vpx/vp9/encoder/vp9_denoiser.c

454 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_context_tree.h"
#include "vp9/encoder/vp9_denoiser.h"
/* The VP9 denoiser is a work-in-progress. It currently is only designed to work
* with speed 6, though it (inexplicably) seems to also work with speed 5 (one
* would need to modify the source code in vp9_pickmode.c and vp9_encoder.c to
* make the calls to the vp9_denoiser_* functions when in speed 5).
*
* The implementation is very similar to that of the VP8 denoiser. While
* choosing the motion vectors / reference frames, the denoiser is run, and if
* it did not modify the signal to much, the denoised block is copied to the
* signal.
*/
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
#endif
static const int widths[] = {4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64};
static const int heights[] = {4, 8, 4, 8, 16, 8, 16, 32, 16, 32, 64, 32, 64};
static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
return 3 + (increase_denoising ? 1 : 0);
}
static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 4;
}
static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 25 * 25;
}
static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
return widths[bs] * heights[bs] * (increase_denoising ? 60 : 40);
}
static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
int mv_row, int mv_col) {
if (mv_row * mv_row + mv_col * mv_col >
noise_motion_thresh(bs, increase_denoising)) {
return 0;
} else {
return widths[bs] * heights[bs] * 20;
}
}
static int total_adj_strong_thresh(BLOCK_SIZE bs, int increase_denoising) {
return widths[bs] * heights[bs] * (increase_denoising ? 3 : 2);
}
static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
return widths[bs] * heights[bs] * (increase_denoising ? 3 : 2);
}
static VP9_DENOISER_DECISION denoiser_filter(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg,
int mc_avg_stride,
uint8_t *avg, int avg_stride,
int increase_denoising,
BLOCK_SIZE bs) {
int r, c;
const uint8_t *sig_start = sig;
const uint8_t *mc_avg_start = mc_avg;
uint8_t *avg_start = avg;
int diff, adj, absdiff, delta;
int adj_val[] = {3, 4, 6};
int total_adj = 0;
// First attempt to apply a strong temporal denoising filter.
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4: case 5: case 6: case 7:
adj = adj_val[0];
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
adj = adj_val[1];
break;
default:
adj = adj_val[2];
}
if (diff > 0) {
avg[c] = MIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = MAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// If the strong filter did not modify the signal too much, we're all set.
if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
// Otherwise, we try to dampen the filter if the delta is not too high.
delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising))
>> 8) + 1;
if (delta > delta_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
mc_avg = mc_avg_start;
avg = avg_start;
sig = sig_start;
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
diff = mc_avg[c] - sig[c];
adj = abs(diff);
if (adj > delta) {
adj = delta;
}
if (diff > 0) {
avg[c] = MAX(0, avg[c] - adj);
total_adj += adj;
} else {
avg[c] = MIN(UINT8_MAX, avg[c] + adj);
total_adj -= adj;
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// We can use the filter if it has been sufficiently dampened
if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
return COPY_BLOCK;
}
static uint8_t *block_start(uint8_t *framebuf, int stride,
int mi_row, int mi_col) {
return framebuf + (stride * mi_row * 8) + (mi_col * 8);
}
static void copy_block(uint8_t *dest, int dest_stride,
const uint8_t *src, int src_stride, BLOCK_SIZE bs) {
int r;
for (r = 0; r < heights[bs]; ++r) {
vpx_memcpy(dest, src, widths[bs]);
dest += dest_stride;
src += src_stride;
}
}
static VP9_DENOISER_DECISION perform_motion_compensation(VP9_DENOISER *denoiser,
MACROBLOCK *mb,
BLOCK_SIZE bs,
int increase_denoising,
int mi_row,
int mi_col,
PICK_MODE_CONTEXT *ctx
) {
int mv_col, mv_row;
int sse_diff = ctx->zeromv_sse - ctx->newmv_sse;
MV_REFERENCE_FRAME frame;
MACROBLOCKD *filter_mbd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &filter_mbd->mi[0]->mbmi;
MB_MODE_INFO saved_mbmi;
int i, j;
struct buf_2d saved_dst[MAX_MB_PLANE];
struct buf_2d saved_pre[MAX_MB_PLANE][2]; // 2 pre buffers
// We will restore these after motion compensation.
saved_mbmi = *mbmi;
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (j = 0; j < 2; ++j) {
saved_pre[i][j] = filter_mbd->plane[i].pre[j];
}
saved_dst[i] = filter_mbd->plane[i].dst;
}
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
frame = ctx->best_reference_frame;
// If the best reference frame uses inter-prediction and there is enough of a
// difference in sum-squared-error, use it.
if (frame != INTRA_FRAME &&
sse_diff > sse_diff_thresh(bs, increase_denoising, mv_row, mv_col)) {
mbmi->ref_frame[0] = ctx->best_reference_frame;
mbmi->mode = ctx->best_sse_inter_mode;
mbmi->mv[0] = ctx->best_sse_mv;
} else {
// Otherwise, use the zero reference frame.
frame = ctx->best_zeromv_reference_frame;
mbmi->ref_frame[0] = ctx->best_zeromv_reference_frame;
mbmi->mode = ZEROMV;
mbmi->mv[0].as_int = 0;
ctx->best_sse_inter_mode = ZEROMV;
ctx->best_sse_mv.as_int = 0;
ctx->newmv_sse = ctx->zeromv_sse;
}
// Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
// struct.
