vpx/vp9/common/vp9_mvref_common.c

344 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_mvref_common.h"
#define MVREF_NEIGHBOURS 8
static int b_mv_ref_search[MVREF_NEIGHBOURS][2] = {
{0, -1}, {-1, 0}, {-1, -1}, {0, -2},
{-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}
};
static int mb_mv_ref_search[MVREF_NEIGHBOURS][2] = {
{0, -1}, {-1, 0}, {-1, -1}, {0, -3},
{-3, 0}, {-1, -3}, {-3, -1}, {-3, -3}
};
static int sb_mv_ref_search[MVREF_NEIGHBOURS][2] = {
{0, -1}, {-1, 0}, {2, -1}, {-1, 2},
{-1, -1}, {0, -3}, {-3, 0}, {-1, -3}
};
static int sb64_mv_ref_search[MVREF_NEIGHBOURS][2] = {
{0, -1}, {-1, 0}, {2, -1}, {-1, 2},
{4, -1}, {-1, 4}, {6, -1}, {-1, -1}
};
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv_ref(const MACROBLOCKD *xd, int_mv *mv) {
mv->as_mv.col = clamp(mv->as_mv.col, xd->mb_to_left_edge - MV_BORDER,
xd->mb_to_right_edge + MV_BORDER);
mv->as_mv.row = clamp(mv->as_mv.row, xd->mb_to_top_edge - MV_BORDER,
xd->mb_to_bottom_edge + MV_BORDER);
}
// Gets a candidate refenence motion vector from the given mode info
// structure if one exists that matches the given reference frame.
static int get_matching_candidate(const MODE_INFO *candidate_mi,
MV_REFERENCE_FRAME ref_frame,
int_mv *c_mv, int block_idx) {
if (ref_frame == candidate_mi->mbmi.ref_frame) {
if (block_idx >= 0 && candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
c_mv->as_int = candidate_mi->bmi[block_idx].as_mv[0].as_int;
else
c_mv->as_int = candidate_mi->mbmi.mv[0].as_int;
} else if (ref_frame == candidate_mi->mbmi.second_ref_frame) {
if (block_idx >= 0 && candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
c_mv->as_int = candidate_mi->bmi[block_idx].as_mv[1].as_int;
else
c_mv->as_int = candidate_mi->mbmi.mv[1].as_int;
} else {
return 0;
}
return 1;
}
// Gets candidate refenence motion vector(s) from the given mode info
// structure if they exists and do NOT match the given reference frame.
static void get_non_matching_candidates(const MODE_INFO *candidate_mi,
MV_REFERENCE_FRAME ref_frame,
MV_REFERENCE_FRAME *c_ref_frame,
int_mv *c_mv,
MV_REFERENCE_FRAME *c2_ref_frame,
int_mv *c2_mv) {
c_mv->as_int = 0;
c2_mv->as_int = 0;
*c_ref_frame = INTRA_FRAME;
*c2_ref_frame = INTRA_FRAME;
// If first candidate not valid neither will be.
if (candidate_mi->mbmi.ref_frame > INTRA_FRAME) {
// First candidate
if (candidate_mi->mbmi.ref_frame != ref_frame) {
*c_ref_frame = candidate_mi->mbmi.ref_frame;
c_mv->as_int = candidate_mi->mbmi.mv[0].as_int;
}
// Second candidate
if ((candidate_mi->mbmi.second_ref_frame > INTRA_FRAME) &&
(candidate_mi->mbmi.second_ref_frame != ref_frame) &&
(candidate_mi->mbmi.mv[1].as_int != candidate_mi->mbmi.mv[0].as_int)) {
*c2_ref_frame = candidate_mi->mbmi.second_ref_frame;
c2_mv->as_int = candidate_mi->mbmi.mv[1].as_int;
}
}
}
// Performs mv sign inversion if indicated by the reference frame combination.
static void scale_mv(MACROBLOCKD *xd, MV_REFERENCE_FRAME this_ref_frame,
MV_REFERENCE_FRAME candidate_ref_frame,
int_mv *candidate_mv, int *ref_sign_bias) {
// int frame_distances[MAX_REF_FRAMES];
// int last_distance = 1;
// int gf_distance = xd->frames_since_golden;
// int arf_distance = xd->frames_till_alt_ref_frame;
// Sign inversion where appropriate.
