vpx/vp8/encoder/encodeframe.c

1306 lines
39 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "vpx_config.h"
2010-05-18 11:58:33 -04:00
#include "encodemb.h"
#include "encodemv.h"
#include "vp8/common/common.h"
2010-05-18 11:58:33 -04:00
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
2010-05-18 11:58:33 -04:00
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
2010-05-18 11:58:33 -04:00
#include "rdopt.h"
#include "pickinter.h"
#include "vp8/common/findnearmv.h"
2010-05-18 11:58:33 -04:00
#include <stdio.h>
#include <limits.h>
#include "vp8/common/invtrans.h"
2010-05-18 11:58:33 -04:00
#include "vpx_ports/vpx_timer.h"
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8_calc_ref_frame_costs(int *ref_frame_cost,
int prob_intra,
int prob_last,
int prob_garf
);
extern void vp8_convert_rfct_to_prob(VP8_COMP *const cpi);
2010-05-18 11:58:33 -04:00
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
MACROBLOCK *x,
MB_ROW_COMP *mbr_ei,
int mb_row,
int count);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset, int mb_row, int mb_col);
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int mb_row, int mb_col);
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x );
2010-05-18 11:58:33 -04:00
#ifdef MODE_STATS
unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int inter_uv_modes[4] = {0, 0, 0, 0};
unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int y_modes[5] = {0, 0, 0, 0, 0};
unsigned int uv_modes[4] = {0, 0, 0, 0};
unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp8_activity_masking().
*/
#define VP8_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const unsigned char VP8_VAR_OFFS[16]=
{
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
};
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
{
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp8_variance16x16(x->src.y_buffer,
x->src.y_stride, VP8_VAR_OFFS, 0, &sse);
act = act<<4;
/* If the region is flat, lower the activity some more. */
if (act < 8<<12)
act = act < 5<<12 ? act : 5<<12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure( VP8_COMP *cpi,
MACROBLOCK *x, int use_dc_pred )
{
return vp8_encode_intra(cpi,x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col)
{
unsigned int mb_activity;
if ( ALT_ACT_MEASURE )
{
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure( cpi, x, use_dc_pred );
}
else
{
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure( cpi, x );
}
if ( mb_activity < VP8_ACTIVITY_AVG_MIN )
mb_activity = VP8_ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity( VP8_COMP *cpi, int64_t activity_sum )
{
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i,j;
unsigned int * sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy( sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs );
// Ripple each value down to its correct position
for ( i = 1; i < cpi->common.MBs; i ++ )
{
for ( j = i; j > 0; j -- )
{
if ( sortlist[j] < sortlist[j-1] )
{
// Swap values
tmp = sortlist[j-1];
sortlist[j-1] = sortlist[j];
sortlist[j] = tmp;
}
else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = ( 1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs);
#endif
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if ( ALT_ACT_MEASURE )
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate and activity index for each mb
static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x )
{
VP8_COMMON *const cm = & cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg );
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
if ( b >= a )
*(x->activity_ptr) = (int)((b + (a>>1))/a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b>>1))/b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map( VP8_COMP *cpi )
{
MACROBLOCK *const x = & cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP8_COMMON *const cm = & cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
#if ALT_ACT_MEASURE
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
//Copy current mb to a buffer
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
// measure activity
mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col );
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->src.y_buffer += 16;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
#if ALT_ACT_MEASURE
//extend the recon for intra prediction
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
#endif
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index( cpi, x );
#endif
}
// Macroblock activity masking
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
{
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
x->errorperbit += (x->errorperbit==0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2*cpi->activity_avg);
b = (2*act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult*b + (a>>1))/a);
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
x->errorperbit += (x->errorperbit==0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
2010-05-18 11:58:33 -04:00
static
void encode_mb_row(VP8_COMP *cpi,
VP8_COMMON *cm,
int mb_row,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *segment_counts,
int *totalrate)
{
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int map_index = (mb_row * cpi->common.mb_cols);
2010-05-18 11:58:33 -04:00
#if CONFIG_MULTITHREAD
const int nsync = cpi->mt_sync_range;
const int rightmost_col = cm->mb_cols - 1;
volatile const int *last_row_current_mb_col;
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
else
last_row_current_mb_col = &rightmost_col;
#endif
2010-05-18 11:58:33 -04:00
// reset above block coeffs
xd->above_context = cm->above_context;
2010-05-18 11:58:33 -04:00
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
cpi->tplist[mb_row].start = *tp;
//printf("Main mb_row = %d\n", mb_row);
// Distance of Mb to the top & bottom edges, specified in 1/8th pel
// units as they are always compared to values that are in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
// Set up limit values for vertical motion vector components
// to prevent them extending beyond the UMV borders
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ (VP8BORDERINPIXELS - 16);
// Set the mb activity pointer to the start of the row.