for (j = 0; j < 2; ++j) {
filter_mbd->plane[0].pre[j].buf =
block_start(denoiser->running_avg_y[frame].y_buffer,
denoiser->running_avg_y[frame].y_stride,
mi_row, mi_col);
filter_mbd->plane[0].pre[j].stride =
denoiser->running_avg_y[frame].y_stride;
filter_mbd->plane[1].pre[j].buf =
block_start(denoiser->running_avg_y[frame].u_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].pre[j].stride =
denoiser->running_avg_y[frame].uv_stride;
filter_mbd->plane[2].pre[j].buf =
block_start(denoiser->running_avg_y[frame].v_buffer,
denoiser->running_avg_y[frame].uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].pre[j].stride =
denoiser->running_avg_y[frame].uv_stride;
}
filter_mbd->plane[0].dst.buf =
block_start(denoiser->mc_running_avg_y.y_buffer,
denoiser->mc_running_avg_y.y_stride,
mi_row, mi_col);
filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride;
filter_mbd->plane[1].dst.buf =
block_start(denoiser->mc_running_avg_y.u_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride;
filter_mbd->plane[2].dst.buf =
block_start(denoiser->mc_running_avg_y.v_buffer,
denoiser->mc_running_avg_y.uv_stride,
mi_row, mi_col);
filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride;
vp9_build_inter_predictors_sby(filter_mbd, mv_row, mv_col, bs);
// Restore everything to its original state
*mbmi = saved_mbmi;
for (i = 0; i < MAX_MB_PLANE; ++i) {
for (j = 0; j < 2; ++j) {
filter_mbd->plane[i].pre[j] = saved_pre[i][j];
}
filter_mbd->plane[i].dst = saved_dst[i];
}
mv_row = ctx->best_sse_mv.as_mv.row;
mv_col = ctx->best_sse_mv.as_mv.col;
if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
if (mv_row * mv_row + mv_col * mv_col >
8 * noise_motion_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
return FILTER_BLOCK;
}
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs,
PICK_MODE_CONTEXT *ctx) {
VP9_DENOISER_DECISION decision = FILTER_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
decision = perform_motion_compensation(denoiser, mb, bs,
denoiser->increase_denoising,
mi_row, mi_col, ctx);
if (decision == FILTER_BLOCK) {
decision = denoiser_filter(src.buf, src.stride,
mc_avg_start, mc_avg.y_stride,
avg_start, avg.y_stride,
0, bs);
}
if (decision == FILTER_BLOCK) {
copy_block(src.buf, src.stride, avg_start, avg.y_stride, bs);
} else { // COPY_BLOCK
copy_block(avg_start, avg.y_stride, src.buf, src.stride, bs);
}
}
static void copy_frame(YV12_BUFFER_CONFIG dest, const YV12_BUFFER_CONFIG src) {
int r;
const uint8_t *srcbuf = src.y_buffer;
uint8_t *destbuf = dest.y_buffer;
assert(dest.y_width == src.y_width);
assert(dest.y_height == src.y_height);
for (r = 0; r < dest.y_height; ++r) {
vpx_memcpy(destbuf, srcbuf, dest.y_width);
destbuf += dest.y_stride;
srcbuf += src.y_stride;
}
}
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame) {
if (frame_type == KEY_FRAME) {
int i;
// Start at 1 so as not to overwrite the INTRA_FRAME
for (i = 1; i < MAX_REF_FRAMES; ++i) {
copy_frame(denoiser->running_avg_y[i], src);
}
} else { /* For non key frames */
if (refresh_alt_ref_frame) {
copy_frame(denoiser->running_avg_y[ALTREF_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(denoiser->running_avg_y[GOLDEN_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(denoiser->running_avg_y[LAST_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
ctx->zeromv_sse = UINT_MAX;
ctx->newmv_sse = UINT_MAX;
}
void vp9_denoiser_update_frame_stats(MB_MODE_INFO *mbmi, unsigned int sse,
PREDICTION_MODE mode,
PICK_MODE_CONTEXT *ctx) {
// TODO(tkopp): Use both MVs if possible
if (mbmi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
ctx->zeromv_sse = sse;
ctx->best_zeromv_reference_frame = mbmi->ref_frame[0];
}
if (mode == NEWMV) {
ctx->newmv_sse = sse;
ctx->best_sse_inter_mode = mode;
ctx->best_sse_mv = mbmi->mv[0];
ctx->best_reference_frame = mbmi->ref_frame[0];
}
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int ssx, int ssy, int border) {
int i, fail;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vp9_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
}
fail = vp9_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
denoiser->increase_denoising = 0;
return 0;
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
int i;
if (denoiser == NULL) {
return;
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
if (&denoiser->running_avg_y[i] != NULL) {
vp9_free_frame_buffer(&denoiser->running_avg_y[i]);
}
}
if (&denoiser->mc_running_avg_y != NULL) {
vp9_free_frame_buffer(&denoiser->mc_running_avg_y);
}
}
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
int r, c;
uint8_t *u = yuv->u_buffer;
uint8_t *v = yuv->v_buffer;
// The '/2's are there because we have a 440 buffer, but we want to output
// 420.
for (r = 0; r < yuv->uv_height / 2; ++r) {
for (c = 0; c < yuv->uv_width / 2; ++c) {
u[c] = UINT8_MAX / 2;
v[c] = UINT8_MAX / 2;
}
u += yuv->uv_stride + yuv->uv_width / 2;
v += yuv->uv_stride + yuv->uv_width / 2;
}
}
#endif