vpx/vp8/encoder/firstpass.c

2929 lines
108 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "math.h"
#include "limits.h"
#include "block.h"
#include "onyx_int.h"
#include "variance.h"
#include "encodeintra.h"
#include "setupintrarecon.h"
#include "mcomp.h"
#include "vpx_scale/vpxscale.h"
#include "encodemb.h"
#include "extend.h"
#include "systemdependent.h"
#include "vpx_scale/yv12extend.h"
#include "vpx_mem/vpx_mem.h"
#include "swapyv12buffer.h"
#include <stdio.h>
#include "rdopt.h"
#include "quant_common.h"
#include "encodemv.h"
//#define OUTPUT_FPF 1
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
extern void vp8_build_block_offsets(MACROBLOCK *x);
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv);
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
//#define GFQ_ADJUSTMENT (40 + ((15*Q)/10))
//#define GFQ_ADJUSTMENT (80 + ((15*Q)/10))
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
#define IIFACTOR 1.4
#define IIKFACTOR1 1.40
#define IIKFACTOR2 1.5
#define RMAX 14.0
#define GF_RMAX 48.0
2010-05-18 17:58:33 +02:00
#define KF_MB_INTRA_MIN 300
#define GF_MB_INTRA_MIN 200
2010-05-18 17:58:33 +02:00
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
const int cq_level[QINDEX_RANGE] =
{
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
};
2010-05-18 17:58:33 +02:00
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps);
int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred)
{
int i;
int intra_pred_var = 0;
(void) cpi;
if (use_dc_pred)
{
x->e_mbd.mode_info_context->mbmi.mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
2010-05-18 17:58:33 +02:00
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
else
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
vp8_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, be, b, B_DC_PRED);
}
}
intra_pred_var = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff);
return intra_pred_var;
}
// Resets the first pass file to the given position using a relative seek from the current position
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
{
cpi->stats_in = Position;
}
static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
{
if (cpi->stats_in >= cpi->stats_in_end)
return EOF;
*next_frame = *cpi->stats_in;
return 1;
}
// Calculate a modified Error used in distributing bits between easier and harder frames
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
double av_err = cpi->total_stats->ssim_weighted_pred_err;
2010-05-18 17:58:33 +02:00
double this_err = this_frame->ssim_weighted_pred_err;
double modified_err;
//double relative_next_iiratio;
//double next_iiratio;
//double sum_iiratio;
//int i;
//FIRSTPASS_STATS next_frame;
//FIRSTPASS_STATS *start_pos;
/*start_pos = cpi->stats_in;
sum_iiratio = 0.0;
i = 0;
while ( (i < 1) && vp8_input_stats(cpi,&next_frame) != EOF )
{
next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
next_iiratio = ( next_iiratio < 1.0 ) ? 1.0 : (next_iiratio > 20.0) ? 20.0 : next_iiratio;
sum_iiratio += next_iiratio;
i++;
}
if ( i > 0 )
{
relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->avg_iiratio * (double)i);
}
else
{
relative_next_iiratio = 1.0;
}
reset_fpf_position(cpi, start_pos);*/
if (this_err > av_err)
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
else
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
/*
relative_next_iiratio = pow(relative_next_iiratio,0.25);
modified_err = modified_err * relative_next_iiratio;
*/
return modified_err;
}
double vp8_simple_weight(YV12_BUFFER_CONFIG *source)
{
int i, j;
unsigned char *src = source->y_buffer;
unsigned char value;
double sum_weights = 0.0;
double Weight;
// Loop throught the Y plane raw examining levels and creating a weight for the image
for (i = 0; i < source->y_height; i++)
{
for (j = 0; j < source->y_width; j++)
{
value = src[j];
if (value >= 64)
Weight = 1.0;
else if (value > 32)
Weight = (value - 32.0f) / 32.0f;
else
Weight = 0.02;
sum_weights += Weight;
}
src += source->y_stride;
}
sum_weights /= (source->y_height * source->y_width);
return sum_weights;
}
// This function returns the current per frame maximum bitrate target
int frame_max_bits(VP8_COMP *cpi)
{
// Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
int max_bits;
// For CBR we need to also consider buffer fullness.
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
2010-05-18 17:58:33 +02:00
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
// If our buffer is below the optimum level
if (buffer_fullness_ratio < 1.0)
{
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
max_bits = (int)(max_bits * buffer_fullness_ratio);
if (max_bits < min_max_bits)
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
}
}
// VBR
else
{
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
max_bits = (int)(((double)cpi->bits_left / (cpi->total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
2010-05-18 17:58:33 +02:00
}
// Trap case where we are out of bits
if (max_bits < 0)
max_bits = 0;
return max_bits;
}
extern size_t vp8_firstpass_stats_sz(unsigned int mb_count)
{
/* Calculate the size of a stats packet, which is dependent on the frame
* resolution. The FIRSTPASS_STATS struct has a single element array,
* motion_map, which is virtually expanded to have one element per
* macroblock.
*/
size_t stats_sz;
stats_sz = sizeof(FIRSTPASS_STATS) + mb_count;
stats_sz = (stats_sz + 7) & ~7;
return stats_sz;
}
void vp8_output_stats(const VP8_COMP *cpi,
struct vpx_codec_pkt_list *pktlist,
2010-05-18 17:58:33 +02:00
FIRSTPASS_STATS *stats)
{
struct vpx_codec_cx_pkt pkt;
pkt.kind = VPX_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
pkt.data.twopass_stats.sz = vp8_firstpass_stats_sz(cpi->common.MBs);
2010-05-18 17:58:33 +02:00
vpx_codec_pkt_list_add(pktlist, &pkt);
// TEMP debug code
#if OUTPUT_FPF
2010-05-18 17:58:33 +02:00
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.0f\n",
stats->frame,
stats->intra_error,
stats->coded_error,
stats->ssim_weighted_pred_err,
stats->pcnt_inter,
stats->pcnt_motion,
stats->pcnt_second_ref,
stats->MVr,
stats->mvr_abs,
stats->MVc,
stats->mvc_abs,
stats->MVrv,
stats->MVcv,
stats->mv_in_out_count,
stats->count);
fclose(fpfile);
fpfile = fopen("fpmotionmap.stt", "a");
if(fwrite(cpi->fp_motion_map, 1, cpi->common.MBs, fpfile));
fclose(fpfile);
2010-05-18 17:58:33 +02:00
}
#endif
}
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
{
size_t stats_sz = vp8_firstpass_stats_sz(cpi->common.MBs);
2010-05-18 17:58:33 +02:00
if (cpi->stats_in >= cpi->stats_in_end)
return EOF;
*fps = *cpi->stats_in;
cpi->stats_in = (void*)((char *)cpi->stats_in + stats_sz);
2010-05-18 17:58:33 +02:00
return 1;
}
void vp8_zero_stats(FIRSTPASS_STATS *section)
{
section->frame = 0.0;
section->intra_error = 0.0;
section->coded_error = 0.0;
section->ssim_weighted_pred_err = 0.0;
section->pcnt_inter = 0.0;
section->pcnt_motion = 0.0;
section->pcnt_second_ref = 0.0;
section->MVr = 0.0;
section->mvr_abs = 0.0;
section->MVc = 0.0;
section->mvc_abs = 0.0;
section->MVrv = 0.0;
section->MVcv = 0.0;
section->mv_in_out_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
}
void vp8_accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
{
section->frame += frame->frame;
section->intra_error += frame->intra_error;
section->coded_error += frame->coded_error;
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
section->pcnt_inter += frame->pcnt_inter;
section->pcnt_motion += frame->pcnt_motion;
section->pcnt_second_ref += frame->pcnt_second_ref;
section->MVr += frame->MVr;
section->mvr_abs += frame->mvr_abs;
section->MVc += frame->MVc;
section->mvc_abs += frame->mvc_abs;
section->MVrv += frame->MVrv;
section->MVcv += frame->MVcv;
section->mv_in_out_count += frame->mv_in_out_count;
section->count += frame->count;
section->duration += frame->duration;
}
void vp8_avg_stats(FIRSTPASS_STATS *section)
{
if (section->count < 1.0)
return;
section->intra_error /= section->count;
section->coded_error /= section->count;
section->ssim_weighted_pred_err /= section->count;
section->pcnt_inter /= section->count;
section->pcnt_second_ref /= section->count;
section->pcnt_motion /= section->count;
section->MVr /= section->count;
section->mvr_abs /= section->count;
section->MVc /= section->count;
section->mvc_abs /= section->count;
section->MVrv /= section->count;
section->MVcv /= section->count;
section->mv_in_out_count /= section->count;
section->duration /= section->count;
}
unsigned char *vp8_fpmm_get_pos(VP8_COMP *cpi)
2010-05-18 17:58:33 +02:00
{
return cpi->fp_motion_map_stats;
2010-05-18 17:58:33 +02:00
}
void vp8_fpmm_reset_pos(VP8_COMP *cpi, unsigned char *target_pos)
2010-05-18 17:58:33 +02:00
{
cpi->fp_motion_map_stats = target_pos;
2010-05-18 17:58:33 +02:00
}
void vp8_advance_fpmm(VP8_COMP *cpi, int count)
{
cpi->fp_motion_map_stats = (void*)((char*)cpi->fp_motion_map_stats +
count * vp8_firstpass_stats_sz(cpi->common.MBs));
2010-05-18 17:58:33 +02:00
}
void vp8_input_fpmm(VP8_COMP *cpi)
2010-05-18 17:58:33 +02:00
{
unsigned char *fpmm = cpi->fp_motion_map;
int MBs = cpi->common.MBs;
int max_frames = cpi->active_arnr_frames;
int i;
2010-05-18 17:58:33 +02:00
for (i=0; i<max_frames; i++)
2010-05-18 17:58:33 +02:00
{
char *motion_map = (char*)cpi->fp_motion_map_stats
+ sizeof(FIRSTPASS_STATS);
memcpy(fpmm, motion_map, MBs);
fpmm += MBs;
vp8_advance_fpmm(cpi, 1);
2010-05-18 17:58:33 +02:00
}
