vpx/vp9/encoder/vp9_rdopt.c

3352 lines
122 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
2010-05-18 17:58:33 +02:00
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
DECLARE_ALIGNED(16, extern const uint8_t,
vp9_pt_energy_class[MAX_ENTROPY_TOKENS]);
#define I4X4_PRED 0x8000
#define SPLITMV 0x10000
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{ZEROMV, LAST_FRAME, NONE},
{DC_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEARESTMV, LAST_FRAME, NONE},
{NEARMV, LAST_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{ZEROMV, GOLDEN_FRAME, NONE},
{NEARESTMV, GOLDEN_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{ZEROMV, ALTREF_FRAME, NONE},
{NEARESTMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEARMV, GOLDEN_FRAME, NONE},
{NEARMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{V_PRED, INTRA_FRAME, NONE},
{H_PRED, INTRA_FRAME, NONE},
{D45_PRED, INTRA_FRAME, NONE},
{D135_PRED, INTRA_FRAME, NONE},
{D117_PRED, INTRA_FRAME, NONE},
{D153_PRED, INTRA_FRAME, NONE},
{D27_PRED, INTRA_FRAME, NONE},
{D63_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{TM_PRED, INTRA_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{NEWMV, LAST_FRAME, NONE},
{NEWMV, GOLDEN_FRAME, NONE},
{NEWMV, ALTREF_FRAME, NONE},
2010-05-18 17:58:33 +02:00
{SPLITMV, LAST_FRAME, NONE},
{SPLITMV, GOLDEN_FRAME, NONE},
{SPLITMV, ALTREF_FRAME, NONE},
{I4X4_PRED, INTRA_FRAME, NONE},
/* compound prediction modes */
{ZEROMV, LAST_FRAME, ALTREF_FRAME},
{NEARESTMV, LAST_FRAME, ALTREF_FRAME},
{NEARMV, LAST_FRAME, ALTREF_FRAME},
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
{NEWMV, LAST_FRAME, ALTREF_FRAME},
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
{SPLITMV, LAST_FRAME, ALTREF_FRAME},
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
2010-05-18 17:58:33 +02:00
};
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for blocks size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static int rd_thresh_block_size_factor[BLOCK_SIZE_TYPES] =
{2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32};
#define BASE_RD_THRESH_FREQ_FACT 16
#define MAX_RD_THRESH_FREQ_FACT 32
#define MAX_RD_THRESH_FREQ_INC 1
static void fill_token_costs(vp9_coeff_count (*c)[BLOCK_TYPES],
vp9_coeff_count (*cnoskip)[BLOCK_TYPES],
vp9_coeff_probs_model (*p)[BLOCK_TYPES]) {
int i, j, k, l;
TX_SIZE t;
for (t = TX_4X4; t <= TX_32X32; t++)
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < REF_TYPES; j++)
for (k = 0; k < COEF_BANDS; k++)
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
vp9_prob probs[ENTROPY_NODES];
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
vp9_cost_tokens((int *)cnoskip[t][i][j][k][l], probs,
vp9_coef_tree);
#if CONFIG_BALANCED_COEFTREE
// Replace the eob node prob with a very small value so that the
// cost approximately equals the cost without the eob node
probs[1] = 1;
vp9_cost_tokens((int *)c[t][i][j][k][l], probs, vp9_coef_tree);
#else
vp9_cost_tokens_skip((int *)c[t][i][j][k][l], probs,
vp9_coef_tree);
assert(c[t][i][j][k][l][DCT_EOB_TOKEN] ==
cnoskip[t][i][j][k][l][DCT_EOB_TOKEN]);
#endif
}
}
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, };
2010-05-18 17:58:33 +02:00
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
// 3* dc_qlookup[Q]*dc_qlookup[Q];
/* values are now correlated to quantizer */
static int sad_per_bit16lut[QINDEX_RANGE];
static int sad_per_bit4lut[QINDEX_RANGE];
void vp9_init_me_luts() {
int i;
// Initialize the sad lut tables using a formulaic calculation for now
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < QINDEX_RANGE; i++) {
sad_per_bit16lut[i] =
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742);
}
}
2010-05-18 17:58:33 +02:00
static int compute_rd_mult(int qindex) {
const int q = vp9_dc_quant(qindex, 0);
return (11 * q * q) >> 2;
}
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
cpi->mb.sadperbit16 = sad_per_bit16lut[qindex];
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
2010-05-18 17:58:33 +02:00
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) {
int q, i, bsize;
2010-05-18 17:58:33 +02:00
vp9_clear_system_state(); // __asm emms;
2010-05-18 17:58:33 +02:00
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
qindex = clamp(qindex, 0, MAXQ);
cpi->RDMULT = compute_rd_mult(qindex);
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
if (cpi->twopass.next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT +=
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
}
cpi->mb.errorperbit = cpi->RDMULT >> 6;
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
vp9_set_speed_features(cpi);
2010-05-18 17:58:33 +02:00
q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25);
q <<= 2;
if (q < 8)
q = 8;
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
if (cpi->RDMULT > 1000) {
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
2010-05-18 17:58:33 +02:00
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
for (i = 0; i < MAX_MODES; ++i) {
// Threshold here seem unecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[]
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
// *4 relates to the scaling of rd_thresh_block_size_factor[]
if ((int64_t)cpi->sf.thresh_mult[i] < thresh_max) {
cpi->rd_threshes[bsize][i] =
cpi->sf.thresh_mult[i] * q *
rd_thresh_block_size_factor[bsize] / (4 * 100);
} else {
cpi->rd_threshes[bsize][i] = INT_MAX;
}
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
cpi->rd_thresh_freq_fact[bsize][i] = MAX_RD_THRESH_FREQ_FACT;
}
2010-05-18 17:58:33 +02:00
}
} else {
cpi->RDDIV = 100;
2010-05-18 17:58:33 +02:00
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
for (i = 0; i < MAX_MODES; i++) {
// Threshold here seem unecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[]
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
if (cpi->sf.thresh_mult[i] < thresh_max) {
cpi->rd_threshes[bsize][i] =
cpi->sf.thresh_mult[i] * q *
rd_thresh_block_size_factor[bsize] / 4;
} else {
cpi->rd_threshes[bsize][i] = INT_MAX;
}
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
cpi->rd_thresh_freq_fact[bsize][i] = MAX_RD_THRESH_FREQ_FACT;
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
fill_token_costs(cpi->mb.token_costs,
cpi->mb.token_costs_noskip,
cpi->common.fc.coef_probs);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (i = 0; i < NUM_PARTITION_CONTEXTS; i++)
vp9_cost_tokens(cpi->mb.partition_cost[i],
cpi->common.fc.partition_prob[cpi->common.frame_type][i],
vp9_partition_tree);
/*rough estimate for costing*/
vp9_init_mode_costs(cpi);
2010-05-18 17:58:33 +02:00
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (cpi->common.frame_type != KEY_FRAME) {
vp9_build_nmv_cost_table(
cpi->mb.nmvjointcost,
cpi->mb.e_mbd.allow_high_precision_mv ?