if (ref_sign_bias[candidate_ref_frame] != ref_sign_bias[this_ref_frame]) {
candidate_mv->as_mv.row = -candidate_mv->as_mv.row;
candidate_mv->as_mv.col = -candidate_mv->as_mv.col;
}
/*
// Scale based on frame distance if the reference frames not the same.
frame_distances[INTRA_FRAME] = 1; // should never be used
frame_distances[LAST_FRAME] = 1;
frame_distances[GOLDEN_FRAME] =
(xd->frames_since_golden) ? xd->frames_si nce_golden : 1;
frame_distances[ALTREF_FRAME] =
(xd->frames_till_alt_ref_frame) ? xd->frames_till_alt_ref_frame : 1;
if (frame_distances[this_ref_frame] &&
frame_distances[candidate_ref_frame]) {
candidate_mv->as_mv.row =
(short)(((int)(candidate_mv->as_mv.row) *
frame_distances[this_ref_frame]) /
frame_distances[candidate_ref_frame]);
candidate_mv->as_mv.col =
(short)(((int)(candidate_mv->as_mv.col) *
frame_distances[this_ref_frame]) /
frame_distances[candidate_ref_frame]);
}
*/
}
// Add a candidate mv.
// Discard if it has already been seen.
static void add_candidate_mv(int_mv *mv_list, int *mv_scores,
int *candidate_count, int_mv candidate_mv,
int weight) {
if (*candidate_count == 0) {
mv_list[0].as_int = candidate_mv.as_int;
mv_scores[0] = weight;
*candidate_count += 1;
} else if ((*candidate_count == 1) &&
(candidate_mv.as_int != mv_list[0].as_int)) {
mv_list[1].as_int = candidate_mv.as_int;
mv_scores[1] = weight;
*candidate_count += 1;
}
}
// This function searches the neighbourhood of a given MB/SB
// to try and find candidate reference vectors.
//
void vp9_find_mv_refs_idx(VP9_COMMON *cm, MACROBLOCKD *xd, MODE_INFO *here,
MODE_INFO *lf_here, MV_REFERENCE_FRAME ref_frame,
int_mv *mv_ref_list, int *ref_sign_bias,
int block_idx) {
int i;
MODE_INFO *candidate_mi;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
int_mv c_refmv;
int_mv c2_refmv;
MV_REFERENCE_FRAME c_ref_frame;
MV_REFERENCE_FRAME c2_ref_frame;
int candidate_scores[MAX_MV_REF_CANDIDATES];
int refmv_count = 0;
int split_count = 0;
int (*mv_ref_search)[2];
const int mi_col = get_mi_col(xd);
int intra_count = 0;
int zero_count = 0;
int newmv_count = 0;
int x_idx = 0, y_idx = 0;
// Blank the reference vector lists and other local structures.