// Flag the use of weights in the temporal filter
cpi->use_weighted_temporal_filter = 1;
2010-05-18 17:58:33 +02:00
}
void vp8_init_first_pass(VP8_COMP *cpi)
{
vp8_zero_stats(cpi->total_stats);
2010-05-18 17:58:33 +02:00
// TEMP debug code
#ifdef OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "w");
fclose(fpfile);
fpfile = fopen("fpmotionmap.stt", "wb");
fclose(fpfile);
2010-05-18 17:58:33 +02:00
}
#endif
}
void vp8_end_first_pass(VP8_COMP *cpi)
{
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->total_stats);
}
2010-05-18 17:58:33 +02:00
void vp8_zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
{
MACROBLOCKD * const xd = & x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
unsigned char *src_ptr = (*(b->base_src) + b->src);
int src_stride = b->src_stride;
unsigned char *ref_ptr;
int ref_stride=d->pre_stride;
// Set up pointers for this macro block recon buffer
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );
VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
}
void vp8_first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, MV *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset )
{
MACROBLOCKD *const xd = & x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
int num00;
MV tmp_mv = {0, 0};
int tmp_err;
int step_param = 3; //3; // Dont search over full range for first pass
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3;
int n;
vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
2010-05-18 17:58:33 +02:00
int new_mv_mode_penalty = 256;
// override the default variance function to use MSE
2010-05-18 17:58:33 +02:00
v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);
// Set up pointers for this macro block recon buffer
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
// Initial step/diamond search centred on best mv
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost, ref_mv);
2010-05-18 17:58:33 +02:00
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err)
{
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.row;
best_mv->col = tmp_mv.col;
}
// Further step/diamond searches as necessary
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param + n, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost, ref_mv);
2010-05-18 17:58:33 +02:00
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err)
{
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.row;
best_mv->col = tmp_mv.col;
}
}
}
}
void vp8_first_pass(VP8_COMP *cpi)
{
int mb_row, mb_col;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
int col_blocks = 4 * cm->mb_cols;
int recon_yoffset, recon_uvoffset;
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
int recon_y_stride = lst_yv12->y_stride;
int recon_uv_stride = lst_yv12->uv_stride;
2010-05-18 17:58:33 +02:00
int intra_error = 0;
int coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
int sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
int intrapenalty = 256;
int sum_in_vectors = 0;
MV best_ref_mv = {0, 0};
MV zero_ref_mv = {0, 0};
unsigned char *fp_motion_map_ptr = cpi->fp_motion_map;
vp8_clear_system_state(); //__asm emms;
x->src = * cpi->Source;
xd->pre = *lst_yv12;
xd->dst = *new_yv12;
2010-05-18 17:58:33 +02:00
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
2010-05-18 17:58:33 +02:00
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
// set up frame new frame for intra coded blocks
vp8_setup_intra_recon(new_yv12);
2010-05-18 17:58:33 +02:00
vp8cx_frame_init_quantizer(cpi);
// Initialise the MV cost table to the defaults
//if( cm->current_video_frame == 0)
//if ( 0 )
{
int flag[2] = {1, 1};
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
vp8_initialize_rd_consts(cpi, cm->base_qindex+cm->y1dc_delta_q);
2010-05-18 17:58:33 +02:00
vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
}
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
MV best_ref_mv = {0, 0};
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
int this_error;
int zero_error;
int zz_to_best_ratio;
2010-05-18 17:58:33 +02:00
int gf_motion_error = INT_MAX;
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
xd->left_available = (mb_col != 0);
// do intra 16x16 prediction
this_error = vp8_encode_intra(cpi, x, use_dc_pred);
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
// When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
this_error += intrapenalty;
// Cumulative intra error total
intra_error += this_error;
// Indicate default assumption of intra in the motion map
*fp_motion_map_ptr = 0;
2010-05-18 17:58:33 +02:00
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
// Other than for the first frame do a motion search
if (cm->current_video_frame > 0)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MV tmp_mv = {0, 0};
int tmp_err;
int motion_error = INT_MAX;
// Simple 0,0 motion with no mv overhead
vp8_zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
2010-05-18 17:58:33 +02:00
d->bmi.mv.as_mv.row = 0;
d->bmi.mv.as_mv.col = 0;
// Save (0,0) error for later use
zero_error = motion_error;
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search
vp8_first_pass_motion_search(cpi, x, &best_ref_mv,
&d->bmi.mv.as_mv, lst_yv12,
&motion_error, recon_yoffset);
2010-05-18 17:58:33 +02:00
// If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
if ((best_ref_mv.col != 0) || (best_ref_mv.row != 0))
{
tmp_err = INT_MAX;
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv,
lst_yv12, &tmp_err, recon_yoffset);
2010-05-18 17:58:33 +02:00
if ( tmp_err < motion_error )
{
motion_error = tmp_err;
d->bmi.mv.as_mv.row = tmp_mv.row;
d->bmi.mv.as_mv.col = tmp_mv.col;
}
}
// Experimental search in a second reference frame ((0,0) based only)
if (cm->current_video_frame > 1)
{
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset);
2010-05-18 17:58:33 +02:00
if ((gf_motion_error < motion_error) && (gf_motion_error < this_error))
{
second_ref_count++;
//motion_error = gf_motion_error;
//d->bmi.mv.as_mv.row = tmp_mv.row;
//d->bmi.mv.as_mv.col = tmp_mv.col;
}
/*else
{
xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset;
xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset;
xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset;
}*/
// Reset to last frame as reference buffer
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
}
if (motion_error <= this_error)
{
d->bmi.mv.as_mv.row <<= 3;
d->bmi.mv.as_mv.col <<= 3;
this_error = motion_error;
vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv.as_mv);
vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
sum_mvr += d->bmi.mv.as_mv.row;
sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
sum_mvc += d->bmi.mv.as_mv.col;
sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
intercount++;
best_ref_mv.row = d->bmi.mv.as_mv.row;
best_ref_mv.col = d->bmi.mv.as_mv.col;
//best_ref_mv.row = 0;
//best_ref_mv.col = 0;
// Was the vector non-zero
if (d->bmi.mv.as_mv.row || d->bmi.mv.as_mv.col)
{
mvcount++;
// Does the Row vector point inwards or outwards
if (mb_row < cm->mb_rows / 2)
{
if (d->bmi.mv.as_mv.row > 0)
sum_in_vectors--;
else if (d->bmi.mv.as_mv.row < 0)
sum_in_vectors++;
}
else if (mb_row > cm->mb_rows / 2)
{
if (d->bmi.mv.as_mv.row > 0)
sum_in_vectors++;
else if (d->bmi.mv.as_mv.row < 0)
sum_in_vectors--;
}
// Does the Row vector point inwards or outwards
if (mb_col < cm->mb_cols / 2)
{
if (d->bmi.mv.as_mv.col > 0)
sum_in_vectors--;
else if (d->bmi.mv.as_mv.col < 0)
sum_in_vectors++;
}
else if (mb_col > cm->mb_cols / 2)
{
if (d->bmi.mv.as_mv.col > 0)
sum_in_vectors++;
else if (d->bmi.mv.as_mv.col < 0)
sum_in_vectors--;
}
// Compute how close (0,0) predictor is to best
// predictor in terms of their prediction error
zz_to_best_ratio = (10*zero_error + this_error/2)
/ (this_error+!this_error);
if ((zero_error < 50000) &&
(zz_to_best_ratio <= 11) )
*fp_motion_map_ptr = 1;
else
*fp_motion_map_ptr = 0;
2010-05-18 17:58:33 +02:00
}
else
{
// 0,0 mv was best
if( zero_error<50000 )
*fp_motion_map_ptr = 2;
else
*fp_motion_map_ptr = 1;
}
2010-05-18 17:58:33 +02:00
}
else
{
// Intra was best
2010-05-18 17:58:33 +02:00
best_ref_mv.row = 0;
best_ref_mv.col = 0;
}
}
coded_error += this_error;
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
// Update the motion map
fp_motion_map_ptr++;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
//extend the recon for intra prediction
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
2010-05-18 17:58:33 +02:00
vp8_clear_system_state(); //__asm emms;
}
vp8_clear_system_state(); //__asm emms;
{
double weight = 0.0;
FIRSTPASS_STATS fps;
fps.frame = cm->current_video_frame ;
fps.intra_error = intra_error >> 8;
fps.coded_error = coded_error >> 8;
weight = vp8_simple_weight(cpi->Source);
if (weight < 0.1)
weight = 0.1;
fps.ssim_weighted_pred_err = fps.coded_error * weight;
fps.pcnt_inter = 0.0;
fps.pcnt_motion = 0.0;
fps.MVr = 0.0;
fps.mvr_abs = 0.0;
fps.MVc = 0.0;
fps.mvc_abs = 0.0;
fps.MVrv = 0.0;
fps.MVcv = 0.0;
fps.mv_in_out_count = 0.0;
fps.count = 1.0;
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
if (mvcount > 0)
{
fps.MVr = (double)sum_mvr / (double)mvcount;
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
fps.MVc = (double)sum_mvc / (double)mvcount;
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
}
// TODO: handle the case when duration is set to 0, or something less
// than the full time between subsequent cpi->source_time_stamp s .