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
&cpi->common.fc.nmvc,
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
}
2010-05-18 17:58:33 +02:00
}
int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff,
intptr_t block_size) {
int i;
int64_t error = 0;
2010-05-18 17:58:33 +02:00
for (i = 0; i < block_size; i++) {
int this_diff = coeff[i] - dqcoeff[i];
error += (unsigned)this_diff * this_diff;
}
2010-05-18 17:58:33 +02:00
return error;
2010-05-18 17:58:33 +02:00
}
static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb,
int plane, int block, PLANE_TYPE type,
ENTROPY_CONTEXT *A,
ENTROPY_CONTEXT *L,
TX_SIZE tx_size,
int y_blocks) {
MACROBLOCKD *const xd = &mb->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int pt;
int c = 0;
int cost = 0, pad;
const int *scan, *nb;
const int eob = xd->plane[plane].eobs[block];
const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff,
block, 16);
const int ref = mbmi->ref_frame[0] != INTRA_FRAME;
unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
mb->token_costs[tx_size][type][ref];
ENTROPY_CONTEXT above_ec, left_ec;
TX_TYPE tx_type = DCT_DCT;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
unsigned int (*token_costs_noskip)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
mb->token_costs_noskip[tx_size][type][ref];
int seg_eob, default_eob;
uint8_t token_cache[1024];
const uint8_t * band_translate;
// Check for consistency of tx_size with mode info
assert((!type && !plane) || (type && plane));
if (type == PLANE_TYPE_Y_WITH_DC) {
assert(xd->mode_info_context->mbmi.txfm_size == tx_size);
} else {
TX_SIZE tx_size_uv = get_uv_tx_size(mbmi);
assert(tx_size == tx_size_uv);
}
switch (tx_size) {
case TX_4X4: {
tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type_4x4(xd, block) : DCT_DCT;
above_ec = A[0] != 0;
left_ec = L[0] != 0;
seg_eob = 16;
scan = get_scan_4x4(tx_type);
band_translate = vp9_coefband_trans_4x4;
break;
}
case TX_8X8: {
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
get_tx_type_8x8(xd) : DCT_DCT;
above_ec = (A[0] + A[1]) != 0;
left_ec = (L[0] + L[1]) != 0;
scan = get_scan_8x8(tx_type);
seg_eob = 64;
band_translate = vp9_coefband_trans_8x8plus;
break;
}
case TX_16X16: {
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
get_tx_type_16x16(xd) : DCT_DCT;
scan = get_scan_16x16(tx_type);
seg_eob = 256;
above_ec = (A[0] + A[1] + A[2] + A[3]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3]) != 0;
band_translate = vp9_coefband_trans_8x8plus;
break;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
case TX_32X32:
scan = vp9_default_scan_32x32;
seg_eob = 1024;
above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0;
left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0;
band_translate = vp9_coefband_trans_8x8plus;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
break;
default:
assert(0);
break;
}
assert(eob <= seg_eob);
pt = combine_entropy_contexts(above_ec, left_ec);
nb = vp9_get_coef_neighbors_handle(scan, &pad);
default_eob = seg_eob;
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))
seg_eob = 0;
/* sanity check to ensure that we do not have spurious non-zero q values */
if (eob < seg_eob)
assert(qcoeff_ptr[scan[eob]] == 0);
{
for (c = 0; c < eob; c++) {
int v = qcoeff_ptr[scan[c]];
int t = vp9_dct_value_tokens_ptr[v].token;
int band = get_coef_band(band_translate, c);
if (c)
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
if (!c || token_cache[scan[c - 1]]) // do not skip eob
cost += token_costs_noskip[band][pt][t] + vp9_dct_value_cost_ptr[v];
else
cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v];
token_cache[scan[c]] = vp9_pt_energy_class[t];
}
if (c < seg_eob) {
if (c)
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
cost += mb->token_costs_noskip[tx_size][type][ref]
[get_coef_band(band_translate, c)]
[pt][DCT_EOB_TOKEN];
}
}
// is eob first coefficient;
for (pt = 0; pt < (1 << tx_size); pt++) {
A[pt] = L[pt] = c > 0;
}
return cost;
}
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int (*r)[2], int *rate,
int64_t *d, int64_t *distortion,
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int *s, int *skip,
int64_t txfm_cache[NB_TXFM_MODES],
TX_SIZE max_txfm_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
int64_t rd[TX_SIZE_MAX_SB][2];
int n, m;
int s0, s1;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (n = TX_4X4; n <= max_txfm_size; n++) {
r[n][1] = r[n][0];
for (m = 0; m <= n - (n == max_txfm_size); m++) {
if (m == n)
r[n][1] += vp9_cost_zero(tx_probs[m]);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
else
r[n][1] += vp9_cost_one(tx_probs[m]);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
}
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
for (n = TX_4X4; n <= max_txfm_size; n++) {
if (s[n]) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (max_txfm_size == TX_32X32 &&
(cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_32X32;
} else if (max_txfm_size >= TX_16X16 &&
(cm->txfm_mode == ALLOW_16X16 ||
cm->txfm_mode == ALLOW_32X32 ||
(cm->txfm_mode == TX_MODE_SELECT &&
rd[TX_16X16][1] < rd[TX_8X8][1] &&
rd[TX_16X16][1] < rd[TX_4X4][1]))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode == ALLOW_8X8 ||
