vpx/vp8/encoder/encodeframe.c

1564 lines
52 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "encodemv.h"
#include "common.h"
#include "onyx_int.h"
#include "extend.h"
#include "entropymode.h"
#include "quant_common.h"
#include "segmentation.h"
2010-05-18 17:58:33 +02:00
#include "setupintrarecon.h"
#include "encodeintra.h"
#include "reconinter.h"
#include "rdopt.h"
#include "pickinter.h"
#include "findnearmv.h"
#include "reconintra.h"
#include <stdio.h>
#include <limits.h>
#include "subpixel.h"
#include "vpx_ports/vpx_timer.h"
2010-05-18 17:58:33 +02:00
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD(x) &cpi->common.rtcd.x
#define IF_RTCD(x) (x)
#else
#define RTCD(x) NULL
#define IF_RTCD(x) NULL
#endif
#if CONFIG_SEGMENTATION
#define SEEK_SEGID 12
#define SEEK_SAMEID 4
#define SEEK_DIFFID 7
#endif
2010-05-18 17:58:33 +02:00
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
MACROBLOCK *x,
MB_ROW_COMP *mbr_ei,
int mb_row,
int count);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset);
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
#ifdef MODE_STATS
unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int inter_uv_modes[4] = {0, 0, 0, 0};
unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int y_modes[5] = {0, 0, 0, 0, 0};
unsigned int uv_modes[4] = {0, 0, 0, 0};
unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
static const int qrounding_factors[129] =
{
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48
2010-05-18 17:58:33 +02:00
};
static const int qzbin_factors[129] =
{
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
2010-05-18 17:58:33 +02:00
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80
2010-05-18 17:58:33 +02:00
};
static const int qrounding_factors_y2[129] =
{
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 48, 48, 48, 48,
48
};
static const int qzbin_factors_y2[129] =
{
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
2010-05-18 17:58:33 +02:00
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80,
80
2010-05-18 17:58:33 +02:00
};
#define EXACT_QUANT
#ifdef EXACT_QUANT
static void vp8cx_invert_quant(int improved_quant, short *quant,
short *shift, short d)
{
if(improved_quant)
{
unsigned t;
int l;
t = d;
for(l = 0; t > 1; l++)
t>>=1;
t = 1 + (1<<(16+l))/d;
*quant = (short)(t - (1<<16));
*shift = l;
}
else
{
*quant = (1 << 16) / d;
*shift = 0;
}
}
2010-05-18 17:58:33 +02:00
void vp8cx_init_quantizer(VP8_COMP *cpi)
{
int i;
int quant_val;
int Q;
int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44};
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
// dc values
quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q);
cpi->Y1quant_fast[Q][0] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + 0,
cpi->Y1quant_shift[Q] + 0, quant_val);
cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.Y1dequant[Q][0] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7;
quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q);
cpi->Y2quant_fast[Q][0] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + 0,
cpi->Y2quant_shift[Q] + 0, quant_val);
cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7;
cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7;
cpi->common.Y2dequant[Q][0] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7;
quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q);
cpi->UVquant_fast[Q][0] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + 0,
cpi->UVquant_shift[Q] + 0, quant_val);
cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;;
cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.UVdequant[Q][0] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7;
// all the ac values = ;
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
quant_val = vp8_ac_yquant(Q);
cpi->Y1quant_fast[Q][rc] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + rc,
cpi->Y1quant_shift[Q] + rc, quant_val);
cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.Y1dequant[Q][rc] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7;
quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q);
cpi->Y2quant_fast[Q][rc] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + rc,
cpi->Y2quant_shift[Q] + rc, quant_val);
cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7;
cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7;
cpi->common.Y2dequant[Q][rc] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7;
quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q);
cpi->UVquant_fast[Q][rc] = (1 << 16) / quant_val;
vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + rc,
cpi->UVquant_shift[Q] + rc, quant_val);
cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.UVdequant[Q][rc] = quant_val;
2010-05-18 17:58:33 +02:00
cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7;
}
}
}
#else
void vp8cx_init_quantizer(VP8_COMP *cpi)
{
int i;
int quant_val;
int Q;