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
2010-05-18 11:58:33 -04:00
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Distance of Mb to the left & right edges, specified in
// 1/8th pel units as they are always compared to values
// that are in 1/8th pel units
2010-05-18 11:58:33 -04:00
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
// Set up limit values for horizontal motion vector components
// to prevent them extending beyond the UMV borders
2010-05-18 11:58:33 -04:00
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
+ (VP8BORDERINPIXELS - 16);
2010-05-18 11:58:33 -04:00
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 11:58:33 -04:00
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
//Copy current mb to a buffer
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
{
if ((mb_col & (nsync - 1)) == 0)
{
while (mb_col > (*last_row_current_mb_col - nsync)
&& (*last_row_current_mb_col) != (cm->mb_cols - 1))
{
x86_pause_hint();
thread_sleep(0);
}
}
}
#endif
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp8_activity_masking(cpi, x);
2010-05-18 11:58:33 -04:00
// Is segmentation enabled
// MB level adjustment to quantizer
2010-05-18 11:58:33 -04:00
if (xd->segmentation_enabled)
{
// Code to set segment id in xd->mbmi.segment_id for current MB (with range checking)
if (cpi->segmentation_map[map_index+mb_col] <= 3)
xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col];
2010-05-18 11:58:33 -04:00
else
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 11:58:33 -04:00
vp8cx_mb_init_quantizer(cpi, x, 1);
2010-05-18 11:58:33 -04:00
}
else
xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default
2010-05-18 11:58:33 -04:00
x->active_ptr = cpi->active_map + map_index + mb_col;
2010-05-18 11:58:33 -04:00
if (cm->frame_type == KEY_FRAME)
{
*totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp, mb_row, mb_col);
2010-05-18 11:58:33 -04:00
#ifdef MODE_STATS
y_modes[xd->mbmi.mode] ++;
#endif
}
else
{
*totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col);
2010-05-18 11:58:33 -04:00
#ifdef MODE_STATS
inter_y_modes[xd->mbmi.mode] ++;
if (xd->mbmi.mode == SPLITMV)
{
int b;
for (b = 0; b < xd->mbmi.partition_count; b++)
{
inter_b_modes[x->partition->bmi[b].mode] ++;
2010-05-18 11:58:33 -04:00
}
}
#endif
// Count of last ref frame 0,0 useage
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 11:58:33 -04:00
cpi->inter_zz_count ++;
// Special case code for cyclic refresh
// If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode
// during vp8cx_encode_inter_macroblock()) back into the global sgmentation map
if ((cpi->current_layer == 0) &&
(cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled))
2010-05-18 11:58:33 -04:00
{
cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id;
2010-05-18 11:58:33 -04:00
// If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh):
// Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0)
// else mark it as dirty (1).
if (xd->mode_info_context->mbmi.segment_id)
cpi->cyclic_refresh_map[map_index+mb_col] = -1;
else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 11:58:33 -04:00
{
if (cpi->cyclic_refresh_map[map_index+mb_col] == 1)
cpi->cyclic_refresh_map[map_index+mb_col] = 0;
2010-05-18 11:58:33 -04:00
}
else
cpi->cyclic_refresh_map[map_index+mb_col] = 1;
2010-05-18 11:58:33 -04:00
}
}
cpi->tplist[mb_row].stop = *tp;
// Increment pointer into gf useage flags structure.
x->gf_active_ptr++;
// Increment the activity mask pointers.