fps.duration = cpi->source_end_time_stamp - cpi->source_time_stamp;
// don't want to do outputstats with a stack variable!
memcpy(cpi->this_frame_stats,
&fps,
sizeof(FIRSTPASS_STATS));
memcpy((char*)cpi->this_frame_stats + sizeof(FIRSTPASS_STATS),
cpi->fp_motion_map,
sizeof(cpi->fp_motion_map[0]) * cpi->common.MBs);
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->this_frame_stats);
vp8_accumulate_stats(cpi->total_stats, &fps);
2010-05-18 17:58:33 +02:00
}
// Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met
if ((cm->current_video_frame > 0) &&
(cpi->this_frame_stats->pcnt_inter > 0.20) &&
((cpi->this_frame_stats->intra_error / cpi->this_frame_stats->coded_error) > 2.0))
2010-05-18 17:58:33 +02:00
{
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
2010-05-18 17:58:33 +02:00
}
// swap frame pointers so last frame refers to the frame we just compressed
vp8_swap_yv12_buffer(lst_yv12, new_yv12);
vp8_yv12_extend_frame_borders(lst_yv12);
2010-05-18 17:58:33 +02:00
// Special case for the first frame. Copy into the GF buffer as a second reference.
if (cm->current_video_frame == 0)
{
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
2010-05-18 17:58:33 +02:00
}
// use this to see what the first pass reconstruction looks like
if (0)
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
if (cm->current_video_frame == 0)
recon_file = fopen(filename, "wb");
else
recon_file = fopen(filename, "ab");
if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
2010-05-18 17:58:33 +02:00
fclose(recon_file);
}
cm->current_video_frame++;
}
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
#define BASE_ERRPERMB 150
2010-05-18 17:58:33 +02:00
static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double correction_factor;
double corr_high;
double speed_correction = 1.0;
double rolling_ratio;
double pow_highq = 0.90;
double pow_lowq = 0.40;
if (section_target_bandwitdh <= 0)
return cpi->maxq_max_limit; // Highest value allowed
2010-05-18 17:58:33 +02:00
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
if ((cpi->rolling_target_bits > 0.0) && (cpi->active_worst_quality < cpi->worst_quality))
{
//double adjustment_rate = 0.985 + (0.00005 * cpi->active_worst_quality);
double adjustment_rate = 0.99;
rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
//if ( cpi->est_max_qcorrection_factor > rolling_ratio )
if (rolling_ratio < 0.95)
//cpi->est_max_qcorrection_factor *= adjustment_rate;
cpi->est_max_qcorrection_factor -= 0.005;
//else if ( cpi->est_max_qcorrection_factor < rolling_ratio )
else if (rolling_ratio > 1.05)
cpi->est_max_qcorrection_factor += 0.005;
//cpi->est_max_qcorrection_factor /= adjustment_rate;
cpi->est_max_qcorrection_factor = (cpi->est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->est_max_qcorrection_factor;
}
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05)
? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
2010-05-18 17:58:33 +02:00
// Try and pick a max Q that will be high enough to encode the
// content at the given rate.
for (Q = cpi->maxq_min_limit; Q < cpi->maxq_max_limit; Q++)
2010-05-18 17:58:33 +02:00
{
int bits_per_mb_at_this_q;
if (Q < 50)
{
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
}
else
correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * cpi->section_max_qfactor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
//bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
// Restriction on active max q for constrained quality mode.
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality) )
//(Q < cpi->oxcf.cq_level;) )
{
Q = cpi->cq_target_quality;
//Q = cpi->oxcf.cq_level;
}
// Adjust maxq_min_limit and maxq_max_limit limits based on
// averaga q observed in clip for non kf/gf.arf frames
// Give average a chance to settle though.
if ( (cpi->ni_frames >
((unsigned int)cpi->total_stats->count >> 8)) &&
(cpi->ni_frames > 150) )
{
cpi->maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
? (cpi->ni_av_qi + 32) : cpi->worst_quality;
cpi->maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
? (cpi->ni_av_qi - 32) : cpi->best_quality;
}
2010-05-18 17:58:33 +02:00
return Q;
}
static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double correction_factor;
double corr_high;
double speed_correction = 1.0;
double pow_highq = 0.90;
double pow_lowq = 0.40;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that can encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
int bits_per_mb_at_this_q;
if (Q < 50)
{
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
}
else
correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
return Q;
}
// Estimate a worst case Q for a KF group
static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width, double group_iiratio)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
int bits_per_mb_at_this_q;
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double corr_high;
double speed_correction = 1.0;
double current_spend_ratio = 1.0;
double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
double iiratio_correction_factor = 1.0;
double combined_correction_factor;
// Trap special case where the target is <= 0
if (target_norm_bits_per_mb <= 0)
return MAXQ * 2;
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
// This is clamped to the range 0.1 to 10.0
if (cpi->long_rolling_target_bits <= 0)
current_spend_ratio = 10.0;
else
{
current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits;
current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio;
}
// Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio)
// The idea here is to favour subsampling in the hardest sections vs the easyest.
iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
if (iiratio_correction_factor < 0.5)
iiratio_correction_factor = 0.5;
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Combine the various factors calculated above
combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio;
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that should be high enough to encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
// Q values < 20 treated as a special case
if (Q < 20)
{
err_correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
err_correction_factor = (err_correction_factor < 0.05) ? 0.05 : (err_correction_factor > 5.0) ? 5.0 : err_correction_factor;
}
else
err_correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q]);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
// If we could not hit the target even at Max Q then estimate what Q would have bee required
while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2)))
{
bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
Q++;
}
if (0)
{
FILE *f = fopen("estkf_q.stt", "a");
fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q,
target_norm_bits_per_mb, err_per_mb, err_correction_factor,
current_spend_ratio, group_iiratio, iiratio_correction_factor,
(double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q);
fclose(f);
}
return Q;
}
// For cq mode estimate a cq level that matches the observed
// complexity and data rate.
static int estimate_cq(VP8_COMP *cpi, double section_err,
int section_target_bandwitdh, int Height, int Width)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double correction_factor;
double corr_high;
double speed_correction = 1.0;
double pow_highq = 0.90;
double pow_lowq = 0.40;
double clip_iiratio;
double clip_iifactor;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
? (512 * section_target_bandwitdh) / num_mbs
: 512 * (section_target_bandwitdh / num_mbs);
// Corrections for higher compression speed settings
// (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// II ratio correction factor for clip as a whole
clip_iiratio = cpi->total_stats->intra_error /
DOUBLE_DIVIDE_CHECK(cpi->total_stats->coded_error);
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
if (clip_iifactor < 0.80)
clip_iifactor = 0.80;
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that can encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
int bits_per_mb_at_this_q;
if (Q < 50)
{
correction_factor =
pow( err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
correction_factor = (correction_factor < 0.05) ? 0.05
: (correction_factor > 5.0) ? 5.0
: correction_factor;
}
else
correction_factor = corr_high;
bits_per_mb_at_this_q =
(int)( .5 + correction_factor *
speed_correction *
clip_iifactor *
(double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
return cq_level[Q];
}
2010-05-18 17:58:33 +02:00
extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);
void vp8_init_second_pass(VP8_COMP *cpi)
{
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS *start_pos;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
vp8_zero_stats(cpi->total_stats);
2010-05-18 17:58:33 +02:00
if (!cpi->stats_in_end)
return;
*cpi->total_stats = *cpi->stats_in_end;
2010-05-18 17:58:33 +02:00
cpi->total_error_left = cpi->total_stats->ssim_weighted_pred_err;
cpi->total_intra_error_left = cpi->total_stats->intra_error;
cpi->total_coded_error_left = cpi->total_stats->coded_error;
2010-05-18 17:58:33 +02:00
cpi->start_tot_err_left = cpi->total_error_left;
//cpi->bits_left = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
//cpi->bits_left -= (long long)(cpi->total_stats->count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
2010-05-18 17:58:33 +02:00
// each frame can have a different duration, as the frame rate in the source
// isn't guaranteed to be constant. The frame rate prior to the first frame
// encoded in the second pass is a guess. However the sum duration is not.