int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44};
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
// dc values
quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q);
cpi->Y1quant[Q][0] = (1 << 16) / quant_val;
cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.Y1dequant[Q][0] = quant_val;
cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7;
quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q);
cpi->Y2quant[Q][0] = (1 << 16) / quant_val;
cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7;
cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7;
cpi->common.Y2dequant[Q][0] = quant_val;
cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7;
2010-05-18 17:58:33 +02:00
quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q);
cpi->UVquant[Q][0] = (1 << 16) / quant_val;
cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;;
cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.UVdequant[Q][0] = quant_val;
cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7;
// all the ac values = ;
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
quant_val = vp8_ac_yquant(Q);
cpi->Y1quant[Q][rc] = (1 << 16) / quant_val;
cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.Y1dequant[Q][rc] = quant_val;
cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7;
quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q);
cpi->Y2quant[Q][rc] = (1 << 16) / quant_val;
cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7;
cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7;
cpi->common.Y2dequant[Q][rc] = quant_val;
cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7;
quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q);
cpi->UVquant[Q][rc] = (1 << 16) / quant_val;
cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;
cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7;
cpi->common.UVdequant[Q][rc] = quant_val;
cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7;
}
}
}
#endif
2010-05-18 17:58:33 +02:00
void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x)
{
int i;
int QIndex;
MACROBLOCKD *xd = &x->e_mbd;
int zbin_extra;
// Select the baseline MB Q index.
if (xd->segmentation_enabled)
{
// Abs Value
if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA)
QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id];
2010-05-18 17:58:33 +02:00
// Delta Value
else
{
QIndex = cpi->common.base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id];
2010-05-18 17:58:33 +02:00
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range
}
}
else
QIndex = cpi->common.base_qindex;
// Y
zbin_extra = (cpi->common.Y1dequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
x->block[i].quant = cpi->Y1quant[QIndex];
x->block[i].quant_fast = cpi->Y1quant_fast[QIndex];
x->block[i].quant_shift = cpi->Y1quant_shift[QIndex];
2010-05-18 17:58:33 +02:00
x->block[i].zbin = cpi->Y1zbin[QIndex];
x->block[i].round = cpi->Y1round[QIndex];
x->e_mbd.block[i].dequant = cpi->common.Y1dequant[QIndex];
x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[QIndex];
x->block[i].zbin_extra = (short)zbin_extra;
}
// UV
zbin_extra = (cpi->common.UVdequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7;
2010-05-18 17:58:33 +02:00
for (i = 16; i < 24; i++)
{
x->block[i].quant = cpi->UVquant[QIndex];
x->block[i].quant_fast = cpi->UVquant_fast[QIndex];
x->block[i].quant_shift = cpi->UVquant_shift[QIndex];
2010-05-18 17:58:33 +02:00
x->block[i].zbin = cpi->UVzbin[QIndex];
x->block[i].round = cpi->UVround[QIndex];
x->e_mbd.block[i].dequant = cpi->common.UVdequant[QIndex];
x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[QIndex];
x->block[i].zbin_extra = (short)zbin_extra;
}
// Y2
zbin_extra = (cpi->common.Y2dequant[QIndex][1] * ((cpi->zbin_over_quant / 2) + cpi->zbin_mode_boost)) >> 7;
x->block[24].quant_fast = cpi->Y2quant_fast[QIndex];
2010-05-18 17:58:33 +02:00
x->block[24].quant = cpi->Y2quant[QIndex];
x->block[24].quant_shift = cpi->Y2quant_shift[QIndex];
2010-05-18 17:58:33 +02:00
x->block[24].zbin = cpi->Y2zbin[QIndex];
x->block[24].round = cpi->Y2round[QIndex];
x->e_mbd.block[24].dequant = cpi->common.Y2dequant[QIndex];
x->block[24].zrun_zbin_boost = cpi->zrun_zbin_boost_y2[QIndex];
x->block[24].zbin_extra = (short)zbin_extra;
}
void vp8cx_frame_init_quantizer(VP8_COMP *cpi)
{
// Clear Zbin mode boost for default case
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
// vp8cx_init_quantizer() is first called in vp8_create_compressor(). A check is added here so that vp8cx_init_quantizer() is only called
// when these values are not all zero.
if (cpi->common.y1dc_delta_q | cpi->common.y2dc_delta_q | cpi->common.uvdc_delta_q | cpi->common.y2ac_delta_q | cpi->common.uvac_delta_q)
{
vp8cx_init_quantizer(cpi);
}
// MB level quantizer setup
vp8cx_mb_init_quantizer(cpi, &cpi->mb);
}
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp8_activity_masking().
