16, 4, above, left);
break;
*/
#endif
}
2010-05-18 11:58:33 -04:00
}