// Its calculated based on the actual durations of all frames from the first
// pass.
vp8_new_frame_rate(cpi, 10000000.0 * cpi->total_stats->count / cpi->total_stats->duration);
2010-05-18 17:58:33 +02:00
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->bits_left = (long long)(cpi->total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
cpi->bits_left -= (long long)(cpi->total_stats->duration * two_pass_min_rate / 10000000.0);
cpi->clip_bits_total = cpi->bits_left;
2010-05-18 17:58:33 +02:00
// Calculate a minimum intra value to be used in determining the IIratio
// scores used in the second pass. We have this minimum to make sure
// that clips that are static but "low complexity" in the intra domain
// are still boosted appropriately for KF/GF/ARF
cpi->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
cpi->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
vp8_avg_stats(cpi->total_stats);
2010-05-18 17:58:33 +02:00
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
{
double sum_iiratio = 0.0;
double IIRatio;
start_pos = cpi->stats_in; // Note starting "file" position
while (vp8_input_stats(cpi, &this_frame) != EOF)
{
IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
sum_iiratio += IIRatio;
}
cpi->avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->total_stats->count);
2010-05-18 17:58:33 +02:00
// Reset file position
reset_fpf_position(cpi, start_pos);
}
// Scan the first pass file and calculate a modified total error based upon the bias/power function
// used to allocate bits
{
start_pos = cpi->stats_in; // Note starting "file" position
cpi->modified_error_total = 0.0;
cpi->modified_error_used = 0.0;
2010-05-18 17:58:33 +02:00
while (vp8_input_stats(cpi, &this_frame) != EOF)
{
cpi->modified_error_total += calculate_modified_err(cpi, &this_frame);
2010-05-18 17:58:33 +02:00
}
cpi->modified_error_left = cpi->modified_error_total;
2010-05-18 17:58:33 +02:00
reset_fpf_position(cpi, start_pos); // Reset file position
}
// Calculate the clip target modified bits per error
// The observed bpe starts as the same number.
cpi->clip_bpe = cpi->bits_left /
DOUBLE_DIVIDE_CHECK(cpi->modified_error_total);
cpi->observed_bpe = cpi->clip_bpe;
cpi->fp_motion_map_stats = (unsigned char *)cpi->stats_in;
2010-05-18 17:58:33 +02:00
}
void vp8_end_second_pass(VP8_COMP *cpi)
{
}
// This function gives and estimate of how badly we believe
// the predicition quality is decaying from frame to frame.
double gf_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
{
double prediction_decay_rate;
double motion_decay;
double motion_pct = next_frame->pcnt_motion;
// Initial basis is the % mbs inter coded
prediction_decay_rate = next_frame->pcnt_inter;
// High % motion -> somewhat higher decay rate
motion_decay = (1.0 - (motion_pct / 20.0));
if (motion_decay < prediction_decay_rate)
prediction_decay_rate = motion_decay;
// Adjustment to decay rate based on speed of motion
{
double this_mv_rabs;
double this_mv_cabs;
double distance_factor;
this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
(this_mv_cabs * this_mv_cabs)) / 250.0;
distance_factor = ((distance_factor > 1.0)
? 0.0 : (1.0 - distance_factor));
if (distance_factor < prediction_decay_rate)
prediction_decay_rate = distance_factor;
}
return prediction_decay_rate;
}
2010-05-18 17:58:33 +02:00
// Analyse and define a gf/arf group .
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_pos;
int i;
int y_width = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_width;
int y_height = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_height;
int image_size = y_width * y_height;
2010-05-18 17:58:33 +02:00
double boost_score = 0.0;
double old_boost_score = 0.0;
double gf_group_err = 0.0;
double gf_first_frame_err = 0.0;
double mod_frame_err = 0.0;
double mv_accumulator_rabs = 0.0;
double mv_accumulator_cabs = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double boost_factor = IIFACTOR;
double loop_decay_rate = 1.00; // Starting decay rate
2010-05-18 17:58:33 +02:00
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
double mod_err_per_mb_accumulator = 0.0;
int max_bits = frame_max_bits(cpi); // Max for a single frame
2010-05-18 17:58:33 +02:00
unsigned char *fpmm_pos;
2010-05-18 17:58:33 +02:00
unsigned int allow_alt_ref =
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
2010-05-18 17:58:33 +02:00
cpi->gf_group_bits = 0;
cpi->gf_decay_rate = 0;
vp8_clear_system_state(); //__asm emms;
fpmm_pos = vp8_fpmm_get_pos(cpi);
start_pos = cpi->stats_in;
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
2010-05-18 17:58:33 +02:00
// Preload the stats for the next frame.
mod_frame_err = calculate_modified_err(cpi, this_frame);
// Note the error of the frame at the start of the group (this will be
// the GF frame error if we code a normal gf
2010-05-18 17:58:33 +02:00
gf_first_frame_err = mod_frame_err;
// Special treatment if the current frame is a key frame (which is also
// a gf). If it is then its error score (and hence bit allocation) need
// to be subtracted out from the calculation for the GF group
2010-05-18 17:58:33 +02:00
if (cpi->common.frame_type == KEY_FRAME)
gf_group_err -= gf_first_frame_err;
// Scan forward to try and work out how many frames the next gf group
// should contain and what level of boost is appropriate for the GF
// or ARF that will be coded with the group
2010-05-18 17:58:33 +02:00
i = 0;
while (((i < cpi->static_scene_max_gf_interval) ||
((cpi->frames_to_key - i) < MIN_GF_INTERVAL)) &&
(i < cpi->frames_to_key))
2010-05-18 17:58:33 +02:00
{
double r;
double this_frame_mvr_ratio;
double this_frame_mvc_ratio;
double motion_decay;
//double motion_pct = next_frame.pcnt_motion;
double motion_pct;
2010-05-18 17:58:33 +02:00
i++; // Increment the loop counter
2010-05-18 17:58:33 +02:00
// Accumulate error score of frames in this gf group
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
mod_err_per_mb_accumulator +=
mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
2010-05-18 17:58:33 +02:00
if (EOF == vp8_input_stats(cpi, &next_frame))
break;
// Accumulate motion stats.
motion_pct = next_frame.pcnt_motion;
mv_accumulator_rabs += fabs(next_frame.mvr_abs * motion_pct);
mv_accumulator_cabs += fabs(next_frame.mvc_abs * motion_pct);
2010-05-18 17:58:33 +02:00
//Accumulate Motion In/Out of frame stats
this_frame_mv_in_out =
next_frame.mv_in_out_count * motion_pct;
mv_in_out_accumulator +=
next_frame.mv_in_out_count * motion_pct;
abs_mv_in_out_accumulator +=
fabs(next_frame.mv_in_out_count * motion_pct);
2010-05-18 17:58:33 +02:00
// If there is a significant amount of motion
if (motion_pct > 0.05)
2010-05-18 17:58:33 +02:00
{
this_frame_mvr_ratio = fabs(next_frame.mvr_abs) /
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVr));
this_frame_mvc_ratio = fabs(next_frame.mvc_abs) /
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVc));
mv_ratio_accumulator +=
(this_frame_mvr_ratio < next_frame.mvr_abs)
? (this_frame_mvr_ratio * motion_pct)
: next_frame.mvr_abs * motion_pct;
2010-05-18 17:58:33 +02:00
mv_ratio_accumulator +=
(this_frame_mvc_ratio < next_frame.mvc_abs)
? (this_frame_mvc_ratio * motion_pct)
: next_frame.mvc_abs * motion_pct;
2010-05-18 17:58:33 +02:00
}
else
{
mv_ratio_accumulator += 0.0;
this_frame_mvr_ratio = 1.0;
this_frame_mvc_ratio = 1.0;
}
// Underlying boost factor is based on inter intra error ratio
r = ( boost_factor *
( next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error)));
2010-05-18 17:58:33 +02:00
if (next_frame.intra_error > cpi->gf_intra_err_min)
r = (IIKFACTOR2 * next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
else
r = (IIKFACTOR2 * cpi->gf_intra_err_min /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
// Increase boost for frames where new data coming into frame
// (eg zoom out). Slightly reduce boost if there is a net balance
// of motion out of the frame (zoom in).
2010-05-18 17:58:33 +02:00
// The range for this_frame_mv_in_out is -1.0 to +1.0
if (this_frame_mv_in_out > 0.0)
r += r * (this_frame_mv_in_out * 2.0);
// In extreme case boost is halved
2010-05-18 17:58:33 +02:00
else
r += r * (this_frame_mv_in_out / 2.0);
2010-05-18 17:58:33 +02:00
if (r > GF_RMAX)
r = GF_RMAX;
loop_decay_rate = gf_prediction_decay_rate(cpi, &next_frame);
2010-05-18 17:58:33 +02:00
// Cumulative effect of decay
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
boost_score += (decay_accumulator * r);
// Break clause to detect very still sections after motion
// For example a staic image after a fade or other transition
// instead of a clean key frame.
if ( (i > MIN_GF_INTERVAL) &&
(loop_decay_rate >= 0.999) &&
(decay_accumulator < 0.9) )
{
int j;
FIRSTPASS_STATS * position = cpi->stats_in;
FIRSTPASS_STATS tmp_next_frame;
double decay_rate;
// Look ahead a few frames to see if static condition
// persists...
for ( j = 0; j < 4; j++ )
{
if (EOF == vp8_input_stats(cpi, &tmp_next_frame))
break;
decay_rate = gf_prediction_decay_rate(cpi, &tmp_next_frame);
if ( decay_rate < 0.999 )
break;
}
reset_fpf_position(cpi, position); // Reset file position
// Force GF not alt ref
if ( j == 4 )
{
if (0)
{
FILE *f = fopen("fadegf.stt", "a");
fprintf(f, " %8d %8d %10.4f %10.4f %10.4f\n",
cpi->common.current_video_frame+i, i,
loop_decay_rate, decay_accumulator,
boost_score );
fclose(f);
}
allow_alt_ref = FALSE;
boost_score = old_boost_score;
break;
}
}
2010-05-18 17:58:33 +02:00
// Break out conditions.