x->mb_activity_ptr++;
2010-05-18 11:58:33 -04:00
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
// Keep track of segment useage
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
2010-05-18 11:58:33 -04:00
// skip to next mb
xd->mode_info_context++;
x->partition_info++;
2010-05-18 11:58:33 -04:00
xd->above_context++;
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded != 0)
{
cpi->mt_current_mb_col[mb_row] = mb_col;
}
#endif
2010-05-18 11:58:33 -04:00
}
//extend the recon for intra prediction
vp8_extend_mb_row(
&cm->yv12_fb[dst_fb_idx],
2010-05-18 11:58:33 -04:00
xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
// this is to account for the border
xd->mode_info_context++;
x->partition_info++;
2010-05-18 11:58:33 -04:00
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1))
{
sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */
}
#endif
}
2010-05-18 11:58:33 -04:00
void init_encode_frame_mb_context(VP8_COMP *cpi)
{
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
// GF active flags data structure
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
// Activity map pointer
x->mb_activity_ptr = cpi->mb_activity_map;
x->act_zbin_adj = 0;
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp8_init_mbmode_probs(cm);
// Copy data over into macro block data sturctures.
x->src = * cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
// set up frame for intra coded blocks
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
xd->left_context = &cm->left_context;
vp8_zero(cpi->count_mb_ref_frame_usage)
vp8_zero(cpi->ymode_count)
vp8_zero(cpi->uv_mode_count)
x->mvc = cm->fc.mvc;
vpx_memset(cm->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
// Special case treatment when GF and ARF are not sensible options for reference
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
vp8_calc_ref_frame_costs(x->ref_frame_cost,
cpi->prob_intra_coded,255,128);
else if ((cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags == VP8_GOLD_FLAG))
vp8_calc_ref_frame_costs(x->ref_frame_cost,
cpi->prob_intra_coded,1,255);
else if ((cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags == VP8_ALT_FLAG))
vp8_calc_ref_frame_costs(x->ref_frame_cost,
cpi->prob_intra_coded,1,1);
else
vp8_calc_ref_frame_costs(x->ref_frame_cost,
cpi->prob_intra_coded,
cpi->prob_last_coded,
cpi->prob_gf_coded);
xd->fullpixel_mask = 0xffffffff;
if(cm->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
2010-05-18 11:58:33 -04:00
void vp8_encode_frame(VP8_COMP *cpi)
{
int mb_row;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
int segment_counts[MAX_MB_SEGMENTS];
int totalrate;
vpx_memset(segment_counts, 0, sizeof(segment_counts));
totalrate = 0;
if (cpi->compressor_speed == 2)
{
if (cpi->oxcf.cpu_used < 0)
cpi->Speed = -(cpi->oxcf.cpu_used);
else
vp8_auto_select_speed(cpi);
}
// Functions setup for all frame types so we can use MC in AltRef
if (cm->mcomp_filter_type == SIXTAP)
2010-05-18 11:58:33 -04:00
{
xd->subpixel_predict = vp8_sixtap_predict4x4;
xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
}
else
{
xd->subpixel_predict = vp8_bilinear_predict4x4;
xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
2010-05-18 11:58:33 -04:00
}
// Reset frame count of inter 0,0 motion vector useage.