cm->txfm_mode == ALLOW_16X16 ||
cm->txfm_mode == ALLOW_32X32 ||
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
(cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
*distortion = d[mbmi->txfm_size];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
*skip = s[mbmi->txfm_size];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (max_txfm_size == TX_32X32 &&
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
rd[TX_32X32][1] < rd[TX_4X4][1])
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
else if (max_txfm_size >= TX_16X16 &&
rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
else
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
rd[TX_4X4][1] : rd[TX_8X8][1];
}
static int64_t block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
int shift) {
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
return vp9_block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff,
16 << (bwl + bhl)) >> shift;
}
static int64_t block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
int shift) {
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
int64_t sum = 0;
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
const int subsampling = x->e_mbd.plane[plane].subsampling_x +
x->e_mbd.plane[plane].subsampling_y;
sum += vp9_block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
16 << (bwl + bhl - subsampling));
}
return sum >> shift;
}
struct rdcost_block_args {
VP9_COMMON *cm;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[16];
ENTROPY_CONTEXT t_left[16];
TX_SIZE tx_size;
int bw;
int bh;
int cost;
};
static void rdcost_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
struct rdcost_block_args* args = arg;
int x_idx, y_idx;
MACROBLOCKD * const xd = &args->x->e_mbd;
txfrm_block_to_raster_xy(xd, bsize, plane, block, args->tx_size * 2, &x_idx,
&y_idx);
args->cost += cost_coeffs(args->cm, args->x, plane, block,
xd->plane[plane].plane_type, args->t_above + x_idx,
args->t_left + y_idx, args->tx_size,
args->bw * args->bh);
}
static int rdcost_plane(VP9_COMMON * const cm, MACROBLOCK *x, int plane,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD * const xd = &x->e_mbd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bw = 1 << bwl, bh = 1 << bhl;
struct rdcost_block_args args = { cm, x, { 0 }, { 0 }, tx_size, bw, bh, 0 };
vpx_memcpy(&args.t_above, xd->plane[plane].above_context,
sizeof(ENTROPY_CONTEXT) * bw);
vpx_memcpy(&args.t_left, xd->plane[plane].left_context,
sizeof(ENTROPY_CONTEXT) * bh);
foreach_transformed_block_in_plane(xd, bsize, plane, rdcost_block, &args);
return args.cost;
}
static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
int cost = 0, plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
cost += rdcost_plane(cm, x, plane, bsize, tx_size);
}
return cost;
}
static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable,
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
xd->mode_info_context->mbmi.txfm_size = tx_size;
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
vp9_encode_intra_block_y(cm, x, bsize);
else
vp9_xform_quant_sby(cm, x, bsize);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
*distortion = block_error_sby(x, bsize, tx_size == TX_32X32 ? 0 : 2);
*rate = rdcost_plane(cm, x, 0, bsize, tx_size);
*skippable = vp9_sby_is_skippable(xd, bsize);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
static void super_block_yrd(VP9_COMP *cpi,
MACROBLOCK *x, int *rate, int64_t *distortion,
int *skip, BLOCK_SIZE_TYPE bs,
int64_t txfm_cache[NB_TXFM_MODES]) {
VP9_COMMON *const cm = &cpi->common;
int r[TX_SIZE_MAX_SB][2], s[TX_SIZE_MAX_SB];
int64_t d[TX_SIZE_MAX_SB];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
assert(bs == mbmi->sb_type);
if (mbmi->ref_frame[0] > INTRA_FRAME)
vp9_subtract_sby(x, bs);
if (cpi->sf.use_largest_txform) {
if (bs >= BLOCK_SIZE_SB32X32) {
mbmi->txfm_size = TX_32X32;
} else if (bs >= BLOCK_SIZE_MB16X16) {
mbmi->txfm_size = TX_16X16;
} else if (bs >= BLOCK_SIZE_SB8X8) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
vpx_memset(txfm_cache, 0, NB_TXFM_MODES * sizeof(int64_t));
super_block_yrd_for_txfm(cm, x, rate, distortion, skip, bs,
mbmi->txfm_size);
return;
}
if (bs >= BLOCK_SIZE_SB32X32)
super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32],
bs, TX_32X32);
if (bs >= BLOCK_SIZE_MB16X16)
super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16],
bs, TX_16X16);
super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs,
TX_8X8);
super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs,
TX_4X4);
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
skip, txfm_cache,
TX_32X32 - (bs < BLOCK_SIZE_SB32X32)
- (bs < BLOCK_SIZE_MB16X16));
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
MB_PREDICTION_MODE *best_mode,
int *bmode_costs,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int *bestrate, int *bestratey,
int64_t *bestdistortion,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MACROBLOCKD *xd = &x->e_mbd;
int64_t best_rd = INT64_MAX;
int rate = 0;
int64_t distortion;
VP9_COMMON *const cm = &cpi->common;
const int src_stride = x->plane[0].src.stride;
uint8_t *src, *dst;
int16_t *src_diff, *coeff;