if ( /* i>4 || */
// Break at cpi->max_gf_interval unless almost totally static
(i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
2010-05-18 17:58:33 +02:00
(
// Dont break out with a very short interval
(i > MIN_GF_INTERVAL) &&
// Dont break out very close to a key frame
((cpi->frames_to_key - i) >= MIN_GF_INTERVAL) &&
2010-05-18 17:58:33 +02:00
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
((mv_ratio_accumulator > 100.0) ||
(abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0) ||
((boost_score - old_boost_score) < 2.0))
) )
2010-05-18 17:58:33 +02:00
{
boost_score = old_boost_score;
break;
}
vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
old_boost_score = boost_score;
}
cpi->gf_decay_rate =
(i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
2010-05-18 17:58:33 +02:00
// When using CBR apply additional buffer related upper limits
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double max_boost;
// For cbr apply buffer related limits
if (cpi->drop_frames_allowed)
{
int df_buffer_level = cpi->oxcf.drop_frames_water_mark *
(cpi->oxcf.optimal_buffer_level / 100);
2010-05-18 17:58:33 +02:00
if (cpi->buffer_level > df_buffer_level)
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
else
max_boost = 0.0;
}
else if (cpi->buffer_level > 0)
{
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
}
else
{
max_boost = 0.0;
}
if (boost_score > max_boost)
boost_score = max_boost;
}
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
// Should we use the alternate refernce frame
if (allow_alt_ref &&
2010-05-18 17:58:33 +02:00
(i >= MIN_GF_INTERVAL) &&
// dont use ARF very near next kf
(i <= (cpi->frames_to_key - MIN_GF_INTERVAL)) &&
2010-05-18 17:58:33 +02:00
(((next_frame.pcnt_inter > 0.75) &&
((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) &&
//(cpi->gfu_boost>150) &&
(cpi->gfu_boost > 100) &&
//(cpi->gfu_boost>AF_THRESH2) &&
//((cpi->gfu_boost/i)>AF_THRESH) &&
//(decay_accumulator > 0.5) &&
(cpi->gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))
)
)
)
{
int Boost;
int allocation_chunks;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int tmp_q;
int arf_frame_bits = 0;
int group_bits;
// Estimate the bits to be allocated to the group as a whole
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
else
group_bits = 0;
// Boost for arf frame
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
Boost += (i * 50);
2010-05-18 17:58:33 +02:00
allocation_chunks = (i * 100) + Boost;
// Normalize Altboost and allocations chunck down to prevent overflow
while (Boost > 1000)
{
Boost /= 2;
allocation_chunks /= 2;
}
// Calculate the number of bits to be spent on the arf based on the boost number
arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks));
// Estimate if there are enough bits available to make worthwhile use of an arf.
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits, cpi->common.Height, cpi->common.Width);
// Only use an arf if it is likely we will be able to code it at a lower Q than the surrounding frames.
if (tmp_q < cpi->worst_quality)
{
int half_gf_int;
int frames_after_arf;
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
2010-05-18 17:58:33 +02:00
cpi->source_alt_ref_pending = TRUE;
// For alt ref frames the error score for the end frame of the group (the alt ref frame) should not contribute to the group total and hence
// the number of bit allocated to the group. Rather it forms part of the next group (it is the GF at the start of the next group)
gf_group_err -= mod_frame_err;
// Set the interval till the next gf or arf. For ARFs this is the number of frames to be coded before the future frame that is coded as an ARF.
// The future frame itself is part of the next group
cpi->baseline_gf_interval = i - 1;
// Define the arnr filter width for this group of frames:
// We only filter frames that lie within a distance of half
// the GF interval from the ARF frame. We also have to trap
// cases where the filter extends beyond the end of clip.
// Note: this_frame->frame has been updated in the loop
// so it now points at the ARF frame.
half_gf_int = cpi->baseline_gf_interval >> 1;
frames_after_arf = cpi->total_stats->count - this_frame->frame - 1;
switch (cpi->oxcf.arnr_type)
2010-05-18 17:58:33 +02:00
{
case 1: // Backward filter
frames_fwd = 0;
if (frames_bwd > half_gf_int)
frames_bwd = half_gf_int;
break;
case 2: // Forward filter
if (frames_fwd > half_gf_int)
frames_fwd = half_gf_int;
if (frames_fwd > frames_after_arf)
frames_fwd = frames_after_arf;
frames_bwd = 0;
break;
case 3: // Centered filter
default:
frames_fwd >>= 1;
if (frames_fwd > frames_after_arf)
frames_fwd = frames_after_arf;
if (frames_fwd > half_gf_int)
frames_fwd = half_gf_int;
frames_bwd = frames_fwd;
// For even length filter there is one more frame backward
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
if (frames_bwd < half_gf_int)
frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
break;
}
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
2010-05-18 17:58:33 +02:00
{
// Advance to & read in the motion map for those frames
// to be considered for filtering based on the position
// of the ARF
vp8_fpmm_reset_pos(cpi, cpi->fp_motion_map_stats_save);
2010-05-18 17:58:33 +02:00
// Position at the 'earliest' frame to be filtered
vp8_advance_fpmm(cpi,
cpi->baseline_gf_interval - frames_bwd);
2010-05-18 17:58:33 +02:00
// Read / create a motion map for the region of interest
vp8_input_fpmm(cpi);
2010-05-18 17:58:33 +02:00
}
}
else
{
cpi->source_alt_ref_pending = FALSE;
cpi->baseline_gf_interval = i;
}
}
else
{
cpi->source_alt_ref_pending = FALSE;
cpi->baseline_gf_interval = i;
}
// Conventional GF
if (!cpi->source_alt_ref_pending)
{
// Dont allow conventional gf too near the next kf
if ((cpi->frames_to_key - cpi->baseline_gf_interval) < MIN_GF_INTERVAL)
{
while (cpi->baseline_gf_interval < cpi->frames_to_key)
{
if (EOF == vp8_input_stats(cpi, this_frame))
break;
cpi->baseline_gf_interval++;
if (cpi->baseline_gf_interval < cpi->frames_to_key)
gf_group_err += calculate_modified_err(cpi, this_frame);
}
}
}
// Now decide how many bits should be allocated to the GF group as a proportion of those remaining in the kf group.
// The final key frame group in the clip is treated as a special case where cpi->kf_group_bits is tied to cpi->bits_left.
// This is also important for short clips where there may only be one key frame.
if (cpi->frames_to_key >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
2010-05-18 17:58:33 +02:00
{
cpi->kf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;
}
// Calculate the bits to be allocated to the group as a whole
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
cpi->gf_group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
else
cpi->gf_group_bits = 0;
cpi->gf_group_bits = (cpi->gf_group_bits < 0) ? 0 : (cpi->gf_group_bits > cpi->kf_group_bits) ? cpi->kf_group_bits : cpi->gf_group_bits;
// Clip cpi->gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section)
if (cpi->gf_group_bits > max_bits * cpi->baseline_gf_interval)
cpi->gf_group_bits = max_bits * cpi->baseline_gf_interval;
// Reset the file position
reset_fpf_position(cpi, start_pos);
// Update the record of error used so far (only done once per gf group)
cpi->modified_error_used += gf_group_err;
2010-05-18 17:58:33 +02:00
// Assign bits to the arf or gf.
{
int Boost;
int frames_in_section;
int allocation_chunks;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
// For ARF frames
if (cpi->source_alt_ref_pending)
{
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
//Boost += (cpi->baseline_gf_interval * 25);
Boost += (cpi->baseline_gf_interval * 50);
// Set max and minimum boost and hence minimum allocation
if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
Boost = ((cpi->baseline_gf_interval + 1) * 200);
else if (Boost < 125)
Boost = 125;
frames_in_section = cpi->baseline_gf_interval + 1;
allocation_chunks = (frames_in_section * 100) + Boost;
}
// Else for standard golden frames
else
{
// boost based on inter / intra ratio of subsequent frames
Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
// Set max and minimum boost and hence minimum allocation
if (Boost > (cpi->baseline_gf_interval * 150))
Boost = (cpi->baseline_gf_interval * 150);
else if (Boost < 125)
Boost = 125;
frames_in_section = cpi->baseline_gf_interval;
allocation_chunks = (frames_in_section * 100) + (Boost - 100);
}
// Normalize Altboost and allocations chunck down to prevent overflow
while (Boost > 1000)
{
Boost /= 2;
allocation_chunks /= 2;
}
// Calculate the number of bits to be spent on the gf or arf based on the boost number
cpi->gf_bits = (int)((double)Boost * (cpi->gf_group_bits / (double)allocation_chunks));
// If the frame that is to be boosted is simpler than the average for
// the gf/arf group then use an alternative calculation
2010-05-18 17:58:33 +02:00
// based on the error score of the frame itself
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
{
double alt_gf_grp_bits;
int alt_gf_bits;
alt_gf_grp_bits =
(double)cpi->kf_group_bits *
(mod_frame_err * (double)cpi->baseline_gf_interval) /
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left);
alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits /
(double)allocation_chunks));
2010-05-18 17:58:33 +02:00
if (cpi->gf_bits > alt_gf_bits)
{
cpi->gf_bits = alt_gf_bits;
}
}
// Else if it is harder than other frames in the group make sure it at
// least receives an allocation in keeping with its relative error
// score, otherwise it may be worse off than an "un-boosted" frame
2010-05-18 17:58:33 +02:00
else
{
int alt_gf_bits =
(int)((double)cpi->kf_group_bits *
mod_frame_err /
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left));
2010-05-18 17:58:33 +02:00
if (alt_gf_bits > cpi->gf_bits)
{
cpi->gf_bits = alt_gf_bits;
}
}
// Apply an additional limit for CBR
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
if (cpi->gf_bits > (cpi->buffer_level >> 1))
cpi->gf_bits = cpi->buffer_level >> 1;
}
// Dont allow a negative value for gf_bits
if (cpi->gf_bits < 0)
cpi->gf_bits = 0;
// Adjust KF group bits and error remainin
cpi->kf_group_error_left -= gf_group_err;
cpi->kf_group_bits -= cpi->gf_group_bits;
if (cpi->kf_group_bits < 0)
cpi->kf_group_bits = 0;
// Note the error score left in the remaining frames of the group.
