vpx/vp9/common/vp9_idctllm.c

2651 lines
83 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
/****************************************************************************
* Notes:
*
* This implementation makes use of 16 bit fixed point verio of two multiply
* constants:
* 1. sqrt(2) * cos (pi/8)
* 2. sqrt(2) * sin (pi/8)
* Becuase the first constant is bigger than 1, to maintain the same 16 bit
* fixed point precision as the second one, we use a trick of
* x * a = x + x*(a-1)
* so
* x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1).
**************************************************************************/
#include <assert.h>
#include <math.h>
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-01 15:50:14 -08:00
#include "vpx_ports/config.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
2010-05-18 11:58:33 -04:00
static const int cospi8sqrt2minus1 = 20091;
static const int sinpi8sqrt2 = 35468;
static const int rounding = 0;
// TODO: these transforms can be further converted into integer forms
// for complexity optimization
static const float idct_4[16] = {
0.500000000000000, 0.653281482438188, 0.500000000000000, 0.270598050073099,
0.500000000000000, 0.270598050073099, -0.500000000000000, -0.653281482438188,
0.500000000000000, -0.270598050073099, -0.500000000000000, 0.653281482438188,
0.500000000000000, -0.653281482438188, 0.500000000000000, -0.270598050073099
};
static const float iadst_4[16] = {
0.228013428883779, 0.577350269189626, 0.656538502008139, 0.428525073124360,
0.428525073124360, 0.577350269189626, -0.228013428883779, -0.656538502008139,
0.577350269189626, 0, -0.577350269189626, 0.577350269189626,
0.656538502008139, -0.577350269189626, 0.428525073124359, -0.228013428883779
};
static const float idct_8[64] = {
0.353553390593274, 0.490392640201615, 0.461939766255643, 0.415734806151273,
0.353553390593274, 0.277785116509801, 0.191341716182545, 0.097545161008064,
0.353553390593274, 0.415734806151273, 0.191341716182545, -0.097545161008064,
-0.353553390593274, -0.490392640201615, -0.461939766255643, -0.277785116509801,
0.353553390593274, 0.277785116509801, -0.191341716182545, -0.490392640201615,
-0.353553390593274, 0.097545161008064, 0.461939766255643, 0.415734806151273,
0.353553390593274, 0.097545161008064, -0.461939766255643, -0.277785116509801,
0.353553390593274, 0.415734806151273, -0.191341716182545, -0.490392640201615,
0.353553390593274, -0.097545161008064, -0.461939766255643, 0.277785116509801,
0.353553390593274, -0.415734806151273, -0.191341716182545, 0.490392640201615,
0.353553390593274, -0.277785116509801, -0.191341716182545, 0.490392640201615,
-0.353553390593274, -0.097545161008064, 0.461939766255643, -0.415734806151273,
0.353553390593274, -0.415734806151273, 0.191341716182545, 0.097545161008064,
-0.353553390593274, 0.490392640201615, -0.461939766255643, 0.277785116509801,
0.353553390593274, -0.490392640201615, 0.461939766255643, -0.415734806151273,
0.353553390593274, -0.277785116509801, 0.191341716182545, -0.097545161008064
};
static const float iadst_8[64] = {
0.089131608307533, 0.255357107325376, 0.387095214016349, 0.466553967085785,
0.483002021635509, 0.434217976756762, 0.326790388032145, 0.175227946595735,
0.175227946595735, 0.434217976756762, 0.466553967085785, 0.255357107325376,
-0.089131608307533, -0.387095214016348, -0.483002021635509, -0.326790388032145,
0.255357107325376, 0.483002021635509, 0.175227946595735, -0.326790388032145,
-0.466553967085785, -0.089131608307533, 0.387095214016349, 0.434217976756762,
0.326790388032145, 0.387095214016349, -0.255357107325376, -0.434217976756762,
0.175227946595735, 0.466553967085786, -0.089131608307534, -0.483002021635509,
0.387095214016349, 0.175227946595735, -0.483002021635509, 0.089131608307533,
0.434217976756762, -0.326790388032145, -0.255357107325377, 0.466553967085785,
0.434217976756762, -0.089131608307533, -0.326790388032145, 0.483002021635509,
-0.255357107325376, -0.175227946595735, 0.466553967085785, -0.387095214016348,
0.466553967085785, -0.326790388032145, 0.089131608307533, 0.175227946595735,
-0.387095214016348, 0.483002021635509, -0.434217976756762, 0.255357107325376,
0.483002021635509, -0.466553967085785, 0.434217976756762, -0.387095214016348,
0.326790388032145, -0.255357107325375, 0.175227946595736, -0.089131608307532
};
static const int16_t idct_i4[16] = {
8192, 10703, 8192, 4433,
8192, 4433, -8192, -10703,
8192, -4433, -8192, 10703,
8192, -10703, 8192, -4433
};
static const int16_t iadst_i4[16] = {
3736, 9459, 10757, 7021,
7021, 9459, -3736, -10757,
9459, 0, -9459, 9459,
10757, -9459, 7021, -3736
};
static const int16_t idct_i8[64] = {
5793, 8035, 7568, 6811,
5793, 4551, 3135, 1598,
5793, 6811, 3135, -1598,
-5793, -8035, -7568, -4551,
5793, 4551, -3135, -8035,
-5793, 1598, 7568, 6811,
5793, 1598, -7568, -4551,
5793, 6811, -3135, -8035,
5793, -1598, -7568, 4551,
5793, -6811, -3135, 8035,
5793, -4551, -3135, 8035,
-5793, -1598, 7568, -6811,
5793, -6811, 3135, 1598,
-5793, 8035, -7568, 4551,
5793, -8035, 7568, -6811,
5793, -4551, 3135, -1598
};
static const int16_t iadst_i8[64] = {
1460, 4184, 6342, 7644,
7914, 7114, 5354, 2871,
2871, 7114, 7644, 4184,
-1460, -6342, -7914, -5354,
4184, 7914, 2871, -5354,
-7644, -1460, 6342, 7114,
5354, 6342, -4184, -7114,
2871, 7644, -1460, -7914,
6342, 2871, -7914, 1460,
7114, -5354, -4184, 7644,
7114, -1460, -5354, 7914,
-4184, -2871, 7644, -6342,
7644, -5354, 1460, 2871,
-6342, 7914, -7114, 4184,
7914, -7644, 7114, -6342,
5354, -4184, 2871, -1460
};
static float idct_16[256] = {
0.250000, 0.351851, 0.346760, 0.338330, 0.326641, 0.311806, 0.293969, 0.273300,
0.250000, 0.224292, 0.196424, 0.166664, 0.135299, 0.102631, 0.068975, 0.034654,
0.250000, 0.338330, 0.293969, 0.224292, 0.135299, 0.034654, -0.068975, -0.166664,
-0.250000, -0.311806, -0.346760, -0.351851, -0.326641, -0.273300, -0.196424, -0.102631,
0.250000, 0.311806, 0.196424, 0.034654, -0.135299, -0.273300, -0.346760, -0.338330,
-0.250000, -0.102631, 0.068975, 0.224292, 0.326641, 0.351851, 0.293969, 0.166664,
0.250000, 0.273300, 0.068975, -0.166664, -0.326641, -0.338330, -0.196424, 0.034654,
0.250000, 0.351851, 0.293969, 0.102631, -0.135299, -0.311806, -0.346760, -0.224292,
0.250000, 0.224292, -0.068975, -0.311806, -0.326641, -0.102631, 0.196424, 0.351851,
0.250000, -0.034654, -0.293969, -0.338330, -0.135299, 0.166664, 0.346760, 0.273300,
0.250000, 0.166664, -0.196424, -0.351851, -0.135299, 0.224292, 0.346760, 0.102631,
-0.250000, -0.338330, -0.068975, 0.273300, 0.326641, 0.034654, -0.293969, -0.311806,
0.250000, 0.102631, -0.293969, -0.273300, 0.135299, 0.351851, 0.068975, -0.311806,
-0.250000, 0.166664, 0.346760, 0.034654, -0.326641, -0.224292, 0.196424, 0.338330,
0.250000, 0.034654, -0.346760, -0.102631, 0.326641, 0.166664, -0.293969, -0.224292,
0.250000, 0.273300, -0.196424, -0.311806, 0.135299, 0.338330, -0.068975, -0.351851,
0.250000, -0.034654, -0.346760, 0.102631, 0.326641, -0.166664, -0.293969, 0.224292,
0.250000, -0.273300, -0.196424, 0.311806, 0.135299, -0.338330, -0.068975, 0.351851,
0.250000, -0.102631, -0.293969, 0.273300, 0.135299, -0.351851, 0.068975, 0.311806,
-0.250000, -0.166664, 0.346760, -0.034654, -0.326641, 0.224292, 0.196424, -0.338330,
0.250000, -0.166664, -0.196424, 0.351851, -0.135299, -0.224292, 0.346760, -0.102631,
-0.250000, 0.338330, -0.068975, -0.273300, 0.326641, -0.034654, -0.293969, 0.311806,
0.250000, -0.224292, -0.068975, 0.311806, -0.326641, 0.102631, 0.196424, -0.351851,