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
TX_TYPE tx_type = DCT_DCT;
TX_TYPE best_tx_type = DCT_DCT;
int bw = 1 << b_width_log2(bsize);
int bh = 1 << b_height_log2(bsize);
int idx, idy, block;
DECLARE_ALIGNED(16, int16_t, best_dqcoeff[4][16]);
assert(ib < 4);
vpx_memcpy(ta, a, sizeof(ta));
vpx_memcpy(tl, l, sizeof(tl));
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
rate = bmode_costs[mode];
distortion = 0;
vpx_memcpy(tempa, ta, sizeof(ta));
vpx_memcpy(templ, tl, sizeof(tl));
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
block = ib + idy * 2 + idx;
xd->mode_info_context->bmi[block].as_mode.first = mode;
src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
x->plane[0].src.buf, src_stride);
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, block,
x->plane[0].src_diff);
coeff = BLOCK_OFFSET(x->plane[0].coeff, block, 16);
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8),
TX_4X4, mode, dst, xd->plane[0].dst.stride);
vp9_subtract_block(4, 4, src_diff, 8,
src, src_stride,
dst, xd->plane[0].dst.stride);
tx_type = get_tx_type_4x4(xd, block);
if (tx_type != DCT_DCT) {
vp9_short_fht4x4(src_diff, coeff, 8, tx_type);
x->quantize_b_4x4(x, block, tx_type, 16);
} else {
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, block, tx_type, 16);
}
ratey += cost_coeffs(cm, x, 0, block, PLANE_TYPE_Y_WITH_DC,
tempa + idx, templ + idy, TX_4X4, 16);
distortion += vp9_block_error(coeff, BLOCK_OFFSET(xd->plane[0].dqcoeff,
block, 16), 16) >> 2;
if (best_tx_type != DCT_DCT)
vp9_short_iht4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
dst, xd->plane[0].dst.stride, best_tx_type);
else
xd->inv_txm4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
dst, xd->plane[0].dst.stride);
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
best_tx_type = tx_type;
vpx_memcpy(a, tempa, sizeof(tempa));
vpx_memcpy(l, templ, sizeof(templ));
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
block = ib + idy * 2 + idx;
vpx_memcpy(best_dqcoeff[idy * 2 + idx],
BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
sizeof(best_dqcoeff[0]));
}
}
2010-05-18 17:58:33 +02:00
}
}
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
block = ib + idy * 2 + idx;
xd->mode_info_context->bmi[block].as_mode.first = *best_mode;
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8), TX_4X4,
*best_mode, dst, xd->plane[0].dst.stride);
// inverse transform
if (best_tx_type != DCT_DCT)
vp9_short_iht4x4_add(best_dqcoeff[idy * 2 + idx], dst,
xd->plane[0].dst.stride, best_tx_type);
else
xd->inv_txm4x4_add(best_dqcoeff[idy * 2 + idx], dst,
xd->plane[0].dst.stride);
}
}
2010-05-18 17:58:33 +02:00
return best_rd;
2010-05-18 17:58:33 +02:00
}
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
int *Rate, int *rate_y,
int64_t *Distortion, int64_t best_rd) {
int i, j;
MACROBLOCKD *const xd = &mb->e_mbd;
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
int bw = 1 << b_width_log2(bsize);
int bh = 1 << b_height_log2(bsize);
int idx, idy;
int cost = 0;
int64_t distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
ENTROPY_CONTEXT t_above[4], t_left[4];
int *bmode_costs;
MODE_INFO *const mic = xd->mode_info_context;
vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
2010-05-18 17:58:33 +02:00
bmode_costs = mb->mbmode_cost;
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
const int mis = xd->mode_info_stride;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry);
int64_t UNINITIALIZED_IS_SAFE(d);
i = idy * 2 + idx;
if (xd->frame_type == KEY_FRAME) {
const MB_PREDICTION_MODE A = above_block_mode(mic, i, mis);
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(mic, i) : DC_PRED;
bmode_costs = mb->y_mode_costs[A][L];
}
total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
t_above + idx, t_left + idy,
&r, &ry, &d, bsize);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode.first = best_mode;
for (j = 1; j < bh; ++j)
mic->bmi[i + j * 2].as_mode.first = best_mode;
for (j = 1; j < bw; ++j)
mic->bmi[i + j].as_mode.first = best_mode;
if (total_rd >= best_rd)
break;
}
}
2010-05-18 17:58:33 +02:00
if (total_rd >= best_rd)
return INT64_MAX;
*Rate = cost;
*rate_y = tot_rate_y;
*Distortion = distortion;
xd->mode_info_context->mbmi.mode = mic->bmi[3].as_mode.first;
2010-05-18 17:58:33 +02:00
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
2010-05-18 17:58:33 +02:00
}
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[NB_TXFM_MODES]) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
MACROBLOCKD *const xd = &x->e_mbd;
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion;
int64_t best_rd = INT64_MAX, this_rd;
TX_SIZE UNINITIALIZED_IS_SAFE(best_tx);
int i;
int *bmode_costs = x->mbmode_cost;
if (bsize < BLOCK_SIZE_SB8X8) {
x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4;
return best_rd;
}
for (i = 0; i < NB_TXFM_MODES; i++)
txfm_cache[i] = INT64_MAX;
/* Y Search for 32x32 intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
int64_t local_txfm_cache[NB_TXFM_MODES];
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
if (cpi->common.frame_type == KEY_FRAME) {
const MB_PREDICTION_MODE A = above_block_mode(mic, 0, mis);
const MB_PREDICTION_MODE L = xd->left_available ?