*/
#define VP8_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const unsigned char VP8_VAR_OFFS[16]=
{
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
};
unsigned int vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
{
unsigned int act;
unsigned int sse;
int sum;
unsigned int a;
unsigned int b;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer,
x->src.y_stride, VP8_VAR_OFFS, 0, &sse, &sum);
/* This requires a full 32 bits of precision. */
act = (sse<<8) - sum*sum;
/* Drop 4 to give us some headroom to work with. */
act = (act + 8) >> 4;
/* If the region is flat, lower the activity some more. */
if (act < 8<<12)
act = act < 5<<12 ? act : 5<<12;
/* TODO: For non-flat regions, edge regions should receive less masking
* than textured regions, but identifying edge regions quickly and
* reliably enough is still a subject of experimentation.
* This will be most noticable near edges with a complex shape (e.g.,
* text), but the 4x4 transform size should make this less of a problem
* than it would be for an 8x8 transform.
*/
/* Apply the masking to the RD multiplier. */
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a);
return act;
}
2010-05-18 17:58:33 +02:00
static
void encode_mb_row(VP8_COMP *cpi,
VP8_COMMON *cm,
int mb_row,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *segment_counts,
int *totalrate)
{
INT64 activity_sum = 0;
2010-05-18 17:58:33 +02:00
int i;
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
2010-05-18 17:58:33 +02:00
int seg_map_index = (mb_row * cpi->common.mb_cols);
#if CONFIG_SEGMENTATION
int left_id, above_id;
int sum;
#endif
2010-05-18 17:58:33 +02:00
// reset above block coeffs
xd->above_context = cm->above_context;
2010-05-18 17:58:33 +02:00
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
cpi->tplist[mb_row].start = *tp;
//printf("Main mb_row = %d\n", mb_row);
// Distance of Mb to the top & bottom edges, specified in 1/8th pel
// units as they are always compared to values that are in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
// Set up limit values for vertical motion vector components
// to prevent them extending beyond the UMV borders
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ (VP8BORDERINPIXELS - 16);
2010-05-18 17:58:33 +02:00
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Distance of Mb to the left & right edges, specified in
// 1/8th pel units as they are always compared to values
// that are in 1/8th pel units
2010-05-18 17:58:33 +02:00
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
// Set up limit values for horizontal motion vector components
// to prevent them extending beyond the UMV borders
2010-05-18 17:58:33 +02:00
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
+ (VP8BORDERINPIXELS - 16);
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
activity_sum += vp8_activity_masking(cpi, x);
2010-05-18 17:58:33 +02:00
// Is segmentation enabled
// MB level adjutment to quantizer
if (xd->segmentation_enabled)
{
// Code to set segment id in xd->mbmi.segment_id for current MB (with range checking)
if (cpi->segmentation_map[seg_map_index+mb_col] <= 3)
xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[seg_map_index+mb_col];
2010-05-18 17:58:33 +02:00
else
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 17:58:33 +02:00
vp8cx_mb_init_quantizer(cpi, x);
2010-05-18 17:58:33 +02:00
}
else
xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default
2010-05-18 17:58:33 +02:00
x->active_ptr = cpi->active_map + seg_map_index + mb_col;
if (cm->frame_type == KEY_FRAME)
{
*totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp);
#ifdef MODE_STATS
y_modes[xd->mbmi.mode] ++;
#endif
}
else
{
*totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset);
#ifdef MODE_STATS
inter_y_modes[xd->mbmi.mode] ++;
if (xd->mbmi.mode == SPLITMV)
{
int b;
for (b = 0; b < xd->mbmi.partition_count; b++)
{
inter_b_modes[x->partition->bmi[b].mode] ++;
2010-05-18 17:58:33 +02:00
}
}
#endif
// Count of last ref frame 0,0 useage
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 17:58:33 +02:00
cpi->inter_zz_count ++;
// Special case code for cyclic refresh
// If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode
// during vp8cx_encode_inter_macroblock()) back into the global sgmentation map
if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)
{
cpi->segmentation_map[seg_map_index+mb_col] = xd->mode_info_context->mbmi.segment_id;
2010-05-18 17:58:33 +02:00
// If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh):
// Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0)
// else mark it as dirty (1).