0.250000, 0.034654, -0.293969, 0.338330, -0.135299, -0.166664, 0.346760, -0.273300,
0.250000, -0.273300, 0.068975, 0.166664, -0.326641, 0.338330, -0.196424, -0.034654,
0.250000, -0.351851, 0.293969, -0.102631, -0.135299, 0.311806, -0.346760, 0.224292,
0.250000, -0.311806, 0.196424, -0.034654, -0.135299, 0.273300, -0.346760, 0.338330,
-0.250000, 0.102631, 0.068975, -0.224292, 0.326641, -0.351851, 0.293969, -0.166664,
0.250000, -0.338330, 0.293969, -0.224292, 0.135299, -0.034654, -0.068975, 0.166664,
-0.250000, 0.311806, -0.346760, 0.351851, -0.326641, 0.273300, -0.196424, 0.102631,
0.250000, -0.351851, 0.346760, -0.338330, 0.326641, -0.311806, 0.293969, -0.273300,
0.250000, -0.224292, 0.196424, -0.166664, 0.135299, -0.102631, 0.068975, -0.034654
};
static float iadst_16[256] = {
0.033094, 0.098087, 0.159534, 0.215215, 0.263118, 0.301511, 0.329007, 0.344612,
0.347761, 0.338341, 0.316693, 0.283599, 0.240255, 0.188227, 0.129396, 0.065889,
0.065889, 0.188227, 0.283599, 0.338341, 0.344612, 0.301511, 0.215215, 0.098087,
-0.033094, -0.159534, -0.263118, -0.329007, -0.347761, -0.316693, -0.240255, -0.129396,
0.098087, 0.263118, 0.344612, 0.316693, 0.188227, 0.000000, -0.188227, -0.316693,
-0.344612, -0.263118, -0.098087, 0.098087, 0.263118, 0.344612, 0.316693, 0.188227,
0.129396, 0.316693, 0.329007, 0.159534, -0.098087, -0.301511, -0.338341, -0.188227,
0.065889, 0.283599, 0.344612, 0.215215, -0.033094, -0.263118, -0.347761, -0.240255,
0.159534, 0.344612, 0.240255, -0.065889, -0.316693, -0.301511, -0.033094, 0.263118,
0.338341, 0.129396, -0.188227, -0.347761, -0.215215, 0.098087, 0.329007, 0.283599,
0.188227, 0.344612, 0.098087, -0.263118, -0.316693, -0.000000, 0.316693, 0.263118,
-0.098087, -0.344612, -0.188227, 0.188227, 0.344612, 0.098087, -0.263118, -0.316693,
0.215215, 0.316693, -0.065889, -0.347761, -0.098087, 0.301511, 0.240255, -0.188227,
-0.329007, 0.033094, 0.344612, 0.129396, -0.283599, -0.263118, 0.159534, 0.338341,
0.240255, 0.263118, -0.215215, -0.283599, 0.188227, 0.301511, -0.159534, -0.316693,
0.129396, 0.329007, -0.098087, -0.338341, 0.065889, 0.344612, -0.033094, -0.347761,
0.263118, 0.188227, -0.316693, -0.098087, 0.344612, 0.000000, -0.344612, 0.098087,
0.316693, -0.188227, -0.263118, 0.263118, 0.188227, -0.316693, -0.098087, 0.344612,
0.283599, 0.098087, -0.347761, 0.129396, 0.263118, -0.301511, -0.065889, 0.344612,
-0.159534, -0.240255, 0.316693, 0.033094, -0.338341, 0.188227, 0.215215, -0.329007,
0.301511, 0.000000, -0.301511, 0.301511, 0.000000, -0.301511, 0.301511, 0.000000,
-0.301511, 0.301511, 0.000000, -0.301511, 0.301511, 0.000000, -0.301511, 0.301511,
0.316693, -0.098087, -0.188227, 0.344612, -0.263118, -0.000000, 0.263118, -0.344612,
0.188227, 0.098087, -0.316693, 0.316693, -0.098087, -0.188227, 0.344612, -0.263118,
0.329007, -0.188227, -0.033094, 0.240255, -0.344612, 0.301511, -0.129396, -0.098087,
0.283599, -0.347761, 0.263118, -0.065889, -0.159534, 0.316693, -0.338341, 0.215215,
0.338341, -0.263118, 0.129396, 0.033094, -0.188227, 0.301511, -0.347761, 0.316693,
-0.215215, 0.065889, 0.098087, -0.240255, 0.329007, -0.344612, 0.283599, -0.159534,
0.344612, -0.316693, 0.263118, -0.188227, 0.098087, 0.000000, -0.098087, 0.188227,
-0.263118, 0.316693, -0.344612, 0.344612, -0.316693, 0.263118, -0.188227, 0.098087,
0.347761, -0.344612, 0.338341, -0.329007, 0.316693, -0.301511, 0.283599, -0.263118,
0.240255, -0.215215, 0.188227, -0.159534, 0.129396, -0.098087, 0.065889, -0.033094
};
static const int16_t idct_i16[256] = {
4096, 5765, 5681, 5543, 5352, 5109, 4816, 4478,
4096, 3675, 3218, 2731, 2217, 1682, 1130, 568,
4096, 5543, 4816, 3675, 2217, 568, -1130, -2731,
-4096, -5109, -5681, -5765, -5352, -4478, -3218, -1682,
4096, 5109, 3218, 568, -2217, -4478, -5681, -5543,
-4096, -1682, 1130, 3675, 5352, 5765, 4816, 2731,
4096, 4478, 1130, -2731, -5352, -5543, -3218, 568,
4096, 5765, 4816, 1682, -2217, -5109, -5681, -3675,
4096, 3675, -1130, -5109, -5352, -1682, 3218, 5765,
4096, -568, -4816, -5543, -2217, 2731, 5681, 4478,
4096, 2731, -3218, -5765, -2217, 3675, 5681, 1682,
-4096, -5543, -1130, 4478, 5352, 568, -4816, -5109,
4096, 1682, -4816, -4478, 2217, 5765, 1130, -5109,
-4096, 2731, 5681, 568, -5352, -3675, 3218, 5543,
4096, 568, -5681, -1682, 5352, 2731, -4816, -3675,
4096, 4478, -3218, -5109, 2217, 5543, -1130, -5765,
4096, -568, -5681, 1682, 5352, -2731, -4816, 3675,
4096, -4478, -3218, 5109, 2217, -5543, -1130, 5765,
4096, -1682, -4816, 4478, 2217, -5765, 1130, 5109,
-4096, -2731, 5681, -568, -5352, 3675, 3218, -5543,
4096, -2731, -3218, 5765, -2217, -3675, 5681, -1682,
-4096, 5543, -1130, -4478, 5352, -568, -4816, 5109,
4096, -3675, -1130, 5109, -5352, 1682, 3218, -5765,
4096, 568, -4816, 5543, -2217, -2731, 5681, -4478,
4096, -4478, 1130, 2731, -5352, 5543, -3218, -568,
4096, -5765, 4816, -1682, -2217, 5109, -5681, 3675,
4096, -5109, 3218, -568, -2217, 4478, -5681, 5543,
-4096, 1682, 1130, -3675, 5352, -5765, 4816, -2731,
4096, -5543, 4816, -3675, 2217, -568, -1130, 2731,
-4096, 5109, -5681, 5765, -5352, 4478, -3218, 1682,
4096, -5765, 5681, -5543, 5352, -5109, 4816, -4478,
4096, -3675, 3218, -2731, 2217, -1682, 1130, -568
};
static const int16_t iadst_i16[256] = {
542, 1607, 2614, 3526, 4311, 4940, 5390, 5646,
5698, 5543, 5189, 4646, 3936, 3084, 2120, 1080,
1080, 3084, 4646, 5543, 5646, 4940, 3526, 1607,
-542, -2614, -4311, -5390, -5698, -5189, -3936, -2120,
1607, 4311, 5646, 5189, 3084, 0, -3084, -5189,
-5646, -4311, -1607, 1607, 4311, 5646, 5189, 3084,
2120, 5189, 5390, 2614, -1607, -4940, -5543, -3084,
1080, 4646, 5646, 3526, -542, -4311, -5698, -3936,
2614, 5646, 3936, -1080, -5189, -4940, -542, 4311,
5543, 2120, -3084, -5698, -3526, 1607, 5390, 4646,
3084, 5646, 1607, -4311, -5189, 0, 5189, 4311,
-1607, -5646, -3084, 3084, 5646, 1607, -4311, -5189,
3526, 5189, -1080, -5698, -1607, 4940, 3936, -3084,
-5390, 542, 5646, 2120, -4646, -4311, 2614, 5543,
3936, 4311, -3526, -4646, 3084, 4940, -2614, -5189,
2120, 5390, -1607, -5543, 1080, 5646, -542, -5698,
4311, 3084, -5189, -1607, 5646, 0, -5646, 1607,
5189, -3084, -4311, 4311, 3084, -5189, -1607, 5646,
4646, 1607, -5698, 2120, 4311, -4940, -1080, 5646,
-2614, -3936, 5189, 542, -5543, 3084, 3526, -5390,
4940, 0, -4940, 4940, 0, -4940, 4940, 0,
-4940, 4940, 0, -4940, 4940, 0, -4940, 4940,
5189, -1607, -3084, 5646, -4311, 0, 4311, -5646,
3084, 1607, -5189, 5189, -1607, -3084, 5646, -4311,
5390, -3084, -542, 3936, -5646, 4940, -2120, -1607,
4646, -5698, 4311, -1080, -2614, 5189, -5543, 3526,
5543, -4311, 2120, 542, -3084, 4940, -5698, 5189,
-3526, 1080, 1607, -3936, 5390, -5646, 4646, -2614,
5646, -5189, 4311, -3084, 1607, 0, -1607, 3084,
-4311, 5189, -5646, 5646, -5189, 4311, -3084, 1607,
5698, -5646, 5543, -5390, 5189, -4940, 4646, -4311,
3936, -3526, 3084, -2614, 2120, -1607, 1080, -542
};
void vp9_ihtllm_float_c(const int16_t *input, int16_t *output, int pitch,
TX_TYPE tx_type, int tx_dim) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int i, j, k;
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
// the implementation could be simplified in
// conjunction with integer transform
const int16_t *ip = input;
int16_t *op = output;
int shortpitch = pitch >> 1;
float *pfa = &bufa[0];
float *pfb = &bufb[0];
// pointers to vertical and horizontal transforms
const float *ptv, *pth;
assert(tx_type != DCT_DCT);
// load and convert residual array into floating-point
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfa[i] = (float)ip[i];
}
pfa += tx_dim;
ip += tx_dim;
}