cpi->inter_zz_count = 0;
vpx_memset(segment_counts, 0, sizeof(segment_counts));
cpi->prediction_error = 0;
cpi->intra_error = 0;
cpi->skip_true_count = 0;
cpi->skip_false_count = 0;
#if 0
// Experimental code
cpi->frame_distortion = 0;
2010-05-18 11:58:33 -04:00
cpi->last_mb_distortion = 0;
#endif
xd->mode_info_context = cm->mi;
2010-05-18 11:58:33 -04:00
vp8_zero(cpi->MVcount);
vp8_zero(cpi->coef_counts);
vp8cx_frame_init_quantizer(cpi);
vp8_initialize_rd_consts(cpi,
vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
2010-05-18 11:58:33 -04:00
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
2010-05-18 11:58:33 -04:00
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
{
int i;
2010-05-18 11:58:33 -04:00
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count);
for (i = 0; i < cm->mb_rows; i++)
cpi->mt_current_mb_col[i] = -1;
2010-05-18 11:58:33 -04:00
for (i = 0; i < cpi->encoding_thread_count; i++)
{
sem_post(&cpi->h_event_start_encoding[i]);
}
2010-05-18 11:58:33 -04:00
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1))
{
2010-05-18 11:58:33 -04:00
vp8_zero(cm->left_context)
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count;
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
2010-05-18 11:58:33 -04:00
}
sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */
2010-05-18 11:58:33 -04:00
cpi->tok_count = 0;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start;
}
if (xd->segmentation_enabled)
{
int i, j;
if (xd->segmentation_enabled)
{
for (i = 0; i < cpi->encoding_thread_count; i++)
{
for (j = 0; j < 4; j++)
segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
}
}
}
for (i = 0; i < cpi->encoding_thread_count; i++)
{
totalrate += cpi->mb_row_ei[i].totalrate;
}
}
else
2010-05-18 11:58:33 -04:00
#endif
{
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
vp8_zero(cm->left_context)
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
cpi->tok_count = tp - cpi->tok;
2010-05-18 11:58:33 -04:00
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// Work out the segment probabilites if segmentation is enabled
if (xd->segmentation_enabled)
{
int tot_count;
int i;
// Set to defaults
vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs));
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
if (tot_count)
{
xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count;
tot_count = segment_counts[0] + segment_counts[1];
if (tot_count > 0)
{
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count;
}
tot_count = segment_counts[2] + segment_counts[3];
if (tot_count > 0)
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count;
// Zero probabilities not allowed
for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++)
{
if (xd->mb_segment_tree_probs[i] == 0)
xd->mb_segment_tree_probs[i] = 1;
}
}
}
// 256 rate units to the bit
cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES
// Make a note of the percentage MBs coded Intra.
if (cm->frame_type == KEY_FRAME)
{
cpi->this_frame_percent_intra = 100;
}
else
{
int tot_modes;
tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME]
+ cpi->count_mb_ref_frame_usage[LAST_FRAME]
+ cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]
+ cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
if (tot_modes)
cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
}
#if 0
{
int cnt = 0;
int flag[2] = {0, 0};
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt])
{
flag[0] = 1;
vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount);
break;
}
}
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt])
{
flag[1] = 1;
vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount);
break;
}
}
if (flag[0] || flag[1])
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
2010-05-18 11:58:33 -04:00
}
#endif
// Adjust the projected reference frame useage probability numbers to reflect
// what we have just seen. This may be usefull when we make multiple itterations
// of the recode loop rather than continuing to use values from the previous frame.
if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame)))
2010-05-18 11:58:33 -04:00
{
vp8_convert_rfct_to_prob(cpi);
2010-05-18 11:58:33 -04:00
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void vp8_setup_block_ptrs(MACROBLOCK *x)
{
int r, c;
int i;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; i++)
{
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp8_build_block_offsets(MACROBLOCK *x)
{
int block = 0;
int br, bc;
vp8_build_block_doffsets(&x->e_mbd);
// y blocks
x->thismb_ptr = &x->thismb[0];
2010-05-18 11:58:33 -04:00
for (br = 0; br < 4; br++)
{
for (bc = 0; bc < 4; bc++)
{
BLOCK *this_block = &x->block[block];
//this_block->base_src = &x->src.y_buffer;
//this_block->src_stride = x->src.y_stride;
//this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->thismb_ptr;
this_block->src_stride = 16;