if (xd->mode_info_context->mbmi.segment_id)
2010-05-18 17:58:33 +02:00
cpi->cyclic_refresh_map[seg_map_index+mb_col] = -1;
else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 17:58:33 +02:00
{
if (cpi->cyclic_refresh_map[seg_map_index+mb_col] == 1)
cpi->cyclic_refresh_map[seg_map_index+mb_col] = 0;
}
else
cpi->cyclic_refresh_map[seg_map_index+mb_col] = 1;
}
}
cpi->tplist[mb_row].stop = *tp;
x->gf_active_ptr++; // Increment pointer into gf useage flags structure for next mb
2010-05-18 17:58:33 +02:00
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
xd->mode_info_context->mbmi.segment_id = 0;
else
xd->mode_info_context->mbmi.segment_id = 1;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
vpx_memcpy(&xd->mode_info_context->bmi[i], &xd->block[i].bmi, sizeof(xd->block[i].bmi));
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
#if CONFIG_SEGMENTATION
//cpi->segmentation_map[mb_row * cm->mb_cols + mb_col] = xd->mbmi.segment_id;
if (cm->frame_type == KEY_FRAME)
{
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
}
else
{
sum = 0;
if (mb_col != 0)
sum += (xd->mode_info_context-1)->mbmi.segment_flag;
if (mb_row != 0)
sum += (xd->mode_info_context-cm->mb_cols)->mbmi.segment_flag;
if (xd->mode_info_context->mbmi.segment_id == cpi->segmentation_map[(mb_row*cm->mb_cols) + mb_col])
xd->mode_info_context->mbmi.segment_flag = 0;
else
xd->mode_info_context->mbmi.segment_flag = 1;
if (xd->mode_info_context->mbmi.segment_flag == 0)
{
segment_counts[SEEK_SAMEID + sum]++;
segment_counts[10]++;
}
else
{
segment_counts[SEEK_DIFFID + sum]++;
segment_counts[11]++;
//calculate individual segment ids
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
}
}
segment_counts[SEEK_SEGID + xd->mode_info_context->mbmi.segment_id] ++;
#else
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
#endif
2010-05-18 17:58:33 +02:00
// skip to next mb
xd->mode_info_context++;
x->partition_info++;
2010-05-18 17:58:33 +02:00
xd->above_context++;
2010-05-18 17:58:33 +02:00
cpi->current_mb_col_main = mb_col;
}
//extend the recon for intra prediction
vp8_extend_mb_row(
&cm->yv12_fb[dst_fb_idx],
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
// this is to account for the border
xd->mode_info_context++;
x->partition_info++;
x->activity_sum += activity_sum;
2010-05-18 17:58:33 +02:00
}
void vp8_encode_frame(VP8_COMP *cpi)
{
int mb_row;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
#if CONFIG_SEGMENTATION
int segment_counts[MAX_MB_SEGMENTS + SEEK_SEGID];
int prob[3];
int new_cost, original_cost;
#else
2010-05-18 17:58:33 +02:00
int segment_counts[MAX_MB_SEGMENTS];
#endif
2010-05-18 17:58:33 +02:00
int totalrate;
// Functions setup for all frame types so we can use MC in AltRef
if (cm->mcomp_filter_type == SIXTAP)
2010-05-18 17:58:33 +02:00
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap16x16);
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear16x16);
2010-05-18 17:58:33 +02:00
}
x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Point to base of GF active flags data structure
2010-05-18 17:58:33 +02:00
x->vector_range = 32;
// Count of MBs using the alternate Q if any
cpi->alt_qcount = 0;
// Reset frame count of inter 0,0 motion vector useage.