// vertical transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch(tx_type) {
case ADST_ADST :
case ADST_DCT :
ptv = (tx_dim == 4) ? &iadst_4[0] :
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
break;
default :
ptv = (tx_dim == 4) ? &idct_4[0] :
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
break;
}
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfb[i] = 0 ;
for(k = 0; k < tx_dim; k++) {
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
}
pfa += 1;
}
pfb += tx_dim;
ptv += tx_dim;
pfa = &bufa[0];
}
// horizontal transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch(tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &iadst_4[0] :
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &idct_4[0] :
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
break;
}
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
pfa[i] = 0;
for(k = 0; k < tx_dim; k++) {
pfa[i] += pfb[k] * pth[k];
}
pth += tx_dim;
}
pfa += tx_dim;
pfb += tx_dim;
switch(tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &iadst_4[0] :
((tx_dim == 8) ? &iadst_8[0] : &iadst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &idct_4[0] :
((tx_dim == 8) ? &idct_8[0] : &idct_16[0]);
break;
}
}
// convert to short integer format and load BLOCKD buffer
op = output;
pfa = &bufa[0];
for(j = 0; j < tx_dim; j++) {
for(i = 0; i < tx_dim; i++) {
op[i] = (pfa[i] > 0 ) ? (int16_t)( pfa[i] / 8 + 0.49) :
-(int16_t)( - pfa[i] / 8 + 0.49);
}
op += shortpitch;
pfa += tx_dim;
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
/* Converted the transforms to integer form. */
#define VERTICAL_SHIFT 14 // 16
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
#define HORIZONTAL_SHIFT 17 // 15
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
void vp9_ihtllm_c(const int16_t *input, int16_t *output, int pitch,
TX_TYPE tx_type, int tx_dim) {
int i, j, k;
int16_t imbuf[256];
const int16_t *ip = input;
int16_t *op = output;
int16_t *im = &imbuf[0];
/* pointers to vertical and horizontal transforms. */
const int16_t *ptv = NULL, *pth = NULL;
int shortpitch = pitch >> 1;
switch (tx_type) {
case ADST_ADST :
ptv = pth = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0]
: &iadst_i16[0]);
break;
case ADST_DCT :
ptv = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
pth = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
break;
case DCT_ADST :
ptv = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]);
pth = (tx_dim == 4) ? &iadst_i4[0]
: ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]);
break;
case DCT_DCT :
ptv = pth = (tx_dim == 4) ? &idct_i4[0]
: ((tx_dim == 8) ? &idct_i8[0]
: &idct_i16[0]);
break;
default:
assert(0);
break;
}
/* vertical transformation */
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += ptv[k] * ip[(k * tx_dim)];
}
im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
ip++;
}
im += tx_dim; // 16
ptv += tx_dim;
ip = input;
}
/* horizontal transformation */
im = &imbuf[0];
for (j = 0; j < tx_dim; j++) {
const int16_t *pthc = pth;
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += im[k] * pthc[k];
}
op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
pthc += tx_dim;
}
im += tx_dim; // 16
op += shortpitch;
}
}
void vp9_short_idct4x4llm_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
2010-05-18 11:58:33 -04:00
short *ip = input;
short *op = output;
int temp1, temp2;
int shortpitch = pitch >> 1;
2010-05-18 11:58:33 -04:00
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[8];
b1 = ip[0] - ip[8];
2010-05-18 11:58:33 -04:00
temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;
temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
2010-05-18 11:58:33 -04:00
temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
2010-05-18 11:58:33 -04:00
op[shortpitch * 0] = a1 + d1;
op[shortpitch * 3] = a1 - d1;
2010-05-18 11:58:33 -04:00
op[shortpitch * 1] = b1 + c1;
op[shortpitch * 2] = b1 - c1;
2010-05-18 11:58:33 -04:00
ip++;
op++;
}
2010-05-18 11:58:33 -04:00
ip = output;
op = output;
2010-05-18 11:58:33 -04:00
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[2];
b1 = ip[0] - ip[2];
2010-05-18 11:58:33 -04:00
temp1 = (ip[1] * sinpi8sqrt2 + rounding) >> 16;
temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
2010-05-18 11:58:33 -04:00
temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (ip[3] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
2010-05-18 11:58:33 -04:00
op[0] = (a1 + d1 + 16) >> 5;
op[3] = (a1 - d1 + 16) >> 5;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-01 15:50:14 -08:00
op[1] = (b1 + c1 + 16) >> 5;
op[2] = (b1 - c1 + 16) >> 5;
2010-05-18 11:58:33 -04:00
ip += shortpitch;
op += shortpitch;
}
2010-05-18 11:58:33 -04:00
}
void vp9_short_idct4x4llm_1_c(short *input, short *output, int pitch) {
int i;
int a1;
short *op = output;
int shortpitch = pitch >> 1;
a1 = ((input[0] + 16) >> 5);
for (i = 0; i < 4; i++) {
op[0] = a1;
op[1] = a1;
op[2] = a1;
op[3] = a1;
op += shortpitch;
}
2010-05-18 11:58:33 -04:00
}
void vp9_dc_only_idct_add_c(short input_dc, unsigned char *pred_ptr,
unsigned char *dst_ptr, int pitch, int stride) {
int a1 = ((input_dc + 16) >> 5);
int r, c;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
dst_ptr[c] = clip_pixel(a1 + pred_ptr[c]);
2010-05-18 11:58:33 -04:00
}
dst_ptr += stride;
pred_ptr += pitch;
}
}
2010-05-18 11:58:33 -04:00
void vp9_short_inv_walsh4x4_c(short *input, short *output) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3]));
b1 = ((ip[1] + ip[2]));
c1 = ((ip[1] - ip[2]));
d1 = ((ip[0] - ip[3]));
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
2010-05-18 11:58:33 -04:00
}
void vp9_short_inv_walsh4x4_1_c(short *in, short *out) {
int i;
short tmp[4];
short *ip = in;
short *op = tmp;
op[0] = (ip[0] + 1) >> 1;
op[1] = op[2] = op[3] = (ip[0] >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[0] = (ip[0] + 1) >> 1;
op[4] = op[8] = op[12] = (ip[0] >> 1);
ip++;
op++;
}
2010-05-18 11:58:33 -04:00
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
#if CONFIG_LOSSLESS
void vp9_short_inv_walsh4x4_lossless_c(short *input, short *output) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
b1 = ((ip[1] + ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
c1 = ((ip[1] - ip[2])) >> Y2_WHT_UPSCALE_FACTOR;
d1 = ((ip[0] - ip[3])) >> Y2_WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[4] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[8] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[12] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
ip++;
op++;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
void vp9_short_inv_walsh4x4_1_lossless_c(short *in, short *out) {
int i;
short tmp[4];
short *ip = in;
short *op = tmp;
op[0] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) + 1) >> 1;
op[1] = op[2] = op[3] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[0] = ((ip[0] + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[4] = op[8] = op[12] = ((ip[0] >> 1)) << Y2_WHT_UPSCALE_FACTOR;
ip++;
op++;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
void vp9_short_inv_walsh4x4_x8_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int shortpitch = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3])) >> WHT_UPSCALE_FACTOR;
b1 = ((ip[1] + ip[2])) >> WHT_UPSCALE_FACTOR;
c1 = ((ip[1] - ip[2])) >> WHT_UPSCALE_FACTOR;
d1 = ((ip[0] - ip[3])) >> WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += shortpitch;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[shortpitch * 0] + ip[shortpitch * 3];