this_block->src = 4 * br * 16 + 4 * bc;
2010-05-18 11:58:33 -04:00
++block;
}
}
// u blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// v blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x)
{
const MACROBLOCKD *xd = & x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
2010-05-18 11:58:33 -04:00
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
if (m == B_PRED)
{
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do
{
++ bct[xd->block[b].bmi.mode];
}
while (++b < 16);
}
#endif
++cpi->ymode_count[m];
++cpi->uv_mode_count[uvm];
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x )
{
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
if ( act > cpi->activity_avg )
x->act_zbin_adj = (int)(((int64_t)b + (a>>1))/a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b>>1))/b);
#endif
}
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int mb_row, int mb_col)
2010-05-18 11:58:33 -04:00
{
MACROBLOCKD *xd = &x->e_mbd;
int rate;
2010-05-18 11:58:33 -04:00
if (cpi->sf.RD && cpi->compressor_speed != 2)
vp8_rd_pick_intra_mode(cpi, x, &rate);
2010-05-18 11:58:33 -04:00
else
vp8_pick_intra_mode(cpi, x, &rate);
2010-05-18 11:58:33 -04:00
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
adjust_act_zbin( cpi, x );
vp8_update_zbin_extra(cpi, x);
}
if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED)
vp8_encode_intra4x4mby(x);
else
vp8_encode_intra16x16mby(x);
vp8_encode_intra16x16mbuv(x);
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, &x->e_mbd, t);
2010-05-18 11:58:33 -04:00
if (xd->mode_info_context->mbmi.mode != B_PRED)
vp8_inverse_transform_mby(xd);
New RTCD implementation This is a proof of concept RTCD implementation to replace the current system of nested includes, prototypes, INVOKE macros, etc. Currently only the decoder specific functions are implemented in the new system. Additional functions will be added in subsequent commits. Overview: RTCD "functions" are implemented as either a global function pointer or a macro (when only one eligible specialization available). Functions which have RTCD specializations are listed using a simple DSL identifying the function's base name, its prototype, and the architecture extensions that specializations are available for. Advantages over the old system: - No INVOKE macros. A call to an RTCD function looks like an ordinary function call. - No need to pass vtables around. - If there is only one eligible function to call, the function is called directly, rather than indirecting through a function pointer. - Supports the notion of "required" extensions, so in combination with the above, on x86_64 if the best function available is sse2 or lower it will be called directly, since all x86_64 platforms implement sse2. - Elides all references to functions which will never be called, which could reduce binary size. For example if sse2 is required and there are both mmx and sse2 implementations of a certain function, the code will have no link time references to the mmx code. - Significantly easier to add a new function, just one file to edit. Disadvantages: - Requires global writable data (though this is not a new requirement) - 1 new generated source file. Change-Id: Iae6edab65315f79c168485c96872641c5aa09d55
2011-08-19 14:06:00 -04:00
vp8_dequant_idct_add_uv_block
(xd->qcoeff+16*16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
2010-05-18 11:58:33 -04:00
return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif
extern void vp8_fix_contexts(MACROBLOCKD *x);
2010-05-18 11:58:33 -04:00
int vp8cx_encode_inter_macroblock
(
VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int recon_yoffset, int recon_uvoffset,
int mb_row, int mb_col
2010-05-18 11:58:33 -04:00
)
{
MACROBLOCKD *const xd = &x->e_mbd;
int intra_error = 0;
int rate;
int distortion;
x->skip = 0;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
2010-05-18 11:58:33 -04:00
else
x->encode_breakout = cpi->oxcf.encode_breakout;
if (cpi->sf.RD)
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
/* Are we using the fast quantizer for the mode selection? */
if(cpi->sf.use_fastquant_for_pick)
{
cpi->mb.quantize_b = vp8_fast_quantize_b;
cpi->mb.quantize_b_pair = vp8_fast_quantize_b_pair;
/* the fast quantizer does not use zbin_extra, so
* do not recalculate */
cpi->zbin_mode_boost_enabled = 0;
}
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = vp8_regular_quantize_b;
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
}
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
2010-05-18 11:58:33 -04:00
}
else
{
vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error, mb_row, mb_col);
}
2010-05-18 11:58:33 -04:00
cpi->prediction_error += distortion;
2010-05-18 11:58:33 -04:00
cpi->intra_error += intra_error;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
// Adjust the zbin based on this MB rate.