left_block_mode(mic, 0) : DC_PRED;
bmode_costs = x->y_mode_costs[A][L];
}
x->e_mbd.mode_info_context->mbmi.mode = mode;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
bsize, local_txfm_cache);
this_rate = this_rate_tokenonly + bmode_costs[mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = this_rd + local_txfm_cache[i] -
local_txfm_cache[cpi->common.txfm_mode];
if (adj_rd < txfm_cache[i]) {
txfm_cache[i] = adj_rd;
}
2010-05-18 17:58:33 +02:00
}
}
2010-05-18 17:58:33 +02:00
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx;
return best_rd;
2010-05-18 17:58:33 +02:00
}
static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable, BLOCK_SIZE_TYPE bsize,
TX_SIZE uv_tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
vp9_encode_intra_block_uv(cm, x, bsize);
else
vp9_xform_quant_sbuv(cm, x, bsize);
*distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2);
*rate = rdcost_uv(cm, x, bsize, uv_tx_size);
*skippable = vp9_sbuv_is_skippable(xd, bsize);
}
static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x,
int *rate, int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame[0] > INTRA_FRAME)
vp9_subtract_sbuv(x, bsize);
if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_32X32);
} else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_16X16);
} else if (mbmi->txfm_size >= TX_8X8 && bsize >= BLOCK_SIZE_MB16X16) {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_8X8);
} else {
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
TX_4X4);
}
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE_TYPE bsize) {
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion;
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
super_block_uvrd(&cpi->common, x, &this_rate_tokenonly,
&this_distortion, &s, bsize);
this_rate = this_rate_tokenonly +
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
int vp9_cost_mv_ref(VP9_COMP *cpi,
MB_PREDICTION_MODE m,
const int mode_context) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Dont account for mode here if segment skip is enabled.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
VP9_COMMON *pc = &cpi->common;
assert(NEARESTMV <= m && m <= NEWMV);
return cost_token(vp9_sb_mv_ref_tree,
pc->fc.inter_mode_probs[mode_context],
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
} else
return 0;
}
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
}
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int_mv *frame_mv,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv);
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv);
static int labels2mode(MACROBLOCK *x, int i,
MB_PREDICTION_MODE this_mode,
int_mv *this_mv, int_mv *this_second_mv,
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int_mv seg_mvs[MAX_REF_FRAMES],
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int *mvjcost, int *mvcost[2], VP9_COMP *cpi) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
MB_MODE_INFO * mbmi = &mic->mbmi;
int cost = 0, thismvcost = 0;
int idx, idy;
int bw = 1 << b_width_log2(mbmi->sb_type);
int bh = 1 << b_height_log2(mbmi->sb_type);
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
MB_PREDICTION_MODE m;
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode) {
case NEWMV:
this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
102, xd->allow_high_precision_mv);
if (mbmi->ref_frame[1] > 0) {
this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
mvjcost, mvcost, 102,
xd->allow_high_precision_mv);
}
break;
case NEARESTMV:
this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int =
frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int;
break;
case NEARMV:
this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int =
frame_mv[NEARMV][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
this_mv->as_int = 0;
if (mbmi->ref_frame[1] > 0)
this_second_mv->as_int = 0;
break;
default:
break;
}
cost = vp9_cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
mic->bmi[i].as_mv[0].as_int = this_mv->as_int;
if (mbmi->ref_frame[1] > 0)
mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int;
x->partition_info->bmi[i].mode = m;
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
if (mbmi->ref_frame[1] > 0)
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
vpx_memcpy(&mic->bmi[i + idy * 2 + idx],
&mic->bmi[i], sizeof(mic->bmi[i]));
vpx_memcpy(&x->partition_info->bmi[i + idy * 2 + idx],
&x->partition_info->bmi[i],
sizeof(x->partition_info->bmi[i]));
}
}
cost += thismvcost;
return cost;
}
static int64_t encode_inter_mb_segment(VP9_COMMON *const cm,
MACROBLOCK *x,
int i,
int *labelyrate,
int64_t *distortion,
ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl) {
int k;
MACROBLOCKD *xd = &x->e_mbd;
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
int bwl = b_width_log2(bsize), bw = 1 << bwl;
int bhl = b_height_log2(bsize), bh = 1 << bhl;
int idx, idy;
const int src_stride = x->plane[0].src.stride;
uint8_t* const src =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src.buf, src_stride);
int16_t* src_diff =
raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src_diff);
int16_t* coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i);
uint8_t* const pre =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
uint8_t* const dst =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride);
int64_t thisdistortion = 0;
int thisrate = 0;
*labelyrate = 0;
*distortion = 0;
vp9_build_inter_predictor(pre,
xd->plane[0].pre[0].stride,
dst,
xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[0],
&xd->scale_factor[0],
4 * bw, 4 * bh, 0 /* no avg */, &xd->subpix,
MV_PRECISION_Q3);
// TODO(debargha): Make this work properly with the
// implicit-compoundinter-weight experiment when implicit
// weighting for splitmv modes is turned on.