b1 = ip[shortpitch * 1] + ip[shortpitch * 2];
c1 = ip[shortpitch * 1] - ip[shortpitch * 2];
d1 = ip[shortpitch * 0] - ip[shortpitch * 3];
op[shortpitch * 0] = (a1 + b1 + 1) >> 1;
op[shortpitch * 1] = (c1 + d1) >> 1;
op[shortpitch * 2] = (a1 - b1) >> 1;
op[shortpitch * 3] = (d1 - c1) >> 1;
ip++;
op++;
}
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
void vp9_short_inv_walsh4x4_1_x8_c(short *in, short *out, int pitch) {
int i;
short tmp[4];
short *ip = in;
short *op = tmp;
int shortpitch = pitch >> 1;
op[0] = ((ip[0] >> WHT_UPSCALE_FACTOR) + 1) >> 1;
op[1] = op[2] = op[3] = ((ip[0] >> WHT_UPSCALE_FACTOR) >> 1);
ip = tmp;
op = out;
for (i = 0; i < 4; i++) {
op[shortpitch * 0] = (ip[0] + 1) >> 1;
op[shortpitch * 1] = op[shortpitch * 2] = op[shortpitch * 3] = ip[0] >> 1;
ip++;
op++;
}
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
void vp9_dc_only_inv_walsh_add_c(short input_dc, unsigned char *pred_ptr,
unsigned char *dst_ptr,
int pitch, int stride) {
int r, c;
short tmp[16];
vp9_short_inv_walsh4x4_1_x8_c(&input_dc, tmp, 4 << 1);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
dst_ptr[c] = clip_pixel(tmp[r * 4 + c] + pred_ptr[c]);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
dst_ptr += stride;
pred_ptr += pitch;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
}
#endif
void vp9_dc_only_idct_add_8x8_c(short input_dc,
unsigned char *pred_ptr,
unsigned char *dst_ptr,
int pitch, int stride) {
int a1 = ((input_dc + 16) >> 5);
int r, c, b;
unsigned char *orig_pred = pred_ptr;
unsigned char *orig_dst = dst_ptr;
for (b = 0; b < 4; b++) {
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
dst_ptr[c] = clip_pixel(a1 + pred_ptr[c]);
}
dst_ptr += stride;
pred_ptr += pitch;
}
dst_ptr = orig_dst + (b + 1) % 2 * 4 + (b + 1) / 2 * 4 * stride;
pred_ptr = orig_pred + (b + 1) % 2 * 4 + (b + 1) / 2 * 4 * pitch;
}
}
#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */
/* row (horizontal) IDCT
*
* 7 pi 1 dst[k] = sum c[l] * src[l] * cos( -- *
* ( k + - ) * l ) l=0 8 2
*
* where: c[0] = 128 c[1..7] = 128*sqrt(2) */
static void idctrow(int *blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) {
blk[0] = blk[1] = blk[2] = blk[3] = blk[4]
= blk[5] = blk[6] = blk[7] = blk[0] << 3;
return;
}
x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */
/* first stage */
x8 = W7 * (x4 + x5);
x4 = x8 + (W1 - W7) * x4;
x5 = x8 - (W1 + W7) * x5;
x8 = W3 * (x6 + x7);
x6 = x8 - (W3 - W5) * x6;
x7 = x8 - (W3 + W5) * x7;
/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2);
x2 = x1 - (W2 + W6) * x2;
x3 = x1 + (W2 - W6) * x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
/* fourth stage */
blk[0] = (x7 + x1) >> 8;
blk[1] = (x3 + x2) >> 8;
blk[2] = (x0 + x4) >> 8;
blk[3] = (x8 + x6) >> 8;
blk[4] = (x8 - x6) >> 8;
blk[5] = (x0 - x4) >> 8;
blk[6] = (x3 - x2) >> 8;
blk[7] = (x7 - x1) >> 8;
}
/* column (vertical) IDCT
*
* 7 pi 1 dst[8*k] = sum c[l] * src[8*l] *
* cos( -- * ( k + - ) * l ) l=0 8 2
*
* where: c[0] = 1/1024 c[1..7] = (1/1024)*sqrt(2) */
static void idctcol(int *blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
(x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) |
(x7 = blk[8 * 3]))) {
blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3]
= blk[8 * 4] = blk[8 * 5] = blk[8 * 6]
= blk[8 * 7] = ((blk[8 * 0] + 32) >> 6);
return;
}
x0 = (blk[8 * 0] << 8) + 16384;
/* first stage */
x8 = W7 * (x4 + x5) + 4;
x4 = (x8 + (W1 - W7) * x4) >> 3;
x5 = (x8 - (W1 + W7) * x5) >> 3;
x8 = W3 * (x6 + x7) + 4;
x6 = (x8 - (W3 - W5) * x6) >> 3;
x7 = (x8 - (W3 + W5) * x7) >> 3;
/* second stage */
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2) + 4;
x2 = (x1 - (W2 + W6) * x2) >> 3;
x3 = (x1 + (W2 - W6) * x3) >> 3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
/* third stage */
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
/* fourth stage */
blk[8 * 0] = (x7 + x1) >> 14;
blk[8 * 1] = (x3 + x2) >> 14;
blk[8 * 2] = (x0 + x4) >> 14;
blk[8 * 3] = (x8 + x6) >> 14;
blk[8 * 4] = (x8 - x6) >> 14;
blk[8 * 5] = (x0 - x4) >> 14;
blk[8 * 6] = (x3 - x2) >> 14;
blk[8 * 7] = (x7 - x1) >> 14;
}
#define TX_DIM 8
void vp9_short_idct8x8_c(short *coefs, short *block, int pitch) {
int X[TX_DIM * TX_DIM];
int i, j;
int shortpitch = pitch >> 1;
for (i = 0; i < TX_DIM; i++) {
for (j = 0; j < TX_DIM; j++) {
X[i * TX_DIM + j] = (int)(coefs[i * TX_DIM + j] + 1
+ (coefs[i * TX_DIM + j] < 0)) >> 2;
}
}
for (i = 0; i < 8; i++)
idctrow(X + 8 * i);
for (i = 0; i < 8; i++)
idctcol(X + i);
for (i = 0; i < TX_DIM; i++) {
for (j = 0; j < TX_DIM; j++) {
block[i * shortpitch + j] = X[i * TX_DIM + j] >> 1;
}
}
}
/* Row IDCT when only first 4 coefficients are non-zero. */
static void idctrow10(int *blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) {
blk[0] = blk[1] = blk[2] = blk[3] = blk[4]
= blk[5] = blk[6] = blk[7] = blk[0] << 3;
return;
}
x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */
/* first stage */
x5 = W7 * x4;
x4 = W1 * x4;
x6 = W3 * x7;
x7 = -W5 * x7;
/* second stage */
x2 = W6 * x3;
x3 = W2 * x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
/* third stage */
x7 = x0 + x3;
x8 = x0 - x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
/* fourth stage */
blk[0] = (x7 + x1) >> 8;
blk[1] = (x3 + x2) >> 8;
blk[2] = (x0 + x4) >> 8;
blk[3] = (x8 + x6) >> 8;
blk[4] = (x8 - x6) >> 8;
blk[5] = (x0 - x4) >> 8;
blk[6] = (x3 - x2) >> 8;
blk[7] = (x7 - x1) >> 8;
}
/* Column (vertical) IDCT when only first 4 coefficients are non-zero. */
static void idctcol10(int *blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
/* shortcut */
if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
(x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) |
(x7 = blk[8 * 3]))) {
blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3]
= blk[8 * 4] = blk[8 * 5] = blk[8 * 6]
= blk[8 * 7] = ((blk[8 * 0] + 32) >> 6);
return;
}
x0 = (blk[8 * 0] << 8) + 16384;
/* first stage */
x5 = (W7 * x4 + 4) >> 3;
x4 = (W1 * x4 + 4) >> 3;
x6 = (W3 * x7 + 4) >> 3;
x7 = (-W5 * x7 + 4) >> 3;
/* second stage */
x2 = (W6 * x3 + 4) >> 3;
x3 = (W2 * x3 + 4) >> 3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
/* third stage */
x7 = x0 + x3;
x8 = x0 - x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
/* fourth stage */
blk[8 * 0] = (x7 + x1) >> 14;
blk[8 * 1] = (x3 + x2) >> 14;
blk[8 * 2] = (x0 + x4) >> 14;
blk[8 * 3] = (x8 + x6) >> 14;
blk[8 * 4] = (x8 - x6) >> 14;
blk[8 * 5] = (x0 - x4) >> 14;
blk[8 * 6] = (x3 - x2) >> 14;
blk[8 * 7] = (x7 - x1) >> 14;
}
void vp9_short_idct10_8x8_c(short *coefs, short *block, int pitch) {
int X[TX_DIM * TX_DIM];
int i, j;
int shortpitch = pitch >> 1;
for (i = 0; i < TX_DIM; i++) {
for (j = 0; j < TX_DIM; j++) {
X[i * TX_DIM + j] = (int)(coefs[i * TX_DIM + j] + 1
+ (coefs[i * TX_DIM + j] < 0)) >> 2;
}
}
/* Do first 4 row idct only since non-zero dct coefficients are all in
* upper-left 4x4 area. */
for (i = 0; i < 4; i++)
idctrow10(X + 8 * i);
for (i = 0; i < 8; i++)
idctcol10(X + i);
for (i = 0; i < TX_DIM; i++) {
for (j = 0; j < TX_DIM; j++) {
block[i * shortpitch + j] = X[i * TX_DIM + j] >> 1;
}
}
}
void vp9_short_ihaar2x2_c(short *input, short *output, int pitch) {
int i;
short *ip = input; // 0,1, 4, 8
short *op = output;
for (i = 0; i < 16; i++) {
op[i] = 0;
}
op[0] = (ip[0] + ip[1] + ip[4] + ip[8] + 1) >> 1;
op[1] = (ip[0] - ip[1] + ip[4] - ip[8]) >> 1;
op[4] = (ip[0] + ip[1] - ip[4] - ip[8]) >> 1;
op[8] = (ip[0] - ip[1] - ip[4] + ip[8]) >> 1;
}
#if 0
// Keep a really bad float version as reference for now.