// For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened)
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
cpi->gf_group_error_left = gf_group_err - gf_first_frame_err;
else
cpi->gf_group_error_left = gf_group_err;
cpi->gf_group_bits -= cpi->gf_bits;
if (cpi->gf_group_bits < 0)
cpi->gf_group_bits = 0;
// Set aside some bits for a mid gf sequence boost
if ((cpi->gfu_boost > 150) && (cpi->baseline_gf_interval > 5))
{
int pct_extra = (cpi->gfu_boost - 100) / 50;
pct_extra = (pct_extra > 10) ? 10 : pct_extra;
cpi->mid_gf_extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
cpi->gf_group_bits -= cpi->mid_gf_extra_bits;
}
else
cpi->mid_gf_extra_bits = 0;
cpi->gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
}
if (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) // Normal GF and not a KF
{
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for this frame
}
// Adjustment to estimate_max_q based on a measure of complexity of the section
if (cpi->common.frame_type != KEY_FRAME)
{
FIRSTPASS_STATS sectionstats;
double Ratio;
vp8_zero_stats(&sectionstats);
reset_fpf_position(cpi, start_pos);
for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
{
vp8_input_stats(cpi, &next_frame);
vp8_accumulate_stats(&sectionstats, &next_frame);
}
vp8_avg_stats(&sectionstats);
cpi->section_intra_rating =
sectionstats.intra_error /
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
2010-05-18 17:58:33 +02:00
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
//if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
//{
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->section_max_qfactor < 0.80)
cpi->section_max_qfactor = 0.80;
//}
//else
// cpi->section_max_qfactor = 1.0;
reset_fpf_position(cpi, start_pos);
}
// Reset the First pass motion map file position
vp8_fpmm_reset_pos(cpi, fpmm_pos);
}
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
int target_frame_size; // gf_group_error_left
double modified_err;
double err_fraction; // What portion of the remaining GF group error is used by this frame
int max_bits = frame_max_bits(cpi); // Max for a single frame
// The final few frames have special treatment
if (cpi->frames_till_gf_update_due >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
2010-05-18 17:58:33 +02:00
{
cpi->gf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;;
}
// Calculate modified prediction error used in bit allocation
modified_err = calculate_modified_err(cpi, this_frame);
if (cpi->gf_group_error_left > 0)
err_fraction = modified_err / cpi->gf_group_error_left; // What portion of the remaining GF group error is used by this frame
else
err_fraction = 0.0;
target_frame_size = (int)((double)cpi->gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
// Clip to target size to 0 - max_bits (or cpi->gf_group_bits) at the top end.
if (target_frame_size < 0)
target_frame_size = 0;
else
{
if (target_frame_size > max_bits)
target_frame_size = max_bits;
if (target_frame_size > cpi->gf_group_bits)
target_frame_size = cpi->gf_group_bits;
}
cpi->gf_group_error_left -= modified_err; // Adjust error remaining
cpi->gf_group_bits -= target_frame_size; // Adjust bits remaining
if (cpi->gf_group_bits < 0)
cpi->gf_group_bits = 0;
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
// Special case for the frame that lies half way between two gfs
if (cpi->common.frames_since_golden == cpi->baseline_gf_interval / 2)
target_frame_size += cpi->mid_gf_extra_bits;
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
}
void vp8_second_pass(VP8_COMP *cpi)
{
int tmp_q;
int frames_left = (int)(cpi->total_stats->count - cpi->common.current_video_frame);
2010-05-18 17:58:33 +02:00
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS this_frame_copy;
VP8_COMMON *cm = &cpi->common;
double this_frame_error;
double this_frame_intra_error;
double this_frame_coded_error;
FIRSTPASS_STATS *start_pos;
if (!cpi->stats_in)
{
return ;
}
vp8_clear_system_state();
if (EOF == vp8_input_stats(cpi, &this_frame))
return;
vpx_memset(cpi->fp_motion_map, 0,
cpi->oxcf.arnr_max_frames*cpi->common.MBs);
cpi->fp_motion_map_stats_save = vp8_fpmm_get_pos(cpi);
// Step over this frame's first pass motion map
vp8_advance_fpmm(cpi, 1);
2010-05-18 17:58:33 +02:00
this_frame_error = this_frame.ssim_weighted_pred_err;
this_frame_intra_error = this_frame.intra_error;
this_frame_coded_error = this_frame.coded_error;
// Store information regarding level of motion etc for use mode decisions.
cpi->motion_speed = (int)(fabs(this_frame.MVr) + fabs(this_frame.MVc));
cpi->motion_var = (int)(fabs(this_frame.MVrv) + fabs(this_frame.MVcv));
cpi->inter_lvl = (int)(this_frame.pcnt_inter * 100);
cpi->intra_lvl = (int)((1.0 - this_frame.pcnt_inter) * 100);
cpi->motion_lvl = (int)(this_frame.pcnt_motion * 100);
start_pos = cpi->stats_in;
// keyframe and section processing !
if (cpi->frames_to_key == 0)
{
// Define next KF group and assign bits to it
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
vp8_find_next_key_frame(cpi, &this_frame_copy);
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
// This is temporary code till we decide what should really happen in this case.
if (cpi->oxcf.error_resilient_mode)
{
cpi->gf_group_bits = cpi->kf_group_bits;
cpi->gf_group_error_left = cpi->kf_group_error_left;
cpi->baseline_gf_interval = cpi->frames_to_key;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
cpi->source_alt_ref_pending = FALSE;
}
}
// Is this a GF / ARF (Note that a KF is always also a GF)
if (cpi->frames_till_gf_update_due == 0)
{
// Update monitor of the bits per error observed so far.
// Done once per gf group based on what has gone before
// so do nothing if this is the first frame.
if (cpi->common.current_video_frame > 0)
{
cpi->observed_bpe =
(double)(cpi->clip_bits_total - cpi->bits_left) /
cpi->modified_error_used;
}
2010-05-18 17:58:33 +02:00
// Define next gf group and assign bits to it
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
define_gf_group(cpi, &this_frame_copy);
// If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
// If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
// If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
{
// Assign a standard frames worth of bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
// If appropriate (we are switching into ARF active but it was not previously active) apply a boost for the gf at the start of the group.
//if ( !cpi->source_alt_ref_active && (cpi->gfu_boost > 150) )
if (FALSE)
{
int extra_bits;
int pct_extra = (cpi->gfu_boost - 100) / 50;
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
cpi->gf_group_bits -= extra_bits;
cpi->per_frame_bandwidth += extra_bits;
}
}
}
// Otherwise this is an ordinary frame
else
{
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
// This is temporary code till we decide what should really happen in this case.
if (cpi->oxcf.error_resilient_mode)
{
cpi->frames_till_gf_update_due = cpi->frames_to_key;
if (cpi->common.frame_type != KEY_FRAME)
{
// Assign bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
}
else
{
// Assign bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
}
2010-06-09 16:03:48 +02:00
// Keep a globally available copy of this and the next frame's iiratio.
cpi->this_iiratio = this_frame_intra_error /
DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
2010-06-07 18:34:46 +02:00
{
FIRSTPASS_STATS next_frame;
if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
2010-06-09 16:03:48 +02:00
{
cpi->next_iiratio = next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
}
2010-06-07 18:34:46 +02:00
}
2010-05-18 17:58:33 +02:00
// Set nominal per second bandwidth for this frame
cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
if (cpi->target_bandwidth < 0)
cpi->target_bandwidth = 0;
if (cpi->common.current_video_frame == 0)
{
cpi->est_max_qcorrection_factor = 1.0;
// Experimental code to try and set a cq_level in constrained
// quality mode.
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
{
int est_cq;
est_cq =
estimate_cq( cpi,
(cpi->total_coded_error_left / frames_left),
(int)(cpi->bits_left / frames_left),
cpi->common.Height, cpi->common.Width);
cpi->cq_target_quality = cpi->oxcf.cq_level;
if ( est_cq > cpi->cq_target_quality )
cpi->cq_target_quality = est_cq;
}
// guess at maxq needed in 2nd pass
cpi->maxq_max_limit = cpi->worst_quality;
cpi->maxq_min_limit = cpi->best_quality;
tmp_q = estimate_max_q( cpi,
(cpi->total_coded_error_left / frames_left),
(int)(cpi->bits_left / frames_left),
cpi->common.Height,
cpi->common.Width);
// Limit the maxq value returned subsequently.