if (xd->mode_info_context->mbmi.ref_frame[1] > 0) {
uint8_t* const second_pre =
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
xd->plane[0].pre[1].buf,
xd->plane[0].pre[1].stride);
vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride,
dst, xd->plane[0].dst.stride,
&xd->mode_info_context->bmi[i].as_mv[1],
&xd->scale_factor[1], 4 * bw, 4 * bh, 1,
&xd->subpix, MV_PRECISION_Q3);
}
vp9_subtract_block(4 * bh, 4 * bw, src_diff, 8,
src, src_stride,
dst, xd->plane[0].dst.stride);
k = i;
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
k += (idy * 2 + idx);
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, k,
x->plane[0].src_diff);
coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, k);
x->fwd_txm4x4(src_diff, coeff, 16);
x->quantize_b_4x4(x, k, DCT_DCT, 16);
thisdistortion += vp9_block_error(coeff,
BLOCK_OFFSET(xd->plane[0].dqcoeff,
k, 16), 16);
thisrate += cost_coeffs(cm, x, 0, k, PLANE_TYPE_Y_WITH_DC,
ta + (k & 1),
tl + (k >> 1), TX_4X4, 16);
}
}
*distortion += thisdistortion;
*labelyrate += thisrate;
*distortion >>= 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int_mv *ref_mv, *second_ref_mv;
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int segment_yrate;
MB_PREDICTION_MODE modes[4];
int_mv mvs[4], second_mvs[4];
int eobs[4];
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
int r = 0;
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
return r;
}
static enum BlockSize get_block_size(int bw, int bh) {
if (bw == 4 && bh == 4)
return BLOCK_4X4;
if (bw == 4 && bh == 8)
return BLOCK_4X8;
if (bw == 8 && bh == 4)
return BLOCK_8X4;
if (bw == 8 && bh == 8)
return BLOCK_8X8;
if (bw == 8 && bh == 16)
return BLOCK_8X16;
if (bw == 16 && bh == 8)
return BLOCK_16X8;
if (bw == 16 && bh == 16)
return BLOCK_16X16;
if (bw == 32 && bh == 32)
return BLOCK_32X32;
if (bw == 32 && bh == 16)
return BLOCK_32X16;
if (bw == 16 && bh == 32)
return BLOCK_16X32;
if (bw == 64 && bh == 32)
return BLOCK_64X32;
if (bw == 32 && bh == 64)
return BLOCK_32X64;
if (bw == 64 && bh == 64)
return BLOCK_64X64;
assert(0);
return -1;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
x->plane[0].src.buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->plane[0].src.buf,
x->plane[0].src.stride);
assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0);
x->e_mbd.plane[0].pre[0].buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->e_mbd.plane[0].pre[0].buf,
x->e_mbd.plane[0].pre[0].stride);
if (mbmi->ref_frame[1])
x->e_mbd.plane[0].pre[1].buf =
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
x->e_mbd.plane[0].pre[1].buf,
x->e_mbd.plane[0].pre[1].stride);
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (mbmi->ref_frame[1])
x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
BEST_SEG_INFO *bsi,
int_mv seg_mvs[4][MAX_REF_FRAMES],
int mi_row, int mi_col) {
int i, j, br = 0, rate = 0, sbr = 0, idx, idy;
int64_t bd = 0, sbd = 0;
MB_PREDICTION_MODE this_mode;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
const int label_count = 4;
int64_t this_segment_rd = 0, other_segment_rd;
int label_mv_thresh;
int segmentyrate = 0;
int best_eobs[4] = { 0 };
BLOCK_SIZE_TYPE bsize = mbmi->sb_type;
int bwl = b_width_log2(bsize), bw = 1 << bwl;
int bhl = b_height_log2(bsize), bh = 1 << bhl;
vp9_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT t_above[4], t_left[4];
ENTROPY_CONTEXT t_above_b[4], t_left_b[4];
vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above));
vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left));
v_fn_ptr = &cpi->fn_ptr[get_block_size(4 << bwl, 4 << bhl)];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
other_segment_rd = this_segment_rd;
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX;
MB_PREDICTION_MODE mode_selected = ZEROMV;
int bestlabelyrate = 0;
i = idy * 2 + idx;
frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0;
frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0;
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
&frame_mv[NEARESTMV][mbmi->ref_frame[0]],
&frame_mv[NEARMV][mbmi->ref_frame[0]],
i, 0);
if (mbmi->ref_frame[1] > 0)
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
&frame_mv[NEARESTMV][mbmi->ref_frame[1]],
&frame_mv[NEARMV][mbmi->ref_frame[1]],
i, 1);
// search for the best motion vector on this segment
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
int64_t this_rd;
int64_t distortion;
int labelyrate;
ENTROPY_CONTEXT t_above_s[4], t_left_s[4];
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
vpx_memcpy(orig_pre, x->e_mbd.plane[0].pre, sizeof(orig_pre));
vpx_memcpy(t_above_s, t_above, sizeof(t_above_s));
vpx_memcpy(t_left_s, t_left, sizeof(t_left_s));
// motion search for newmv (single predictor case only)
if (mbmi->ref_frame[1] <= 0 && this_mode == NEWMV) {
int step_param = 0;
int further_steps;
int thissme, bestsme = INT_MAX;
int sadpb = x->sadperbit4;
int_mv mvp_full;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_label_rd < label_mv_thresh)
break;
if (cpi->compressor_speed) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int;
if (i == 2)
bsi->mvp.as_int =
x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int;
step_param = 2;
}
}
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
// adjust src pointer for this block
mi_buf_shift(x, i);