void vp9_short_idct16x16_c(short *input, short *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double x;
const int short_pitch = pitch >> 1;
int i, j, k, l;
for (l = 0; l < 16; ++l) {
for (k = 0; k < 16; ++k) {
double s = 0;
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/32;
if (i != 0)
x *= sqrt(2.0);
if (j != 0)
x *= sqrt(2.0);
s += x;
}
}
output[k*short_pitch+l] = (short)round(s);
}
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#endif
#define TEST_INT_16x16_IDCT 1
#if !TEST_INT_16x16_IDCT
static void butterfly_16x16_idct_1d(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1 and 2
step[ 0] = input[0] + input[8];
step[ 1] = input[0] - input[8];
temp1 = input[4]*C12;
temp2 = input[12]*C4;
temp1 -= temp2;
temp1 *= C8;
step[ 2] = 2*(temp1);
temp1 = input[4]*C4;
temp2 = input[12]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
step[ 3] = 2*(temp1);
temp1 = input[2]*C8;
temp1 = 2*(temp1);
temp2 = input[6] + input[10];
step[ 4] = temp1 + temp2;
step[ 5] = temp1 - temp2;
temp1 = input[14]*C8;
temp1 = 2*(temp1);
temp2 = input[6] - input[10];
step[ 6] = temp2 - temp1;
step[ 7] = temp2 + temp1;
// for odd input
temp1 = input[3]*C12;
temp2 = input[13]*C4;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[ 8] = 2*(temp1);
temp1 = input[3]*C4;
temp2 = input[13]*C12;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[ 9] = 2*(temp2);
intermediate[10] = 2*(input[9]*C8);
intermediate[11] = input[15] - input[1];
intermediate[12] = input[15] + input[1];
intermediate[13] = 2*((input[7]*C8));
temp1 = input[11]*C12;
temp2 = input[5]*C4;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[14] = 2*(temp2);
temp1 = input[11]*C4;
temp2 = input[5]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[15] = 2*(temp1);
step[ 8] = intermediate[ 8] + intermediate[14];
step[ 9] = intermediate[ 9] + intermediate[15];
step[10] = intermediate[10] + intermediate[11];
step[11] = intermediate[10] - intermediate[11];
step[12] = intermediate[12] + intermediate[13];
step[13] = intermediate[12] - intermediate[13];
step[14] = intermediate[ 8] - intermediate[14];
step[15] = intermediate[ 9] - intermediate[15];
// step 3
output[0] = step[ 0] + step[ 3];
output[1] = step[ 1] + step[ 2];
output[2] = step[ 1] - step[ 2];
output[3] = step[ 0] - step[ 3];
temp1 = step[ 4]*C14;
temp2 = step[ 7]*C2;
temp1 -= temp2;
output[4] = (temp1);
temp1 = step[ 4]*C2;
temp2 = step[ 7]*C14;
temp1 += temp2;
output[7] = (temp1);
temp1 = step[ 5]*C10;
temp2 = step[ 6]*C6;
temp1 -= temp2;
output[5] = (temp1);
temp1 = step[ 5]*C6;
temp2 = step[ 6]*C10;
temp1 += temp2;
output[6] = (temp1);
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8]*C7;
temp2 = output[15]*C9;
temp1 -= temp2;
step[ 8] = (temp1);
temp1 = output[9]*C11;
temp2 = output[14]*C5;
temp1 += temp2;
step[ 9] = (temp1);
temp1 = output[10]*C3;
temp2 = output[13]*C13;
temp1 -= temp2;
step[10] = (temp1);
temp1 = output[11]*C15;
temp2 = output[12]*C1;
temp1 += temp2;
step[11] = (temp1);
temp1 = output[11]*C1;
temp2 = output[12]*C15;
temp2 -= temp1;
step[12] = (temp2);
temp1 = output[10]*C13;
temp2 = output[13]*C3;
temp1 += temp2;
step[13] = (temp1);
temp1 = output[9]*C5;
temp2 = output[14]*C11;
temp2 -= temp1;
step[14] = (temp2);
temp1 = output[8]*C9;
temp2 = output[15]*C7;
temp1 += temp2;
step[15] = (temp1);
// step 5
output[0] = (step[0] + step[15]);
output[1] = (step[1] + step[14]);
output[2] = (step[2] + step[13]);
output[3] = (step[3] + step[12]);
output[4] = (step[4] + step[11]);
output[5] = (step[5] + step[10]);
output[6] = (step[6] + step[ 9]);
output[7] = (step[7] + step[ 8]);
output[15] = (step[0] - step[15]);
output[14] = (step[1] - step[14]);
output[13] = (step[2] - step[13]);
output[12] = (step[3] - step[12]);
output[11] = (step[4] - step[11]);
output[10] = (step[5] - step[10]);
output[9] = (step[6] - step[ 9]);
output[8] = (step[7] - step[ 8]);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
// Remove once an int version of iDCT is written
#if 0
void reference_16x16_idct_1d(double input[16], double output[16]) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
const double kPi = 3.141592653589793238462643383279502884;
const double kSqrt2 = 1.414213562373095048801688724209698;
for (int k = 0; k < 16; k++) {
output[k] = 0.0;
for (int n = 0; n < 16; n++) {
output[k] += input[n]*cos(kPi*(2*k+1)*n/32.0);
if (n == 0)
output[k] = output[k]/kSqrt2;
}
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#endif
void vp9_short_idct16x16_c(short *input, short *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double out[16*16], out2[16*16];
const int short_pitch = pitch >> 1;
int i, j;
// First transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = input[j + i*short_pitch];
butterfly_16x16_idct_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j + i*16] = temp_out[j];
}
// Then transform columns
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
butterfly_16x16_idct_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out2[j*16 + i] = temp_out[j];
}
for (i = 0; i < 16*16; ++i)
output[i] = round(out2[i]/128);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#else
#define INITIAL_SHIFT 2
#define INITIAL_ROUNDING (1 << (INITIAL_SHIFT - 1))
#define RIGHT_SHIFT 14
#define RIGHT_ROUNDING (1 << (RIGHT_SHIFT - 1))
static const int16_t C1 = 16305;
static const int16_t C2 = 16069;
static const int16_t C3 = 15679;
static const int16_t C4 = 15137;
static const int16_t C5 = 14449;
static const int16_t C6 = 13623;
static const int16_t C7 = 12665;
static const int16_t C8 = 11585;
static const int16_t C9 = 10394;
static const int16_t C10 = 9102;
static const int16_t C11 = 7723;
static const int16_t C12 = 6270;
static const int16_t C13 = 4756;
static const int16_t C14 = 3196;
static const int16_t C15 = 1606;
static void butterfly_16x16_idct_1d(int16_t input[16], int16_t output[16],
int last_shift_bits) {
int16_t step[16];
int intermediate[16];
int temp1, temp2;
int step1_shift = RIGHT_SHIFT + INITIAL_SHIFT;
int step1_rounding = 1 << (step1_shift - 1);
int last_rounding = 0;
if (last_shift_bits > 0)
last_rounding = 1 << (last_shift_bits - 1);
// step 1 and 2
step[ 0] = (input[0] + input[8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 1] = (input[0] - input[8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
temp1 = input[4] * C12;
temp2 = input[12] * C4;
temp1 = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
step[ 2] = (2 * (temp1) + step1_rounding) >> step1_shift;
temp1 = input[4] * C4;
temp2 = input[12] * C12;
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
step[ 3] = (2 * (temp1) + step1_rounding) >> step1_shift;
temp1 = input[2] * C8;
temp1 = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp2 = input[6] + input[10];
step[ 4] = (temp1 + temp2 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 5] = (temp1 - temp2 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
temp1 = input[14] * C8;
temp1 = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp2 = input[6] - input[10];
step[ 6] = (temp2 - temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 7] = (temp2 + temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
// for odd input
temp1 = input[3] * C12;
temp2 = input[13] * C4;
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
intermediate[ 8] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = input[3] * C4;
temp2 = input[13] * C12;
temp2 = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp2 *= C8;
intermediate[ 9] = (2 * (temp2) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
intermediate[10] = (2 * (input[9] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
intermediate[11] = input[15] - input[1];
intermediate[12] = input[15] + input[1];
intermediate[13] = (2 * (input[7] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = input[11] * C12;
temp2 = input[5] * C4;
temp2 = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp2 *= C8;
intermediate[14] = (2 * (temp2) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = input[11] * C4;
temp2 = input[5] * C12;
temp1 = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
intermediate[15] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
step[ 8] = (intermediate[ 8] + intermediate[14] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[ 9] = (intermediate[ 9] + intermediate[15] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[10] = (intermediate[10] + intermediate[11] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[11] = (intermediate[10] - intermediate[11] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[12] = (intermediate[12] + intermediate[13] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[13] = (intermediate[12] - intermediate[13] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[14] = (intermediate[ 8] - intermediate[14] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
step[15] = (intermediate[ 9] - intermediate[15] + INITIAL_ROUNDING)
>> INITIAL_SHIFT;
// step 3
output[0] = step[ 0] + step[ 3];
output[1] = step[ 1] + step[ 2];
output[2] = step[ 1] - step[ 2];
output[3] = step[ 0] - step[ 3];
temp1 = step[ 4] * C14;
temp2 = step[ 7] * C2;
output[4] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 4] * C2;
temp2 = step[ 7] * C14;
output[7] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 5] * C10;
temp2 = step[ 6] * C6;
output[5] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 5] * C6;
temp2 = step[ 6] * C10;
output[6] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8] * C7;
temp2 = output[15] * C9;
step[ 8] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[9] * C11;
temp2 = output[14] * C5;
step[ 9] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[10] * C3;
temp2 = output[13] * C13;
step[10] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[11] * C15;
temp2 = output[12] * C1;
step[11] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[11] * C1;
temp2 = output[12] * C15;
step[12] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[10] * C13;
temp2 = output[13] * C3;
step[13] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[9] * C5;
temp2 = output[14] * C11;
step[14] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[8] * C9;
temp2 = output[15] * C7;
step[15] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
// step 5
output[0] = (step[0] + step[15] + last_rounding) >> last_shift_bits;
output[1] = (step[1] + step[14] + last_rounding) >> last_shift_bits;
output[2] = (step[2] + step[13] + last_rounding) >> last_shift_bits;
output[3] = (step[3] + step[12] + last_rounding) >> last_shift_bits;
output[4] = (step[4] + step[11] + last_rounding) >> last_shift_bits;
output[5] = (step[5] + step[10] + last_rounding) >> last_shift_bits;
output[6] = (step[6] + step[ 9] + last_rounding) >> last_shift_bits;
output[7] = (step[7] + step[ 8] + last_rounding) >> last_shift_bits;
output[15] = (step[0] - step[15] + last_rounding) >> last_shift_bits;
output[14] = (step[1] - step[14] + last_rounding) >> last_shift_bits;
output[13] = (step[2] - step[13] + last_rounding) >> last_shift_bits;
output[12] = (step[3] - step[12] + last_rounding) >> last_shift_bits;
output[11] = (step[4] - step[11] + last_rounding) >> last_shift_bits;
output[10] = (step[5] - step[10] + last_rounding) >> last_shift_bits;
output[9] = (step[6] - step[ 9] + last_rounding) >> last_shift_bits;
output[8] = (step[7] - step[ 8] + last_rounding) >> last_shift_bits;
}
void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[16 * 16];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[16], temp_out[16];
// First transform rows
for (i = 0; i < 16; ++i) {
butterfly_16x16_idct_1d(input, outptr, 0);
input += short_pitch;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
butterfly_16x16_idct_1d(temp_in, temp_out, 3);
for (j = 0; j < 16; ++j)
output[j * 16 + i] = temp_out[j];
}
}
/* The following function is called when we know the maximum number of non-zero
* dct coefficients is less or equal 10.