cpi->inter_zz_count = 0;
vpx_memset(segment_counts, 0, sizeof(segment_counts));
cpi->prediction_error = 0;
cpi->intra_error = 0;
cpi->skip_true_count = 0;
cpi->skip_false_count = 0;
#if 0
// Experimental code
cpi->frame_distortion = 0;
2010-05-18 17:58:33 +02:00
cpi->last_mb_distortion = 0;
#endif
totalrate = 0;
x->partition_info = x->pi;
2010-05-18 17:58:33 +02:00
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
vp8_zero(cpi->MVcount);
// vp8_zero( Contexts)
vp8_zero(cpi->coef_counts);
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp8_init_mbmode_probs(cm);
vp8cx_frame_init_quantizer(cpi);
if (cpi->compressor_speed == 2)
{
if (cpi->oxcf.cpu_used < 0)
cpi->Speed = -(cpi->oxcf.cpu_used);
else
vp8_auto_select_speed(cpi);
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
2010-05-18 17:58:33 +02:00
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
// Copy data over into macro block data sturctures.
x->src = * cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
2010-05-18 17:58:33 +02:00
// set up frame new frame for intra coded blocks
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
2010-05-18 17:58:33 +02:00
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
x->activity_sum = 0;
2010-05-18 17:58:33 +02:00
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
2010-05-18 17:58:33 +02:00
xd->left_context = &cm->left_context;
2010-05-18 17:58:33 +02:00
vp8_zero(cpi->count_mb_ref_frame_usage)
vp8_zero(cpi->ymode_count)
vp8_zero(cpi->uv_mode_count)
x->mvc = cm->fc.mvc;
vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
2010-05-18 17:58:33 +02:00
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
if (!cpi->b_multi_threaded)
{
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
vp8_zero(cm->left_context)
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
cpi->tok_count = tp - cpi->tok;
}
else
{
#if CONFIG_MULTITHREAD
int i;
2010-05-18 17:58:33 +02:00
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count);
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1))
{
cpi->current_mb_col_main = -1;
for (i = 0; i < cpi->encoding_thread_count; i++)
{
if ((mb_row + i + 1) >= cm->mb_rows)
break;
cpi->mb_row_ei[i].mb_row = mb_row + i + 1;
cpi->mb_row_ei[i].tp = cpi->tok + (mb_row + i + 1) * (cm->mb_cols * 16 * 24);
cpi->mb_row_ei[i].current_mb_col = -1;
//SetEvent(cpi->h_event_mbrencoding[i]);
sem_post(&cpi->h_event_mbrencoding[i]);
}
vp8_zero(cm->left_context)
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count;
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
2010-05-18 17:58:33 +02:00
if (mb_row < cm->mb_rows - 1)
//WaitForSingleObject(cpi->h_event_main, INFINITE);
sem_wait(&cpi->h_event_main);
}
/*
for( ;mb_row<cm->mb_rows; mb_row ++)
{
vp8_zero( cm->left_context)
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
*/
cpi->tok_count = 0;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start;
}
if (xd->segmentation_enabled)
{
int i, j;
if (xd->segmentation_enabled)
{
for (i = 0; i < cpi->encoding_thread_count; i++)
{
for (j = 0; j < 4; j++)
segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
}
}
}
for (i = 0; i < cpi->encoding_thread_count; i++)
{
totalrate += cpi->mb_row_ei[i].totalrate;
}
for (i = 0; i < cpi->encoding_thread_count; i++)
{
x->activity_sum += cpi->mb_row_ei[i].mb.activity_sum;
}
2010-05-18 17:58:33 +02:00
#endif
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// Work out the segment probabilites if segmentation is enabled
if (xd->segmentation_enabled)
{
int tot_count;
int i,j;
int count1,count2,count3,count4;
2010-05-18 17:58:33 +02:00
// Set to defaults
vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs));
#if CONFIG_SEGMENTATION
tot_count = segment_counts[12] + segment_counts[13] + segment_counts[14] + segment_counts[15];
count1 = segment_counts[12] + segment_counts[13];
count2 = segment_counts[14] + segment_counts[15];
if (tot_count)
prob[0] = (count1 * 255) / tot_count;
if (count1 > 0)
prob[1] = (segment_counts[12] * 255) /count1;
if (count2 > 0)
prob[2] = (segment_counts[14] * 255) /count2;
if (cm->frame_type != KEY_FRAME)
{
tot_count = segment_counts[4] + segment_counts[7];
if (tot_count)
xd->mb_segment_tree_probs[3] = (segment_counts[4] * 255)/tot_count;