adjust_act_zbin( cpi, x );
}
2010-05-18 11:58:33 -04:00
#if 0
// Experimental RD code
cpi->frame_distortion += distortion;
cpi->last_mb_distortion = distortion;
#endif
// MB level adjutment to quantizer setup
if (xd->segmentation_enabled)
2010-05-18 11:58:33 -04:00
{
// If cyclic update enabled
if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled)
2010-05-18 11:58:33 -04:00
{
// Clear segment_id back to 0 if not coded (last frame 0,0)
if ((xd->mode_info_context->mbmi.segment_id == 1) &&
((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV)))
2010-05-18 11:58:33 -04:00
{
xd->mode_info_context->mbmi.segment_id = 0;
/* segment_id changed, so update */
vp8cx_mb_init_quantizer(cpi, x, 1);
2010-05-18 11:58:33 -04:00
}
}
}
2010-05-18 11:58:33 -04:00
{
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to supress noise
cpi->zbin_mode_boost = 0;
2010-05-18 11:58:33 -04:00
if (cpi->zbin_mode_boost_enabled)
{
if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME )
{
if (xd->mode_info_context->mbmi.mode == ZEROMV)
{
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (xd->mode_info_context->mbmi.mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 11:58:33 -04:00
}
/* The fast quantizer doesn't use zbin_extra, only do so with
* the regular quantizer. */
if (cpi->sf.improved_quant)
vp8_update_zbin_extra(cpi, x);
2010-05-18 11:58:33 -04:00
}
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++;
2010-05-18 11:58:33 -04:00
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 11:58:33 -04:00
{
vp8_encode_intra16x16mbuv(x);
2010-05-18 11:58:33 -04:00
if (xd->mode_info_context->mbmi.mode == B_PRED)
2010-05-18 11:58:33 -04:00
{
vp8_encode_intra4x4mby(x);
2010-05-18 11:58:33 -04:00
}
else
{
vp8_encode_intra16x16mby(x);
2010-05-18 11:58:33 -04:00
}
sum_intra_stats(cpi, x);
}
else
{
int ref_fb_idx;
2010-05-18 11:58:33 -04:00
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
2010-05-18 11:58:33 -04:00
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 11:58:33 -04:00
if (!x->skip)
2010-05-18 11:58:33 -04:00
{
vp8_encode_inter16x16(x);
2010-05-18 11:58:33 -04:00
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 11:58:33 -04:00
}
else
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
2010-05-18 11:58:33 -04:00
}
if (!x->skip)
{
2010-05-18 11:58:33 -04:00
vp8_tokenize_mb(cpi, xd, t);
if (xd->mode_info_context->mbmi.mode != B_PRED)
vp8_inverse_transform_mby(xd);
New RTCD implementation This is a proof of concept RTCD implementation to replace the current system of nested includes, prototypes, INVOKE macros, etc. Currently only the decoder specific functions are implemented in the new system. Additional functions will be added in subsequent commits. Overview: RTCD "functions" are implemented as either a global function pointer or a macro (when only one eligible specialization available). Functions which have RTCD specializations are listed using a simple DSL identifying the function's base name, its prototype, and the architecture extensions that specializations are available for. Advantages over the old system: - No INVOKE macros. A call to an RTCD function looks like an ordinary function call. - No need to pass vtables around. - If there is only one eligible function to call, the function is called directly, rather than indirecting through a function pointer. - Supports the notion of "required" extensions, so in combination with the above, on x86_64 if the best function available is sse2 or lower it will be called directly, since all x86_64 platforms implement sse2. - Elides all references to functions which will never be called, which could reduce binary size. For example if sse2 is required and there are both mmx and sse2 implementations of a certain function, the code will have no link time references to the mmx code. - Significantly easier to add a new function, just one file to edit. Disadvantages: - Requires global writable data (though this is not a new requirement) - 1 new generated source file. Change-Id: Iae6edab65315f79c168485c96872641c5aa09d55
2011-08-19 14:06:00 -04:00
vp8_dequant_idct_add_uv_block
(xd->qcoeff+16*16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
2010-05-18 11:58:33 -04:00
else
{
if (cpi->common.mb_no_coeff_skip)
{
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
2010-05-18 11:58:33 -04:00
cpi->skip_true_count ++;
vp8_fix_contexts(xd);
2010-05-18 11:58:33 -04:00
}
else
{
vp8_stuff_mb(cpi, xd, t);
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 11:58:33 -04:00
cpi->skip_false_count ++;
}
}
return rate;
}