*/
static void butterfly_16x16_idct10_1d(int16_t input[16], int16_t output[16],
int last_shift_bits) {
int16_t step[16] = {0};
int intermediate[16] = {0};
int temp1, temp2;
int last_rounding = 0;
if (last_shift_bits > 0)
last_rounding = 1 << (last_shift_bits - 1);
// step 1 and 2
step[ 0] = (input[0] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 1] = (input[0] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
temp1 = (2 * (input[2] * C8) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
step[ 4] = (temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 5] = (temp1 + INITIAL_ROUNDING) >> INITIAL_SHIFT;
// for odd input
temp1 = (input[3] * C12 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
intermediate[ 8] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = (-input[3] * C4 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 *= C8;
intermediate[ 9] = (2 * (temp1) + RIGHT_ROUNDING) >> RIGHT_SHIFT;
step[ 8] = (intermediate[ 8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[ 9] = (intermediate[ 9] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[10] = (-input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[11] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[12] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[13] = (input[1] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[14] = (intermediate[ 8] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
step[15] = (intermediate[ 9] + INITIAL_ROUNDING) >> INITIAL_SHIFT;
// step 3
output[0] = step[ 0];
output[1] = step[ 1];
output[2] = step[ 1];
output[3] = step[ 0];
temp1 = step[ 4] * C14;
output[4] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 4] * C2;
output[7] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 5] * C10;
output[5] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 5] * C6;
output[6] = (temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8] * C7;
temp2 = output[15] * C9;
step[ 8] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[9] * C11;
temp2 = output[14] * C5;
step[ 9] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[10] * C3;
temp2 = output[13] * C13;
step[10] = (temp1 - temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[11] * C15;
temp2 = output[12] * C1;
step[11] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[11] * C1;
temp2 = output[12] * C15;
step[12] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[10] * C13;
temp2 = output[13] * C3;
step[13] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[9] * C5;
temp2 = output[14] * C11;
step[14] = (temp2 - temp1 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
temp1 = output[8] * C9;
temp2 = output[15] * C7;
step[15] = (temp1 + temp2 + RIGHT_ROUNDING) >> RIGHT_SHIFT;
// step 5
output[0] = (step[0] + step[15] + last_rounding) >> last_shift_bits;
output[1] = (step[1] + step[14] + last_rounding) >> last_shift_bits;
output[2] = (step[2] + step[13] + last_rounding) >> last_shift_bits;
output[3] = (step[3] + step[12] + last_rounding) >> last_shift_bits;
output[4] = (step[4] + step[11] + last_rounding) >> last_shift_bits;
output[5] = (step[5] + step[10] + last_rounding) >> last_shift_bits;
output[6] = (step[6] + step[ 9] + last_rounding) >> last_shift_bits;
output[7] = (step[7] + step[ 8] + last_rounding) >> last_shift_bits;
output[15] = (step[0] - step[15] + last_rounding) >> last_shift_bits;
output[14] = (step[1] - step[14] + last_rounding) >> last_shift_bits;
output[13] = (step[2] - step[13] + last_rounding) >> last_shift_bits;
output[12] = (step[3] - step[12] + last_rounding) >> last_shift_bits;
output[11] = (step[4] - step[11] + last_rounding) >> last_shift_bits;
output[10] = (step[5] - step[10] + last_rounding) >> last_shift_bits;
output[9] = (step[6] - step[ 9] + last_rounding) >> last_shift_bits;
output[8] = (step[7] - step[ 8] + last_rounding) >> last_shift_bits;
}
void vp9_short_idct10_16x16_c(int16_t *input, int16_t *output, int pitch) {
int16_t out[16 * 16];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[16], temp_out[16];
/* First transform rows. Since all non-zero dct coefficients are in
* upper-left 4x4 area, we only need to calculate first 4 rows here.
*/
vpx_memset(out, 0, sizeof(out));
for (i = 0; i < 4; ++i) {
butterfly_16x16_idct10_1d(input, outptr, 0);
input += short_pitch;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
butterfly_16x16_idct10_1d(temp_in, temp_out, 3);
for (j = 0; j < 16; ++j)
output[j*16 + i] = temp_out[j];
}
}
#undef INITIAL_SHIFT
#undef INITIAL_ROUNDING
#undef RIGHT_SHIFT
#undef RIGHT_ROUNDING
#endif
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
#if CONFIG_TX32X32
#if !CONFIG_DWT32X32HYBRID
#define DownshiftMultiplyBy2(x) x * 2
#define DownshiftMultiply(x) x
static void idct16(double *input, double *output, int stride) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1 and 2
step[ 0] = input[stride*0] + input[stride*8];
step[ 1] = input[stride*0] - input[stride*8];
temp1 = input[stride*4]*C12;
temp2 = input[stride*12]*C4;
temp1 -= temp2;
temp1 = DownshiftMultiply(temp1);
temp1 *= C8;
step[ 2] = DownshiftMultiplyBy2(temp1);
temp1 = input[stride*4]*C4;
temp2 = input[stride*12]*C12;
temp1 += temp2;
temp1 = DownshiftMultiply(temp1);
temp1 *= C8;
step[ 3] = DownshiftMultiplyBy2(temp1);
temp1 = input[stride*2]*C8;
temp1 = DownshiftMultiplyBy2(temp1);
temp2 = input[stride*6] + input[stride*10];
step[ 4] = temp1 + temp2;
step[ 5] = temp1 - temp2;
temp1 = input[stride*14]*C8;
temp1 = DownshiftMultiplyBy2(temp1);
temp2 = input[stride*6] - input[stride*10];
step[ 6] = temp2 - temp1;
step[ 7] = temp2 + temp1;
// for odd input
temp1 = input[stride*3]*C12;
temp2 = input[stride*13]*C4;
temp1 += temp2;
temp1 = DownshiftMultiply(temp1);
temp1 *= C8;
intermediate[ 8] = DownshiftMultiplyBy2(temp1);
temp1 = input[stride*3]*C4;
temp2 = input[stride*13]*C12;
temp2 -= temp1;
temp2 = DownshiftMultiply(temp2);
temp2 *= C8;
intermediate[ 9] = DownshiftMultiplyBy2(temp2);
intermediate[10] = DownshiftMultiplyBy2(input[stride*9]*C8);
intermediate[11] = input[stride*15] - input[stride*1];
intermediate[12] = input[stride*15] + input[stride*1];
intermediate[13] = DownshiftMultiplyBy2((input[stride*7]*C8));
temp1 = input[stride*11]*C12;
temp2 = input[stride*5]*C4;
temp2 -= temp1;
temp2 = DownshiftMultiply(temp2);
temp2 *= C8;
intermediate[14] = DownshiftMultiplyBy2(temp2);
temp1 = input[stride*11]*C4;
temp2 = input[stride*5]*C12;
temp1 += temp2;
temp1 = DownshiftMultiply(temp1);
temp1 *= C8;
intermediate[15] = DownshiftMultiplyBy2(temp1);
step[ 8] = intermediate[ 8] + intermediate[14];
step[ 9] = intermediate[ 9] + intermediate[15];
step[10] = intermediate[10] + intermediate[11];
step[11] = intermediate[10] - intermediate[11];
step[12] = intermediate[12] + intermediate[13];
step[13] = intermediate[12] - intermediate[13];
step[14] = intermediate[ 8] - intermediate[14];
step[15] = intermediate[ 9] - intermediate[15];
// step 3
output[stride*0] = step[ 0] + step[ 3];
output[stride*1] = step[ 1] + step[ 2];
output[stride*2] = step[ 1] - step[ 2];
output[stride*3] = step[ 0] - step[ 3];
temp1 = step[ 4]*C14;
temp2 = step[ 7]*C2;
temp1 -= temp2;
output[stride*4] = DownshiftMultiply(temp1);
temp1 = step[ 4]*C2;
temp2 = step[ 7]*C14;
temp1 += temp2;
output[stride*7] = DownshiftMultiply(temp1);
temp1 = step[ 5]*C10;
temp2 = step[ 6]*C6;
temp1 -= temp2;
output[stride*5] = DownshiftMultiply(temp1);
temp1 = step[ 5]*C6;
temp2 = step[ 6]*C10;
temp1 += temp2;
output[stride*6] = DownshiftMultiply(temp1);
output[stride*8] = step[ 8] + step[11];
output[stride*9] = step[ 9] + step[10];
output[stride*10] = step[ 9] - step[10];
output[stride*11] = step[ 8] - step[11];
output[stride*12] = step[12] + step[15];
output[stride*13] = step[13] + step[14];
output[stride*14] = step[13] - step[14];
output[stride*15] = step[12] - step[15];
// output 4
step[ 0] = output[stride*0] + output[stride*7];
step[ 1] = output[stride*1] + output[stride*6];
step[ 2] = output[stride*2] + output[stride*5];
step[ 3] = output[stride*3] + output[stride*4];
step[ 4] = output[stride*3] - output[stride*4];
step[ 5] = output[stride*2] - output[stride*5];
step[ 6] = output[stride*1] - output[stride*6];
step[ 7] = output[stride*0] - output[stride*7];
temp1 = output[stride*8]*C7;
temp2 = output[stride*15]*C9;
temp1 -= temp2;
step[ 8] = DownshiftMultiply(temp1);
temp1 = output[stride*9]*C11;
temp2 = output[stride*14]*C5;
temp1 += temp2;
step[ 9] = DownshiftMultiply(temp1);
temp1 = output[stride*10]*C3;
temp2 = output[stride*13]*C13;
temp1 -= temp2;
step[10] = DownshiftMultiply(temp1);
temp1 = output[stride*11]*C15;
temp2 = output[stride*12]*C1;
temp1 += temp2;
step[11] = DownshiftMultiply(temp1);
temp1 = output[stride*11]*C1;
temp2 = output[stride*12]*C15;
temp2 -= temp1;
step[12] = DownshiftMultiply(temp2);
temp1 = output[stride*10]*C13;
temp2 = output[stride*13]*C3;
temp1 += temp2;
step[13] = DownshiftMultiply(temp1);
temp1 = output[stride*9]*C5;
temp2 = output[stride*14]*C11;
temp2 -= temp1;
step[14] = DownshiftMultiply(temp2);
temp1 = output[stride*8]*C9;
temp2 = output[stride*15]*C7;
temp1 += temp2;
step[15] = DownshiftMultiply(temp1);
// step 5
output[stride*0] = step[0] + step[15];
output[stride*1] = step[1] + step[14];
output[stride*2] = step[2] + step[13];