vpx_memset(mv_ref_list, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES);
vpx_memset(candidate_scores, 0, sizeof(candidate_scores));
if (mbmi->sb_type == BLOCK_SIZE_SB64X64) {
mv_ref_search = sb64_mv_ref_search;
} else if (mbmi->sb_type >= BLOCK_SIZE_SB32X32) {
mv_ref_search = sb_mv_ref_search;
} else if (mbmi->sb_type >= BLOCK_SIZE_MB16X16) {
mv_ref_search = mb_mv_ref_search;
} else {
mv_ref_search = b_mv_ref_search;
if (mbmi->sb_type < BLOCK_SIZE_SB8X8) {
x_idx = block_idx & 1;
y_idx = block_idx >> 1;
}
}
// We first scan for candidate vectors that match the current reference frame
// Look at nearest neigbours
for (i = 0; i < 2; ++i) {
const int mi_search_col = mi_col + mv_ref_search[i][0];
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
if ((mi_search_col >= cm->cur_tile_mi_col_start) &&
(mi_search_col < cm->cur_tile_mi_col_end) &&
((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) {
int b;
candidate_mi = here + mv_ref_search[i][0] +
(mv_ref_search[i][1] * xd->mode_info_stride);
if (block_idx >= 0) {
if (mv_ref_search[i][0])
b = 1 + y_idx * 2;
else
b = 2 + x_idx;
} else {
b = -1;
}
if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, b)) {
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c_refmv, 16);
}
split_count += (candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8 &&
candidate_mi->mbmi.ref_frame != INTRA_FRAME);
// Count number of neihgbours coded intra and zeromv
intra_count += (candidate_mi->mbmi.mode < NEARESTMV);
zero_count += (candidate_mi->mbmi.mode == ZEROMV);
newmv_count += (candidate_mi->mbmi.mode >= NEWMV);
}
}
// If at this stage wwe have a 0 vector and a non zero vector from the
// correct reference frame then make sure that the non zero one is given
// precedence as we have other options for coding 0,0
/* if (refmv_count == MAX_MV_REF_CANDIDATES) {
if (mv_ref_list[1].as_int && !mv_ref_list[0].as_int) {
mv_ref_list[0].as_int = mv_ref_list[1].as_int;
mv_ref_list[1].as_int = 0;
}
} */
// More distant neigbours
for (i = 2; (i < MVREF_NEIGHBOURS) &&
(refmv_count < MAX_MV_REF_CANDIDATES); ++i) {
const int mi_search_col = mi_col + mv_ref_search[i][0];
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
if ((mi_search_col >= cm->cur_tile_mi_col_start) &&
(mi_search_col < cm->cur_tile_mi_col_end) &&
((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) {
candidate_mi = here + mv_ref_search[i][0] +
(mv_ref_search[i][1] * xd->mode_info_stride);
if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, -1)) {
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c_refmv, 16);
}
}
}
// Look in the last frame if it exists
if (lf_here && (refmv_count < MAX_MV_REF_CANDIDATES)) {
candidate_mi = lf_here;
if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, block_idx)) {
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c_refmv, 16);
}
}
// If we have not found enough candidates consider ones where the
// reference frame does not match. Break out when we have
// MAX_MV_REF_CANDIDATES candidates.
// Look first at spatial neighbours
for (i = 0; (i < MVREF_NEIGHBOURS) &&
(refmv_count < MAX_MV_REF_CANDIDATES); ++i) {
const int mi_search_col = mi_col + mv_ref_search[i][0];
if ((mi_search_col >= cm->cur_tile_mi_col_start) &&
(mi_search_col < cm->cur_tile_mi_col_end) &&
((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) {
candidate_mi = here + mv_ref_search[i][0] +
(mv_ref_search[i][1] * xd->mode_info_stride);
get_non_matching_candidates(candidate_mi, ref_frame,
&c_ref_frame, &c_refmv,
&c2_ref_frame, &c2_refmv);
if (c_ref_frame != INTRA_FRAME) {
scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias);
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c_refmv, 1);
}
if (c2_ref_frame != INTRA_FRAME) {
scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias);
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c2_refmv, 1);
}
}
}
// Look at the last frame if it exists
if (lf_here && (refmv_count < MAX_MV_REF_CANDIDATES)) {
candidate_mi = lf_here;
get_non_matching_candidates(candidate_mi, ref_frame,
&c_ref_frame, &c_refmv,
&c2_ref_frame, &c2_refmv);
if (c_ref_frame != INTRA_FRAME) {
scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias);
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c_refmv, 1);
}
if (c2_ref_frame != INTRA_FRAME) {
scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias);
add_candidate_mv(mv_ref_list, candidate_scores,
&refmv_count, c2_refmv, 1);
}
}
if (!intra_count) {
if (!newmv_count) {
// 0 = both zero mv
// 1 = one zero mv + one a predicted mv
// 2 = two predicted mvs
mbmi->mb_mode_context[ref_frame] = 2 - zero_count;
} else {
// 3 = one predicted/zero and one new mv
// 4 = two new mvs
mbmi->mb_mode_context[ref_frame] = 2 + newmv_count;
}
} else {
// 5 = one intra neighbour + x
// 6 = two intra neighbours
mbmi->mb_mode_context[ref_frame] = 4 + intra_count;
}
// Clamp vectors
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) {
clamp_mv_ref(xd, &mv_ref_list[i]);
}
}