tot_count = segment_counts[5] + segment_counts[8];
if (tot_count)
xd->mb_segment_tree_probs[4] = (segment_counts[5] * 255)/tot_count;
tot_count = segment_counts[6] + segment_counts[9];
if (tot_count)
xd->mb_segment_tree_probs[5] = (segment_counts[6] * 255)/tot_count;
}
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
count3 = segment_counts[0] + segment_counts[1];
count4 = segment_counts[2] + segment_counts[3];
2010-05-18 17:58:33 +02:00
if (tot_count)
xd->mb_segment_tree_probs[0] = (count3 * 255) / tot_count;
if (count3 > 0)
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) /count3;
if (count4 > 0)
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) /count4;
for (i = 0; i < MB_FEATURE_TREE_PROBS+3; i++)
{
if (xd->mb_segment_tree_probs[i] == 0)
xd->mb_segment_tree_probs[i] = 1;
}
original_cost = count1 * vp8_cost_zero(prob[0]) + count2 * vp8_cost_one(prob[0]);
if (count1 > 0)
original_cost += segment_counts[12] * vp8_cost_zero(prob[1]) + segment_counts[13] * vp8_cost_one(prob[1]);
if (count2 > 0)
original_cost += segment_counts[14] * vp8_cost_zero(prob[2]) + segment_counts[15] * vp8_cost_one(prob[2]) ;
new_cost = 0;
if (cm->frame_type != KEY_FRAME)
{
new_cost = segment_counts[4] * vp8_cost_zero(xd->mb_segment_tree_probs[3]) + segment_counts[7] * vp8_cost_one(xd->mb_segment_tree_probs[3]);
new_cost += segment_counts[5] * vp8_cost_zero(xd->mb_segment_tree_probs[4]) + segment_counts[8] * vp8_cost_one(xd->mb_segment_tree_probs[4]);
new_cost += segment_counts[6] * vp8_cost_zero(xd->mb_segment_tree_probs[5]) + segment_counts[9] * vp8_cost_one (xd->mb_segment_tree_probs[5]);
}
if (tot_count > 0)
new_cost += count3 * vp8_cost_zero(xd->mb_segment_tree_probs[0]) + count4 * vp8_cost_one(xd->mb_segment_tree_probs[0]);
if (count3 > 0)
new_cost += segment_counts[0] * vp8_cost_zero(xd->mb_segment_tree_probs[1]) + segment_counts[1] * vp8_cost_one(xd->mb_segment_tree_probs[1]);
if (count4 > 0)
new_cost += segment_counts[2] * vp8_cost_zero(xd->mb_segment_tree_probs[2]) + segment_counts[3] * vp8_cost_one(xd->mb_segment_tree_probs[2]) ;
if (new_cost < original_cost)
xd->temporal_update = 1;
else
{
xd->temporal_update = 0;
xd->mb_segment_tree_probs[0] = prob[0];
xd->mb_segment_tree_probs[1] = prob[1];
xd->mb_segment_tree_probs[2] = prob[2];
}
#else
2010-05-18 17:58:33 +02:00
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
count1 = segment_counts[0] + segment_counts[1];
count2 = segment_counts[2] + segment_counts[3];
2010-05-18 17:58:33 +02:00
if (tot_count)
xd->mb_segment_tree_probs[0] = (count1 * 255) / tot_count;
2010-05-18 17:58:33 +02:00
if (count1 > 0)
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) /count1;
2010-05-18 17:58:33 +02:00
if (count2 > 0)
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) /count2;
2010-05-18 17:58:33 +02:00
#endif
// Zero probabilities not allowed
#if CONFIG_SEGMENTATION
for (i = 0; i < MB_FEATURE_TREE_PROBS+3; i++)
#else
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
#endif
2010-05-18 17:58:33 +02:00
{
if (xd->mb_segment_tree_probs[i] == 0)
xd->mb_segment_tree_probs[i] = 1;
}
}
// 256 rate units to the bit
cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES
// Make a note of the percentage MBs coded Intra.
if (cm->frame_type == KEY_FRAME)
{
cpi->this_frame_percent_intra = 100;
}
else
{
int tot_modes;
tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME]
+ cpi->count_mb_ref_frame_usage[LAST_FRAME]
+ cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]
+ cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
if (tot_modes)
cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
}
#if 0
{
int cnt = 0;
int flag[2] = {0, 0};
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt])
{
flag[0] = 1;
vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount);
break;
}
}
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt])
{
flag[1] = 1;
vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount);
break;
}
}
if (flag[0] || flag[1])
vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
}
#endif
// Adjust the projected reference frame useage probability numbers to reflect
// what we have just seen. This may be usefull when we make multiple itterations
// of the recode loop rather than continuing to use values from the previous frame.