output[stride*3] = step[3] + step[12];
output[stride*4] = step[4] + step[11];
output[stride*5] = step[5] + step[10];
output[stride*6] = step[6] + step[ 9];
output[stride*7] = step[7] + step[ 8];
output[stride*15] = step[0] - step[15];
output[stride*14] = step[1] - step[14];
output[stride*13] = step[2] - step[13];
output[stride*12] = step[3] - step[12];
output[stride*11] = step[4] - step[11];
output[stride*10] = step[5] - step[10];
output[stride*9] = step[6] - step[ 9];
output[stride*8] = step[7] - step[ 8];
}
static void butterfly_32_idct_1d(double *input, double *output, int stride) {
static const double C1 = 0.998795456205; // cos(pi * 1 / 64)
static const double C3 = 0.989176509965; // cos(pi * 3 / 64)
static const double C5 = 0.970031253195; // cos(pi * 5 / 64)
static const double C7 = 0.941544065183; // cos(pi * 7 / 64)
static const double C9 = 0.903989293123; // cos(pi * 9 / 64)
static const double C11 = 0.857728610000; // cos(pi * 11 / 64)
static const double C13 = 0.803207531481; // cos(pi * 13 / 64)
static const double C15 = 0.740951125355; // cos(pi * 15 / 64)
static const double C16 = 0.707106781187; // cos(pi * 16 / 64)
static const double C17 = 0.671558954847; // cos(pi * 17 / 64)
static const double C19 = 0.595699304492; // cos(pi * 19 / 64)
static const double C21 = 0.514102744193; // cos(pi * 21 / 64)
static const double C23 = 0.427555093430; // cos(pi * 23 / 64)
static const double C25 = 0.336889853392; // cos(pi * 25 / 64)
static const double C27 = 0.242980179903; // cos(pi * 27 / 64)
static const double C29 = 0.146730474455; // cos(pi * 29 / 64)
static const double C31 = 0.049067674327; // cos(pi * 31 / 64)
double step1[32];
double step2[32];
step1[ 0] = input[stride*0];
step1[ 1] = input[stride*2];
step1[ 2] = input[stride*4];
step1[ 3] = input[stride*6];
step1[ 4] = input[stride*8];
step1[ 5] = input[stride*10];
step1[ 6] = input[stride*12];
step1[ 7] = input[stride*14];
step1[ 8] = input[stride*16];
step1[ 9] = input[stride*18];
step1[10] = input[stride*20];
step1[11] = input[stride*22];
step1[12] = input[stride*24];
step1[13] = input[stride*26];
step1[14] = input[stride*28];
step1[15] = input[stride*30];
step1[16] = DownshiftMultiplyBy2(input[stride*1]*C16);
step1[17] = (input[stride*3] + input[stride*1]);
step1[18] = (input[stride*5] + input[stride*3]);
step1[19] = (input[stride*7] + input[stride*5]);
step1[20] = (input[stride*9] + input[stride*7]);
step1[21] = (input[stride*11] + input[stride*9]);
step1[22] = (input[stride*13] + input[stride*11]);
step1[23] = (input[stride*15] + input[stride*13]);
step1[24] = (input[stride*17] + input[stride*15]);
step1[25] = (input[stride*19] + input[stride*17]);
step1[26] = (input[stride*21] + input[stride*19]);
step1[27] = (input[stride*23] + input[stride*21]);
step1[28] = (input[stride*25] + input[stride*23]);
step1[29] = (input[stride*27] + input[stride*25]);
step1[30] = (input[stride*29] + input[stride*27]);
step1[31] = (input[stride*31] + input[stride*29]);
idct16(step1, step2, 1);
idct16(step1 + 16, step2 + 16, 1);
step2[16] = DownshiftMultiply(step2[16] / (2*C1));
step2[17] = DownshiftMultiply(step2[17] / (2*C3));
step2[18] = DownshiftMultiply(step2[18] / (2*C5));
step2[19] = DownshiftMultiply(step2[19] / (2*C7));
step2[20] = DownshiftMultiply(step2[20] / (2*C9));
step2[21] = DownshiftMultiply(step2[21] / (2*C11));
step2[22] = DownshiftMultiply(step2[22] / (2*C13));
step2[23] = DownshiftMultiply(step2[23] / (2*C15));
step2[24] = DownshiftMultiply(step2[24] / (2*C17));
step2[25] = DownshiftMultiply(step2[25] / (2*C19));
step2[26] = DownshiftMultiply(step2[26] / (2*C21));
step2[27] = DownshiftMultiply(step2[27] / (2*C23));
step2[28] = DownshiftMultiply(step2[28] / (2*C25));
step2[29] = DownshiftMultiply(step2[29] / (2*C27));
step2[30] = DownshiftMultiply(step2[30] / (2*C29));
step2[31] = DownshiftMultiply(step2[31] / (2*C31));
output[stride* 0] = step2[ 0] + step2[16];
output[stride* 1] = step2[ 1] + step2[17];
output[stride* 2] = step2[ 2] + step2[18];
output[stride* 3] = step2[ 3] + step2[19];
output[stride* 4] = step2[ 4] + step2[20];
output[stride* 5] = step2[ 5] + step2[21];
output[stride* 6] = step2[ 6] + step2[22];
output[stride* 7] = step2[ 7] + step2[23];
output[stride* 8] = step2[ 8] + step2[24];
output[stride* 9] = step2[ 9] + step2[25];
output[stride*10] = step2[10] + step2[26];
output[stride*11] = step2[11] + step2[27];
output[stride*12] = step2[12] + step2[28];
output[stride*13] = step2[13] + step2[29];
output[stride*14] = step2[14] + step2[30];
output[stride*15] = step2[15] + step2[31];
output[stride*16] = step2[15] - step2[(31 - 0)];
output[stride*17] = step2[14] - step2[(31 - 1)];
output[stride*18] = step2[13] - step2[(31 - 2)];
output[stride*19] = step2[12] - step2[(31 - 3)];
output[stride*20] = step2[11] - step2[(31 - 4)];
output[stride*21] = step2[10] - step2[(31 - 5)];
output[stride*22] = step2[ 9] - step2[(31 - 6)];
output[stride*23] = step2[ 8] - step2[(31 - 7)];
output[stride*24] = step2[ 7] - step2[(31 - 8)];
output[stride*25] = step2[ 6] - step2[(31 - 9)];
output[stride*26] = step2[ 5] - step2[(31 - 10)];
output[stride*27] = step2[ 4] - step2[(31 - 11)];
output[stride*28] = step2[ 3] - step2[(31 - 12)];
output[stride*29] = step2[ 2] - step2[(31 - 13)];
output[stride*30] = step2[ 1] - step2[(31 - 14)];
output[stride*31] = step2[ 0] - step2[(31 - 15)];
}
void vp9_short_idct32x32_c(short *input, short *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double out[32*32], out2[32*32];
const int short_pitch = pitch >> 1;
int i, j;
// First transform rows
for (i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j + i*short_pitch];
butterfly_32_idct_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
out[j + i*32] = temp_out[j];
}
// Then transform columns
for (i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = out[j*32 + i];
butterfly_32_idct_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
out2[j*32 + i] = temp_out[j];
}
for (i = 0; i < 32*32; ++i)
output[i] = round(out2[i]/128);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
#else // CONFIG_DWT32X32HYBRID
#define DWT_MAX_LENGTH 32
#define DWT_TYPE 26 // 26/53/97
#define DWT_PRECISION_BITS 2
#define DWT_PRECISION_RND ((1 << DWT_PRECISION_BITS) / 2)
#if DWT_TYPE == 53
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// Note: block length must be even for this implementation
static void synthesis_53_row(int length, short *lowpass, short *highpass,
short *x) {
short r, *a, *b;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
int n;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ -= (r + (*b) + 1) >> 1;
r = *b++;
}
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
*x++ = ((r = *a++) + 1) >> 1;
*x++ = *b++ + ((r + (*a) + 2) >> 2);
}
*x++ = ((r = *a) + 1) >> 1;
*x++ = *b + ((r + 1) >> 1);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
static void synthesis_53_col(int length, short *lowpass, short *highpass,
short *x) {
short r, *a, *b;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
int n;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ -= (r + (*b) + 1) >> 1;
r = *b++;
}
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
r = *a++;
*x++ = r;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
*x++ = ((*b++) << 1) + ((r + (*a) + 1) >> 1);
}
*x++ = *a;
*x++ = ((*b) << 1) + *a;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
void dyadic_synthesize_53(int levels, int width, int height, short *c,
int pitch_c, short *x, int pitch_x) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
short buffer[2 * DWT_MAX_LENGTH];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_53_col(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer));
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
synthesis_53_row(nw, buffer, buffer + hw, &c[i * pitch_c]);
}
}
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ?
((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) :
-((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS);
}
}
}
#elif DWT_TYPE == 26
// Note: block length must be even for this implementation
static void synthesis_26_row(int length, short *lowpass, short *highpass,
short *x) {
short r, s, *a, *b;
int i, n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ += (r - a[1] + 4) >> 3;
r = *a++;
}
*b += (r - *a + 4) >> 3;
}
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
s = *b++;
r = *a++;
*x++ = (r + s + 1) >> 1;
*x++ = (r - s + 1) >> 1;
}
}
static void synthesis_26_col(int length, short *lowpass, short *highpass,
short *x) {
short r, s, *a, *b;
int i, n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ += (r - a[1] + 4) >> 3;
r = *a++;
}
*b += (r - *a + 4) >> 3;
}
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
s = *b++;
r = *a++;
*x++ = r + s;
*x++ = r - s;
}
}
void dyadic_synthesize_26(int levels, int width, int height, short *c,
int pitch_c, short *x, int pitch_x) {
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
short buffer[2 * DWT_MAX_LENGTH];
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_26_col(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer));
synthesis_26_row(nw, buffer, buffer + hw, &c[i * pitch_c]);
}
}
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ?