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 0, v_fn_ptr,
bsi->ref_mv, &mode_mv[NEWMV]);
// Should we do a full search (best quality only)
if (cpi->compressor_speed == 0) {
/* Check if mvp_full is within the range. */
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
x->mv_row_min, x->mv_row_max);
thissme = cpi->full_search_sad(x, &mvp_full,
sadpb, 16, v_fn_ptr,
x->nmvjointcost, x->mvcost,
bsi->ref_mv, i);
if (thissme < bestsme) {
bestsme = thissme;
mode_mv[NEWMV].as_int =
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int;
} else {
/* The full search result is actually worse so re-instate the
* previous best vector */
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int =
mode_mv[NEWMV].as_int;
}
}
if (bestsme < INT_MAX) {
int distortion;
unsigned int sse;
cpi->find_fractional_mv_step(x, &mode_mv[NEWMV],
bsi->ref_mv, x->errorperbit, v_fn_ptr,
x->nmvjointcost, x->mvcost,
&distortion, &sse);
// safe motion search result for use in compound prediction
seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
} else if (mbmi->ref_frame[1] > 0 && this_mode == NEWMV) {
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
continue;
// adjust src pointers
mi_buf_shift(x, i);
if (cpi->sf.comp_inter_joint_search_thresh < bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
mi_row, mi_col, seg_mvs[i],
&rate_mv);
seg_mvs[i][mbmi->ref_frame[0]].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
seg_mvs[i][mbmi->ref_frame[1]].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
rate = labels2mode(x, i, this_mode, &mode_mv[this_mode],
&second_mode_mv[this_mode], frame_mv, seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
continue;
}
if (mbmi->ref_frame[1] > 0 &&
mv_check_bounds(x, &second_mode_mv[this_mode]))
continue;
this_rd = encode_inter_mb_segment(&cpi->common,
x, i, &labelyrate,
&distortion, t_above_s, t_left_s);
this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
rate += labelyrate;
if (this_rd < best_label_rd) {
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
best_eobs[i] = x->e_mbd.plane[0].eobs[i];
vpx_memcpy(t_above_b, t_above_s, sizeof(t_above_s));
vpx_memcpy(t_left_b, t_left_s, sizeof(t_left_s));
}
} /*for each 4x4 mode*/
vpx_memcpy(t_above, t_above_b, sizeof(t_above));
vpx_memcpy(t_left, t_left_b, sizeof(t_left));
labels2mode(x, i, mode_selected, &mode_mv[mode_selected],
&second_mode_mv[mode_selected], frame_mv, seg_mvs[i],
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
x->mvcost, cpi);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
other_segment_rd += best_other_rd;
for (j = 1; j < bh; ++j)
vpx_memcpy(&x->partition_info->bmi[i + j * 2],
&x->partition_info->bmi[i],
sizeof(x->partition_info->bmi[i]));
for (j = 1; j < bw; ++j)
vpx_memcpy(&x->partition_info->bmi[i + j],
&x->partition_info->bmi[i],
sizeof(x->partition_info->bmi[i]));
}
} /* for each label */
if (this_segment_rd < bsi->segment_rd) {
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
// store everything needed to come back to this!!
for (i = 0; i < 4; i++) {
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
if (mbmi->ref_frame[1] > 0)
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
bsi->modes[i] = x->partition_info->bmi[i].mode;
bsi->eobs[i] = best_eobs[i];
}
}
}
static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
int_mv *best_ref_mv,
int_mv *second_best_ref_mv,
int64_t best_rd,
int *returntotrate,
int *returnyrate,
int64_t *returndistortion,
int *skippable, int mvthresh,
int_mv seg_mvs[4][MAX_REF_FRAMES],
int mi_row, int mi_col) {
int i;
BEST_SEG_INFO bsi;
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.second_ref_mv = second_best_ref_mv;
bsi.mvp.as_int = best_ref_mv->as_int;
bsi.mvthresh = mvthresh;
for (i = 0; i < 4; i++)
bsi.modes[i] = ZEROMV;
rd_check_segment_txsize(cpi, x, &bsi, seg_mvs, mi_row, mi_col);
/* set it to the best */
for (i = 0; i < 4; i++) {
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int = bsi.mvs[i].as_int;
if (mbmi->ref_frame[1] > 0)
x->e_mbd.mode_info_context->bmi[i].as_mv[1].as_int =
bsi.second_mvs[i].as_int;
x->e_mbd.plane[0].eobs[i] = bsi.eobs[i];
}
/* save partitions */
x->partition_info->count = 4;
for (i = 0; i < x->partition_info->count; i++) {
x->partition_info->bmi[i].mode = bsi.modes[i];
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[i].as_mv;
if (mbmi->ref_frame[1] > 0)
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[i].as_mv;
}
/*
* used to set mbmi->mv.as_int
*/
x->partition_info->bmi[3].mv.as_int = bsi.mvs[3].as_int;
if (mbmi->ref_frame[1] > 0)
x->partition_info->bmi[3].second_mv.as_int = bsi.second_mvs[3].as_int;
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
*skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_SB8X8);
mbmi->mode = bsi.modes[3];
return (int)(bsi.segment_rd);
2010-05-18 17:58:33 +02:00
}
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, enum BlockSize block_size ) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int_mv this_mv;
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
int row_offset, col_offset;
// Get the sad for each candidate reference mv
for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) {
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
2010-05-18 17:58:33 +02:00
// The list is at an end if we see 0 for a second time.