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame)
{
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if ((rf_intra + rf_inter) > 0)
{
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
if (cpi->prob_intra_coded < 1)
cpi->prob_intra_coded = 1;
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
{
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (cpi->prob_last_coded < 1)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (cpi->prob_gf_coded < 1)
cpi->prob_gf_coded = 1;
}
}
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
/* Update the average activity for the next frame.
* This is feed-forward for now; it could also be saved in two-pass, or
* done during lookahead when that is eventually added.
*/
cpi->activity_avg = (unsigned int )(x->activity_sum/cpi->common.MBs);
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
2010-05-18 17:58:33 +02:00
}
void vp8_setup_block_ptrs(MACROBLOCK *x)
{
int r, c;
int i;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; i++)
{
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp8_build_block_offsets(MACROBLOCK *x)
{
int block = 0;
int br, bc;
vp8_build_block_doffsets(&x->e_mbd);
// y blocks
for (br = 0; br < 4; br++)
{
for (bc = 0; bc < 4; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.y_buffer;
this_block->src_stride = x->src.y_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// u blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// v blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x)
{
const MACROBLOCKD *xd = & x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
if (m == B_PRED)
{
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do
{
++ bct[xd->block[b].bmi.mode];
}
while (++b < 16);
}
#endif
++cpi->ymode_count[m];
++cpi->uv_mode_count[uvm];
}
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t)
{
int Error4x4, Error16x16, error_uv;
B_PREDICTION_MODE intra_bmodes[16];
int rate4x4, rate16x16, rateuv;
int dist4x4, dist16x16, distuv;
int rate = 0;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly = 0;
int i;
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
2010-05-18 17:58:33 +02:00
#if !(CONFIG_REALTIME_ONLY)
if (cpi->sf.RD || cpi->compressor_speed != 2)
{
Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4);
//save the b modes for possible later use
for (i = 0; i < 16; i++)
intra_bmodes[i] = x->e_mbd.block[i].bmi.mode;
Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16);
error_uv = vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv);
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
rate += rateuv;
if (Error4x4 < Error16x16)
{
rate += rate4x4;
x->e_mbd.mode_info_context->mbmi.mode = B_PRED;
2010-05-18 17:58:33 +02:00
// get back the intra block modes
for (i = 0; i < 16; i++)
x->e_mbd.block[i].bmi.mode = intra_bmodes[i];
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
cpi->prediction_error += Error4x4 ;
#if 0
// Experimental RD code
cpi->frame_distortion += dist4x4;
#endif
}
else
{
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
rate += rate16x16;
#if 0
// Experimental RD code
cpi->prediction_error += Error16x16;
cpi->frame_distortion += dist16x16;
#endif
}
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, &x->e_mbd, t);
}
else
#endif
{
int rate2, distortion2;
MB_PREDICTION_MODE mode, best_mode = DC_PRED;
int this_rd;
Error16x16 = INT_MAX;
for (mode = DC_PRED; mode <= TM_PRED; mode ++)
{
x->e_mbd.mode_info_context->mbmi.mode = mode;
2010-05-18 17:58:33 +02:00
vp8_build_intra_predictors_mby_ptr(&x->e_mbd);
distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff);
rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode];
this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2);
if (Error16x16 > this_rd)
{
Error16x16 = this_rd;
best_mode = mode;
}
}
vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &distortion2);
if (distortion2 == INT_MAX)
Error4x4 = INT_MAX;
else
Error4x4 = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2);
if (Error4x4 < Error16x16)
{
x->e_mbd.mode_info_context->mbmi.mode = B_PRED;
2010-05-18 17:58:33 +02:00
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
cpi->prediction_error += Error4x4;
}
else
{
x->e_mbd.mode_info_context->mbmi.mode = best_mode;
2010-05-18 17:58:33 +02:00
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
cpi->prediction_error += Error16x16;
}
vp8_pick_intra_mbuv_mode(x);
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, &x->e_mbd, t);