// This increases the risk of overspend or underspend if the initial
// estimate for the clip is bad, but helps prevent excessive
// variation in Q, especially near the end of a clip
// where for example a small overspend may cause Q to crash
cpi->maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality)
? (tmp_q + 32) : cpi->worst_quality;
cpi->maxq_min_limit = ((tmp_q - 32) > cpi->best_quality)
? (tmp_q - 32) : cpi->best_quality;
cpi->active_worst_quality = tmp_q;
cpi->ni_av_qi = tmp_q;
2010-05-18 17:58:33 +02:00
}
// The last few frames of a clip almost always have to few or too many
// bits and for the sake of over exact rate control we dont want to make
// radical adjustments to the allowed quantizer range just to use up a
// few surplus bits or get beneath the target rate.
else if ( (cpi->common.current_video_frame <
(((unsigned int)cpi->total_stats->count * 255)>>8)) &&
((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
(unsigned int)cpi->total_stats->count) )
2010-05-18 17:58:33 +02:00
{
if (frames_left < 1)
frames_left = 1;
tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width);
// Move active_worst_quality but in a damped way
if (tmp_q > cpi->active_worst_quality)
cpi->active_worst_quality ++;
else if (tmp_q < cpi->active_worst_quality)
cpi->active_worst_quality --;
cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
}
cpi->frames_to_key --;
cpi->total_error_left -= this_frame_error;
cpi->total_intra_error_left -= this_frame_intra_error;
cpi->total_coded_error_left -= this_frame_coded_error;
}
static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
{
BOOL is_viable_kf = FALSE;
// Does the frame satisfy the primary criteria of a key frame
// If so, then examine how well it predicts subsequent frames
if ((this_frame->pcnt_second_ref < 0.10) &&
(next_frame->pcnt_second_ref < 0.10) &&
((this_frame->pcnt_inter < 0.05) ||
(
(this_frame->pcnt_inter < .25) &&
((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
(fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
)
)
)
)
{
int i;
FIRSTPASS_STATS *start_pos;
FIRSTPASS_STATS local_next_frame;
double boost_score = 0.0;
double old_boost_score = 0.0;
double decay_accumulator = 1.0;
double next_iiratio;
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
// Note the starting file position so we can reset to it
start_pos = cpi->stats_in;
// Examine how well the key frame predicts subsequent frames
for (i = 0 ; i < 16; i++)
{
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
if (next_iiratio > RMAX)
next_iiratio = RMAX;
// Cumulative effect of decay in prediction quality
if (local_next_frame.pcnt_inter > 0.85)
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
else
decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
//decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
// Keep a running total
boost_score += (decay_accumulator * next_iiratio);
// Test various breakout clauses
if ((local_next_frame.pcnt_inter < 0.05) ||
(next_iiratio < 1.5) ||
((local_next_frame.pcnt_inter < 0.20) && (next_iiratio < 3.0)) ||
((boost_score - old_boost_score) < 0.5) ||
(local_next_frame.intra_error < 200)
)
{
break;
}
old_boost_score = boost_score;
// Get the next frame details
if (EOF == vp8_input_stats(cpi, &local_next_frame))
break;
}
// If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
if (boost_score > 5.0 && (i > 3))
is_viable_kf = TRUE;
else
{
// Reset the file position
reset_fpf_position(cpi, start_pos);
is_viable_kf = FALSE;
}
}
return is_viable_kf;
}
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
int i;
FIRSTPASS_STATS last_frame;
FIRSTPASS_STATS first_frame;
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_position;
double decay_accumulator = 0;
double boost_score = 0;
double old_boost_score = 0.0;
double loop_decay_rate;
double kf_mod_err = 0.0;
double kf_group_err = 0.0;
double kf_group_intra_err = 0.0;
double kf_group_coded_err = 0.0;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
2010-05-18 17:58:33 +02:00
vp8_clear_system_state(); //__asm emms;
start_position = cpi->stats_in;
cpi->common.frame_type = KEY_FRAME;
// is this a forced key frame by interval
cpi->this_key_frame_forced = cpi->next_key_frame_forced;
2010-05-18 17:58:33 +02:00
// Clear the alt ref active flag as this can never be active on a key frame
cpi->source_alt_ref_active = FALSE;
// Kf is always a gf so clear frames till next gf counter
cpi->frames_till_gf_update_due = 0;
cpi->frames_to_key = 1;
// Take a copy of the initial frame details
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
cpi->kf_group_bits = 0; // Total bits avaialable to kf group
2010-05-18 17:58:33 +02:00
cpi->kf_group_error_left = 0; // Group modified error score.
kf_mod_err = calculate_modified_err(cpi, this_frame);
// find the next keyframe
while (cpi->stats_in < cpi->stats_in_end)
{
// Accumulate kf group error
kf_group_err += calculate_modified_err(cpi, this_frame);
// These figures keep intra and coded error counts for all frames including key frames in the group.
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
// load a the next frame's stats
2010-05-18 17:58:33 +02:00
vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
vp8_input_stats(cpi, this_frame);
2010-05-18 17:58:33 +02:00
// Provided that we are not at the end of the file...
if (cpi->oxcf.auto_key
&& lookup_next_frame_stats(cpi, &next_frame) != EOF)
2010-05-18 17:58:33 +02:00
{
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
break;
2010-05-18 17:58:33 +02:00
// Step on to the next frame
cpi->frames_to_key ++;
2010-05-18 17:58:33 +02:00
// If we don't have a real key frame within the next two
// forcekeyframeevery intervals then break out of the loop.
if (cpi->frames_to_key >= 2 *(int)cpi->key_frame_frequency)
break;
} else
cpi->frames_to_key ++;
2010-05-18 17:58:33 +02:00
}
// If there is a max kf interval set by the user we must obey it.
// We already breakout of the loop above at 2x max.
// This code centers the extra kf if the actual natural
// interval is between 1x and 2x
if (cpi->oxcf.auto_key
&& cpi->frames_to_key > (int)cpi->key_frame_frequency )
2010-05-18 17:58:33 +02:00
{
int current_pos = cpi->stats_in;
FIRSTPASS_STATS tmp_frame;
2010-05-18 17:58:33 +02:00
cpi->frames_to_key /= 2;
// Copy first frame details
vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
// Reset to the start of the group
reset_fpf_position(cpi, start_position);
kf_group_err = 0;
kf_group_intra_err = 0;
kf_group_coded_err = 0;
// Rescan to get the correct error data for the forced kf group
for( i = 0; i < cpi->frames_to_key; i++ )
{
// Accumulate kf group errors
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
kf_group_intra_err += tmp_frame.intra_error;
kf_group_coded_err += tmp_frame.coded_error;
// Load a the next frame's stats
vp8_input_stats(cpi, &tmp_frame);
}
// Reset to the start of the group
reset_fpf_position(cpi, current_pos);
cpi->next_key_frame_forced = TRUE;
2010-05-18 17:58:33 +02:00
}
else
cpi->next_key_frame_forced = FALSE;
2010-05-18 17:58:33 +02:00
// Special case for the last frame of the file
if (cpi->stats_in >= cpi->stats_in_end)
{
// Accumulate kf group error
kf_group_err += calculate_modified_err(cpi, this_frame);
// These figures keep intra and coded error counts for all frames including key frames in the group.
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
}
// Calculate the number of bits that should be assigned to the kf group.
if ((cpi->bits_left > 0) && ((int)cpi->modified_error_left > 0))
2010-05-18 17:58:33 +02:00
{
// Max for a single normal frame (not key frame)
int max_bits = frame_max_bits(cpi);
// Maximum bits for the kf group
long long max_grp_bits;
2010-05-18 17:58:33 +02:00
// Default allocation based on bits left and relative
// complexity of the section
cpi->kf_group_bits = (long long)( cpi->bits_left *
( kf_group_err /
cpi->modified_error_left ));
2010-05-18 17:58:33 +02:00
// Clip based on maximum per frame rate defined by the user.
max_grp_bits = (long long)max_bits * (long long)cpi->frames_to_key;
if (cpi->kf_group_bits > max_grp_bits)
cpi->kf_group_bits = max_grp_bits;
2010-05-18 17:58:33 +02:00
// Additional special case for CBR if buffer is getting full.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
int buffer_lvl = cpi->buffer_level;
// If the buffer is near or above the optimal and this kf group is
// not being allocated much then increase the allocation a bit.
if (buffer_lvl >= opt_buffer_lvl)
2010-05-18 17:58:33 +02:00
{
int high_water_mark = (opt_buffer_lvl +
cpi->oxcf.maximum_buffer_size) >> 1;
long long av_group_bits;
// Av bits per frame * number of frames
av_group_bits = (long long)cpi->av_per_frame_bandwidth *
(long long)cpi->frames_to_key;
2010-05-18 17:58:33 +02:00
// We are at or above the maximum.