((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) :
-((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS);
}
}
}
#elif DWT_TYPE == 97
static void synthesis_97(int length, double *lowpass, double *highpass,
double *x) {
static const double a_predict1 = -1.586134342;
static const double a_update1 = -0.05298011854;
static const double a_predict2 = 0.8829110762;
static const double a_update2 = 0.4435068522;
static const double s_low = 1.149604398;
static const double s_high = 1/1.149604398;
static const double inv_s_low = 1 / s_low;
static const double inv_s_high = 1 / s_high;
int i;
double y[DWT_MAX_LENGTH];
// Undo pack and scale
for (i = 0; i < length / 2; i++) {
y[i * 2] = lowpass[i] * inv_s_low;
y[i * 2 + 1] = highpass[i] * inv_s_high;
}
memcpy(x, y, sizeof(*y) * length);
// Undo update 2
for (i = 2; i < length; i += 2) {
x[i] -= a_update2 * (x[i-1] + x[i+1]);
}
x[0] -= 2 * a_update2 * x[1];
// Undo predict 2
for (i = 1; i < length - 2; i += 2) {
x[i] -= a_predict2 * (x[i - 1] + x[i + 1]);
}
x[length - 1] -= 2 * a_predict2 * x[length - 2];
// Undo update 1
for (i = 2; i < length; i += 2) {
x[i] -= a_update1 * (x[i - 1] + x[i + 1]);
}
x[0] -= 2 * a_update1 * x[1];
// Undo predict 1
for (i = 1; i < length - 2; i += 2) {
x[i] -= a_predict1 * (x[i - 1] + x[i + 1]);
}
x[length - 1] -= 2 * a_predict1 * x[length - 2];
}
void dyadic_synthesize_97(int levels, int width, int height, short *c,
int pitch_c, short *x, int pitch_x) {
int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width;
double buffer[2 * DWT_MAX_LENGTH];
double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH];
th[0] = hh;
tw[0] = hw;
for (i = 1; i <= levels; i++) {
th[i] = (th[i - 1] + 1) >> 1;
tw[i] = (tw[i - 1] + 1) >> 1;
}
for (lv = levels - 1; lv >= 0; lv--) {
nh = th[lv];
nw = tw[lv];
hh = th[lv + 1];
hw = tw[lv + 1];
if ((nh < 2) || (nw < 2)) continue;
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i] = c[i * pitch_c + j];
synthesis_97(nh, buffer, buffer + hh, buffer + nh);
for (i = 0; i < nh; i++)
y[i * DWT_MAX_LENGTH + j] = buffer[i + nh];
}
for (i = 0; i < nh; i++) {
memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer));
synthesis_97(nw, buffer, buffer + hw, &y[i * DWT_MAX_LENGTH]);
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
x[i * pitch_x + j] = round(y[i * DWT_MAX_LENGTH + j] /
(1 << DWT_PRECISION_BITS));
}
#endif // DWT_TYPE
// TODO(debargha): Implement scaling differently so as not to have to use the
// floating point 16x16 dct
static void butterfly_16x16_idct_1d_f(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1 and 2
step[ 0] = input[0] + input[8];
step[ 1] = input[0] - input[8];
temp1 = input[4]*C12;
temp2 = input[12]*C4;
temp1 -= temp2;
temp1 *= C8;
step[ 2] = 2*(temp1);
temp1 = input[4]*C4;
temp2 = input[12]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
step[ 3] = 2*(temp1);
temp1 = input[2]*C8;
temp1 = 2*(temp1);
temp2 = input[6] + input[10];
step[ 4] = temp1 + temp2;
step[ 5] = temp1 - temp2;
temp1 = input[14]*C8;
temp1 = 2*(temp1);
temp2 = input[6] - input[10];
step[ 6] = temp2 - temp1;
step[ 7] = temp2 + temp1;
// for odd input
temp1 = input[3]*C12;
temp2 = input[13]*C4;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[ 8] = 2*(temp1);
temp1 = input[3]*C4;
temp2 = input[13]*C12;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[ 9] = 2*(temp2);
intermediate[10] = 2*(input[9]*C8);
intermediate[11] = input[15] - input[1];
intermediate[12] = input[15] + input[1];
intermediate[13] = 2*((input[7]*C8));
temp1 = input[11]*C12;
temp2 = input[5]*C4;
temp2 -= temp1;
temp2 = (temp2);
temp2 *= C8;
intermediate[14] = 2*(temp2);
temp1 = input[11]*C4;
temp2 = input[5]*C12;
temp1 += temp2;
temp1 = (temp1);
temp1 *= C8;
intermediate[15] = 2*(temp1);
step[ 8] = intermediate[ 8] + intermediate[14];
step[ 9] = intermediate[ 9] + intermediate[15];
step[10] = intermediate[10] + intermediate[11];
step[11] = intermediate[10] - intermediate[11];
step[12] = intermediate[12] + intermediate[13];
step[13] = intermediate[12] - intermediate[13];
step[14] = intermediate[ 8] - intermediate[14];
step[15] = intermediate[ 9] - intermediate[15];
// step 3
output[0] = step[ 0] + step[ 3];
output[1] = step[ 1] + step[ 2];
output[2] = step[ 1] - step[ 2];
output[3] = step[ 0] - step[ 3];
temp1 = step[ 4]*C14;
temp2 = step[ 7]*C2;
temp1 -= temp2;
output[4] = (temp1);
temp1 = step[ 4]*C2;
temp2 = step[ 7]*C14;
temp1 += temp2;
output[7] = (temp1);
temp1 = step[ 5]*C10;
temp2 = step[ 6]*C6;
temp1 -= temp2;
output[5] = (temp1);
temp1 = step[ 5]*C6;
temp2 = step[ 6]*C10;
temp1 += temp2;
output[6] = (temp1);
output[8] = step[ 8] + step[11];
output[9] = step[ 9] + step[10];
output[10] = step[ 9] - step[10];
output[11] = step[ 8] - step[11];
output[12] = step[12] + step[15];
output[13] = step[13] + step[14];
output[14] = step[13] - step[14];
output[15] = step[12] - step[15];
// output 4
step[ 0] = output[0] + output[7];
step[ 1] = output[1] + output[6];
step[ 2] = output[2] + output[5];
step[ 3] = output[3] + output[4];
step[ 4] = output[3] - output[4];
step[ 5] = output[2] - output[5];
step[ 6] = output[1] - output[6];
step[ 7] = output[0] - output[7];
temp1 = output[8]*C7;
temp2 = output[15]*C9;
temp1 -= temp2;
step[ 8] = (temp1);
temp1 = output[9]*C11;
temp2 = output[14]*C5;
temp1 += temp2;
step[ 9] = (temp1);
temp1 = output[10]*C3;
temp2 = output[13]*C13;
temp1 -= temp2;
step[10] = (temp1);
temp1 = output[11]*C15;
temp2 = output[12]*C1;
temp1 += temp2;
step[11] = (temp1);
temp1 = output[11]*C1;
temp2 = output[12]*C15;
temp2 -= temp1;
step[12] = (temp2);
temp1 = output[10]*C13;
temp2 = output[13]*C3;
temp1 += temp2;
step[13] = (temp1);
temp1 = output[9]*C5;
temp2 = output[14]*C11;
temp2 -= temp1;
step[14] = (temp2);
temp1 = output[8]*C9;
temp2 = output[15]*C7;
temp1 += temp2;
step[15] = (temp1);
// step 5
output[0] = (step[0] + step[15]);
output[1] = (step[1] + step[14]);
output[2] = (step[2] + step[13]);
output[3] = (step[3] + step[12]);
output[4] = (step[4] + step[11]);
output[5] = (step[5] + step[10]);
output[6] = (step[6] + step[ 9]);
output[7] = (step[7] + step[ 8]);
output[15] = (step[0] - step[15]);
output[14] = (step[1] - step[14]);
output[13] = (step[2] - step[13]);
output[12] = (step[3] - step[12]);
output[11] = (step[4] - step[11]);
output[10] = (step[5] - step[10]);
output[9] = (step[6] - step[ 9]);
output[8] = (step[7] - step[ 8]);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
void vp9_short_idct16x16_c_f(short *input, short *output, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double out[16*16], out2[16*16];
const int short_pitch = pitch >> 1;
int i, j;
// First transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = input[j + i*short_pitch];
butterfly_16x16_idct_1d_f(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j + i*16] = temp_out[j];
}
// Then transform columns
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
butterfly_16x16_idct_1d_f(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out2[j*16 + i] = temp_out[j];
}
for (i = 0; i < 16*16; ++i)
output[i] = round(out2[i] / (64 >> DWT_PRECISION_BITS));
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
void vp9_short_idct32x32_c(short *input, short *output, int pitch) {
// assume out is a 32x32 buffer
// Temporary buffer to hold a 16x16 block for 16x16 inverse dct
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
short buffer[16 * 16];
// Temporary buffer to hold a 32x32 block for inverse 32x32 dwt
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
short buffer2[32 * 32];
// Note: pitch is in bytes, short_pitch is in short units
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
const int short_pitch = pitch >> 1;
int i;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the idct16x16 function
vp9_short_idct16x16_c_f(input, buffer, pitch);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(*buffer2) * 16);
}
vp9_short_idct16x16_c_f(input + 16, buffer, pitch);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16, buffer + i * 16, sizeof(*buffer2) * 16);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch, buffer, pitch);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16 * 32, buffer + i * 16,
sizeof(*buffer2) * 16);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
vp9_short_idct16x16_c_f(input + 16 * short_pitch + 16, buffer, pitch);
for (i = 0; i < 16; ++i) {
vpx_memcpy(buffer2 + i * 32 + 16 * 33, buffer + i * 16,
sizeof(*buffer2) * 16);
}
#if DWT_TYPE == 26
dyadic_synthesize_26(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 97
dyadic_synthesize_97(1, 32, 32, buffer2, 32, output, 32);
#elif DWT_TYPE == 53
dyadic_synthesize_53(1, 32, 32, buffer2, 32, output, 32);
#endif
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 14:45:05 -08:00
}
#endif // CONFIG_DWT32X32HYBRID
#endif // CONFIG_TX32X32