}
return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif
extern void vp8_fix_contexts(MACROBLOCKD *x);
2010-05-18 17:58:33 +02:00
int vp8cx_encode_inter_macroblock
(
VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int recon_yoffset, int recon_uvoffset
)
{
MACROBLOCKD *const xd = &x->e_mbd;
int inter_error;
int intra_error = 0;
int rate;
int distortion;
x->skip = 0;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
2010-05-18 17:58:33 +02:00
else
x->encode_breakout = cpi->oxcf.encode_breakout;
#if !(CONFIG_REALTIME_ONLY)
if (cpi->sf.RD)
{
/* Are we using the fast quantizer for the mode selection? */
if(cpi->sf.use_fastquant_for_pick)
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb);
2010-05-18 17:58:33 +02:00
inter_error = vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error);
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb);
}
2010-05-18 17:58:33 +02:00
}
else
#endif
inter_error = vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error);
cpi->prediction_error += inter_error;
cpi->intra_error += intra_error;
#if 0
// Experimental RD code
cpi->frame_distortion += distortion;
cpi->last_mb_distortion = distortion;
#endif
// MB level adjutment to quantizer setup
if (xd->segmentation_enabled || cpi->zbin_mode_boost_enabled)
{
// If cyclic update enabled
if (cpi->cyclic_refresh_mode_enabled)
{
// Clear segment_id back to 0 if not coded (last frame 0,0)
if ((xd->mode_info_context->mbmi.segment_id == 1) &&
((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV)))
2010-05-18 17:58:33 +02:00
{
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 17:58:33 +02:00
}
}
// Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise
if (cpi->zbin_mode_boost_enabled)
{
if ( xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME )
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
else
{
if (xd->mode_info_context->mbmi.mode == ZEROMV)
{
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (xd->mode_info_context->mbmi.mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 17:58:33 +02:00
}
else
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
vp8cx_mb_init_quantizer(cpi, x);
}
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++;
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 17:58:33 +02:00
{
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
if (xd->mode_info_context->mbmi.mode == B_PRED)
2010-05-18 17:58:33 +02:00
{
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
}
else
{
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
sum_intra_stats(cpi, x);
}
else
{
MV best_ref_mv;
MV nearest, nearby;
int mdcounts[4];
int ref_fb_idx;
2010-05-18 17:58:33 +02:00
vp8_find_near_mvs(xd, xd->mode_info_context,
&nearest, &nearby, &best_ref_mv, mdcounts, xd->mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias);
2010-05-18 17:58:33 +02:00
vp8_build_uvmvs(xd, cpi->common.full_pixel);
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
2010-05-18 17:58:33 +02:00
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.mode == SPLITMV)
2010-05-18 17:58:33 +02:00
{
int i;
for (i = 0; i < 16; i++)
{
if (xd->block[i].bmi.mode == NEW4X4)
{
cpi->MVcount[0][mv_max+((xd->block[i].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max+((xd->block[i].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++;
}
}
}
else if (xd->mode_info_context->mbmi.mode == NEWMV)
2010-05-18 17:58:33 +02:00
{
cpi->MVcount[0][mv_max+((xd->block[0].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++;
cpi->MVcount[1][mv_max+((xd->block[0].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++;
}
if (!x->skip && !x->e_mbd.mode_info_context->mbmi.force_no_skip)
2010-05-18 17:58:33 +02:00
{
vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x);
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
}
else
vp8_stuff_inter16x16(x);
}
if (!x->skip)
vp8_tokenize_mb(cpi, xd, t);
else
{
if (cpi->common.mb_no_coeff_skip)
{
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV)
xd->mode_info_context->mbmi.dc_diff = 0;
2010-05-18 17:58:33 +02:00
else
xd->mode_info_context->mbmi.dc_diff = 1;
2010-05-18 17:58:33 +02:00
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
2010-05-18 17:58:33 +02:00
cpi->skip_true_count ++;
vp8_fix_contexts(xd);
2010-05-18 17:58:33 +02:00
}
else
{
vp8_stuff_mb(cpi, xd, t);
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
cpi->skip_false_count ++;
}
}
return rate;
}