if (cpi->buffer_level >= high_water_mark)
{
long long min_group_bits;
min_group_bits = av_group_bits +
(long long)(buffer_lvl -
high_water_mark);
2010-05-18 17:58:33 +02:00
if (cpi->kf_group_bits < min_group_bits)
cpi->kf_group_bits = min_group_bits;
}
// We are above optimal but below the maximum
else if (cpi->kf_group_bits < av_group_bits)
2010-05-18 17:58:33 +02:00
{
long long bits_below_av = av_group_bits -
cpi->kf_group_bits;
cpi->kf_group_bits +=
(long long)((double)bits_below_av *
(double)(buffer_lvl - opt_buffer_lvl) /
(double)(high_water_mark - opt_buffer_lvl));
2010-05-18 17:58:33 +02:00
}
}
}
}
else
cpi->kf_group_bits = 0;
// Reset the first pass file position
reset_fpf_position(cpi, start_position);
// determine how big to make this keyframe based on how well the subsequent frames use inter blocks
decay_accumulator = 1.0;
boost_score = 0.0;
loop_decay_rate = 1.00; // Starting decay rate
for (i = 0 ; i < cpi->frames_to_key ; i++)
{
double r;
double motion_decay;
double motion_pct;
2010-05-18 17:58:33 +02:00
if (EOF == vp8_input_stats(cpi, &next_frame))
break;
if (next_frame.intra_error > cpi->kf_intra_err_min)
r = (IIKFACTOR2 * next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
else
r = (IIKFACTOR2 * cpi->kf_intra_err_min /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2010-05-18 17:58:33 +02:00
if (r > RMAX)
r = RMAX;
// Adjust loop decay rate
//if ( next_frame.pcnt_inter < loop_decay_rate )
loop_decay_rate = next_frame.pcnt_inter;
// High % motion -> somewhat higher decay rate
motion_pct = next_frame.pcnt_motion;
motion_decay = (1.0 - (motion_pct / 20.0));
if (motion_decay < loop_decay_rate)
loop_decay_rate = motion_decay;
// Adjustment to decay rate based on speed of motion
{
double this_mv_rabs;
double this_mv_cabs;
double distance_factor;
this_mv_rabs = fabs(next_frame.mvr_abs * motion_pct);
this_mv_cabs = fabs(next_frame.mvc_abs * motion_pct);
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
(this_mv_cabs * this_mv_cabs)) / 250.0;
distance_factor = ((distance_factor > 1.0)
? 0.0 : (1.0 - distance_factor));
if (distance_factor < loop_decay_rate)
loop_decay_rate = distance_factor;
}
2010-05-18 17:58:33 +02:00
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
2010-05-18 17:58:33 +02:00
boost_score += (decay_accumulator * r);
if ((i > MIN_GF_INTERVAL) &&
((boost_score - old_boost_score) < 1.0))
{
break;
}
old_boost_score = boost_score;
}
if (1)
{
FIRSTPASS_STATS sectionstats;
double Ratio;
vp8_zero_stats(&sectionstats);
reset_fpf_position(cpi, start_position);
for (i = 0 ; i < cpi->frames_to_key ; i++)
{
vp8_input_stats(cpi, &next_frame);
vp8_accumulate_stats(&sectionstats, &next_frame);
}
vp8_avg_stats(&sectionstats);
cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
2010-05-18 17:58:33 +02:00
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
// if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
//{
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->section_max_qfactor < 0.80)
cpi->section_max_qfactor = 0.80;
//}
//else
// cpi->section_max_qfactor = 1.0;
}
// When using CBR apply additional buffer fullness related upper limits
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double max_boost;
if (cpi->drop_frames_allowed)
{
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
if (cpi->buffer_level > df_buffer_level)
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
else
max_boost = 0.0;
}
else if (cpi->buffer_level > 0)
{
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
}
else
{
max_boost = 0.0;
}
if (boost_score > max_boost)
boost_score = max_boost;
}
// Reset the first pass file position
reset_fpf_position(cpi, start_position);
// Work out how many bits to allocate for the key frame itself
if (1)
{
int kf_boost = boost_score;
int allocation_chunks;
int Counter = cpi->frames_to_key;
int alt_kf_bits;
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
2010-05-18 17:58:33 +02:00
// Min boost based on kf interval
#if 0
while ((kf_boost < 48) && (Counter > 0))
{
Counter -= 2;
kf_boost ++;
}
#endif
if (kf_boost < 48)
{
kf_boost += ((Counter + 1) >> 1);
if (kf_boost > 48) kf_boost = 48;
}
// bigger frame sizes need larger kf boosts, smaller frames smaller boosts...
if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240))
kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240))
kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
2010-05-18 17:58:33 +02:00
kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100
// Adjustment to boost based on recent average q
//kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100;
2010-05-18 17:58:33 +02:00
if (kf_boost < 250) // Min KF boost
kf_boost = 250;
// We do three calculations for kf size.
// The first is based on the error score for the whole kf group.
// The second (optionaly) on the key frames own error if this is smaller than the average for the group.
// The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining
allocation_chunks = ((cpi->frames_to_key - 1) * 100) + kf_boost; // cpi->frames_to_key-1 because key frame itself is taken care of by kf_boost
// Normalize Altboost and allocations chunck down to prevent overflow
while (kf_boost > 1000)
{
kf_boost /= 2;
allocation_chunks /= 2;
}
cpi->kf_group_bits = (cpi->kf_group_bits < 0) ? 0 : cpi->kf_group_bits;
// Calculate the number of bits to be spent on the key frame
cpi->kf_bits = (int)((double)kf_boost * ((double)cpi->kf_group_bits / (double)allocation_chunks));
// Apply an additional limit for CBR
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
if (cpi->kf_bits > ((3 * cpi->buffer_level) >> 2))
cpi->kf_bits = (3 * cpi->buffer_level) >> 2;
}
// If the key frame is actually easier than the average for the
// kf group (which does sometimes happen... eg a blank intro frame)
// Then use an alternate calculation based on the kf error score
// which should give a smaller key frame.
2010-05-18 17:58:33 +02:00
if (kf_mod_err < kf_group_err / cpi->frames_to_key)
{
double alt_kf_grp_bits =
((double)cpi->bits_left *
(kf_mod_err * (double)cpi->frames_to_key) /
DOUBLE_DIVIDE_CHECK(cpi->modified_error_left));
2010-05-18 17:58:33 +02:00
alt_kf_bits = (int)((double)kf_boost *
(alt_kf_grp_bits / (double)allocation_chunks));
2010-05-18 17:58:33 +02:00
if (cpi->kf_bits > alt_kf_bits)
{
cpi->kf_bits = alt_kf_bits;
}
}
// Else if it is much harder than other frames in the group make sure
// it at least receives an allocation in keeping with its relative
// error score
2010-05-18 17:58:33 +02:00
else
{
alt_kf_bits =
(int)((double)cpi->bits_left *
(kf_mod_err /
DOUBLE_DIVIDE_CHECK(cpi->modified_error_left)));
2010-05-18 17:58:33 +02:00
if (alt_kf_bits > cpi->kf_bits)
{
cpi->kf_bits = alt_kf_bits;
}
}
cpi->kf_group_bits -= cpi->kf_bits;
cpi->kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
cpi->per_frame_bandwidth = cpi->kf_bits; // Peer frame bit target for this frame
cpi->target_bandwidth = cpi->kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
}
// Note the total error score of the kf group minus the key frame itself
cpi->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
// Adjust the count of total modified error left.
// The count of bits left is adjusted elsewhere based on real coded frame sizes
cpi->modified_error_left -= kf_group_err;
2010-05-18 17:58:33 +02:00
if (cpi->oxcf.allow_spatial_resampling)
{
int resample_trigger = FALSE;
int last_kf_resampled = FALSE;
int kf_q;
int scale_val = 0;
int hr, hs, vr, vs;
int new_width = cpi->oxcf.Width;
int new_height = cpi->oxcf.Height;
int projected_buffer_level = cpi->buffer_level;
int tmp_q;
double projected_bits_perframe;
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error);
double err_per_frame = kf_group_err / cpi->frames_to_key;
double bits_per_frame;
double av_bits_per_frame;
double effective_size_ratio;
if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height))
last_kf_resampled = TRUE;
// Set back to unscaled by defaults
cpi->common.horiz_scale = NORMAL;
cpi->common.vert_scale = NORMAL;
// Calculate Average bits per frame.
//av_bits_per_frame = cpi->bits_left/(double)(cpi->total_stats->count - cpi->common.current_video_frame);
2010-05-18 17:58:33 +02:00
av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate);
//if ( av_bits_per_frame < 0.0 )
// av_bits_per_frame = 0.0
// CBR... Use the clip average as the target for deciding resample
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
bits_per_frame = av_bits_per_frame;
}
// In VBR we want to avoid downsampling in easy section unless we are under extreme pressure
// So use the larger of target bitrate for this sectoion or average bitrate for sequence
else
{
bits_per_frame = cpi->kf_group_bits / cpi->frames_to_key; // This accounts for how hard the section is...
if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits
bits_per_frame = av_bits_per_frame;
}
// bits_per_frame should comply with our minimum
if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100))
bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
// Work out if spatial resampling is necessary
kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, new_height, new_width, group_iiratio);
// If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section
projected_bits_perframe = bits_per_frame;
tmp_q = kf_q;
while (tmp_q > cpi->worst_quality)
{
projected_bits_perframe *= 1.04;
tmp_q--;
}
// Guess at buffer level at the end of the section
projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->frames_to_key);
if (0)
{
FILE *f = fopen("Subsamle.stt", "a");
fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
2010-05-18 17:58:33 +02:00
fclose(f);
}
// The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
// Trigger resample if we are projected to fall below down sample level or
// resampled last time and are projected to remain below the up sample level
if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) ||
(last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))))
//( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) &&
// ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) ))
resample_trigger = TRUE;
else
resample_trigger = FALSE;
}
else
{
long long clip_bits = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
2010-05-18 17:58:33 +02:00
long long over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
long long over_spend2 = cpi->oxcf.starting_buffer_level - projected_buffer_level;
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced
((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ...
(over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits
resample_trigger = TRUE;
else
resample_trigger = FALSE;
}
if (resample_trigger)
{
while ((kf_q >= cpi->worst_quality) && (scale_val < 6))
{
scale_val ++;
cpi->common.vert_scale = vscale_lookup[scale_val];
cpi->common.horiz_scale = hscale_lookup[scale_val];
Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
// Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4...
// effective_sizeratio attempts to provide a crude correction for this
effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height);
effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
// Now try again and see what Q we get with the smaller image size
kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, new_height, new_width, group_iiratio);
if (0)
{
FILE *f = fopen("Subsamle.stt", "a");
fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
2010-05-18 17:58:33 +02:00
fclose(f);
}
}
}
if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height))
{
cpi->common.Width = new_width;
cpi->common.Height = new_height;
vp8_alloc_compressor_data(cpi);
}
}
}