if (!this_mv.as_int && zero_seen)
break;
zero_seen = zero_seen || !this_mv.as_int;
row_offset = this_mv.as_mv.row >> 3;
col_offset = this_mv.as_mv.col >> 3;
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
2010-05-18 17:58:33 +02:00
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride,
0x7fffffff);
2010-05-18 17:58:33 +02:00
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
2010-05-18 17:58:33 +02:00
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
2010-05-18 17:58:33 +02:00
}
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
vp9_prob *comp_mode_p) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int seg_ref_active = vp9_segfeature_active(xd, segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
vpx_memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
vp9_prob intra_inter_p = vp9_get_pred_prob(cm, xd, PRED_INTRA_INTER);
vp9_prob comp_inter_p = 128;
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
comp_inter_p = vp9_get_pred_prob(cm, xd, PRED_COMP_INTER_INTER);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
vp9_prob ref_single_p1 = vp9_get_pred_prob(cm, xd, PRED_SINGLE_REF_P1);
vp9_prob ref_single_p2 = vp9_get_pred_prob(cm, xd, PRED_SINGLE_REF_P2);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
base_cost += vp9_cost_bit(comp_inter_p, 0);
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
} else {
ref_costs_single[LAST_FRAME] = 512;
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) {
vp9_prob ref_comp_p = vp9_get_pred_prob(cm, xd, PRED_COMP_REF_P);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
base_cost += vp9_cost_bit(comp_inter_p, 1);
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
} else {
ref_costs_comp[LAST_FRAME] = 512;
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
PARTITION_INFO *partition,
int_mv *ref_mv,
int_mv *second_ref_mv,
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
int64_t txfm_size_diff[NB_TXFM_MODES]) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mode_info_context;
if (partition)
ctx->partition_info = *partition;
ctx->best_ref_mv.as_int = ref_mv->as_int;
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
}
static void setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv) {
int i;
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
#if CONFIG_ALPHA
dst[3].buf = src->alpha_buffer;
dst[3].stride = src->alpha_stride;
#endif
// TODO(jkoleszar): Make scale factors per-plane data
for (i = 0; i < MAX_MB_PLANE; i++) {
setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
i ? scale_uv : scale,
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
}
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int idx, MV_REFERENCE_FRAME frame_type,
enum BlockSize block_size,
int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[4][MAX_MB_PLANE],
struct scale_factors scale[MAX_REF_FRAMES]) {
VP9_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
// set up scaling factors
scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
scale[frame_type].x_offset_q4 =
ROUND_POWER_OF_TWO(mi_col * MI_SIZE * scale[frame_type].x_scale_fp,
VP9_REF_SCALE_SHIFT) & 0xf;
scale[frame_type].y_offset_q4 =
ROUND_POWER_OF_TWO(mi_row * MI_SIZE * scale[frame_type].y_scale_fp,
VP9_REF_SCALE_SHIFT) & 0xf;
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col,
&scale[frame_type], &scale[frame_type]);
// Gets an initial list of candidate vectors from neighbours and orders them
vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context,
xd->prev_mode_info_context,
frame_type,
mbmi->ref_mvs[frame_type],
cpi->common.ref_frame_sign_bias);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[frame_type],
&frame_nearest_mv[frame_type],
&frame_near_mv[frame_type]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (scale[frame_type].x_scale_fp == (1 << VP9_REF_SCALE_SHIFT) &&
scale[frame_type].y_scale_fp == (1 << VP9_REF_SCALE_SHIFT))
mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride,
frame_type, block_size);
}
static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) {
YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
int fb = get_ref_frame_idx(cpi, ref_frame);
if (cpi->scaled_ref_idx[fb] != cpi->common.ref_frame_map[fb])
scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb]];
return scaled_ref_frame;
}
static double linear_interpolate(double x, int ntab, double step,
const double *tab) {
double y = x / step;
int d = (int) y;
double a = y - d;
if (d >= ntab - 1)
return tab[ntab - 1];
else
return tab[d] * (1 - a) + tab[d + 1] * a;
}
static double model_rate_norm(double x) {
// Normalized rate
// This function models the rate for a Laplacian source
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
static const double rate_tab_step = 0.125;
static const double rate_tab[] = {
256.0000, 4.944453, 3.949276, 3.371593,
2.965771, 2.654550, 2.403348, 2.193612,
2.014208, 1.857921, 1.719813, 1.596364,
1.484979, 1.383702, 1.291025, 1.205767,
1.126990, 1.053937, 0.985991, 0.922644,
0.863472, 0.808114, 0.756265, 0.707661,
0.662070, 0.619287, 0.579129, 0.541431,
0.506043, 0.472828, 0.441656, 0.412411,
0.384980, 0.359260, 0.335152, 0.312563,
0.291407, 0.271600, 0.253064, 0.235723,
0.219508, 0.204351, 0.190189, 0.176961,
0.164611, 0.153083, 0.142329, 0.132298,
0.122945, 0.114228, 0.106106, 0.098541,
0.091496, 0.084937, 0.078833, 0.073154,
0.067872, 0.062959, 0.058392, 0.054147,
0.050202, 0.046537, 0.043133, 0.039971,
0.037036, 0.034312, 0.031783, 0.029436,
0.027259, 0.025240, 0.023367, 0.021631,
0.020021, 0.018528, 0.017145, 0.015863,
0.014676, 0.013575, 0.012556, 0.011612,
0.010738, 0.009929, 0.009180, 0.008487,
0.007845, 0.007251, 0.006701, 0.006193,
0.005722, 0.005287, 0.004884, 0.004512,
0.004168, 0.003850, 0.003556, 0.003284,
0.003032, 0.002800, 0.002585, 0.002386,
0.002203, 0.002034, 0.001877, 0.001732,
0.001599, 0.001476, 0.001362, 0.001256,
0.001159, 0.001069, 0.000987, 0.000910,
0.000840, 0.000774, 0.000714, 0.000659,
0.000608, 0.000560, 0.000517, 0.000476,
0.000439, 0.000405, 0.000373, 0.000344,
0.000317, 0.000292, 0.000270, 0.000248,
0.000229, 0.000211, 0.000195, 0.000179,
0.000165, 0.000152, 0.000140, 0.000129,
0.000119, 0.000110, 0.000101, 0.000093,
0.000086, 0.000079, 0.000073, 0.000067,
0.000062, 0.000057, 0.000052, 0.000048,
0.000044, 0.000041, 0.000038, 0.000035,
0.000032, 0.000029, 0.000027, 0.000025,
0.000023, 0.000021, 0.000019, 0.000018,
0.000016, 0.000015, 0.000014, 0.000013,
0.000012, 0.000011, 0.000010, 0.000009,
0.000008, 0.000008, 0.000007, 0.000007,
0.000006, 0.000006, 0.000005, 0.000005,
0.000004, 0.000004, 0.000004, 0.000003,
0.000003, 0.000003, 0.000003, 0.000002,
0.000002, 0.000002, 0.000002, 0.000002,
0.000002, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000001, 0.000001,
0.000001, 0.000001, 0.000000, 0.000000,
};
const int rate_tab_num = sizeof(rate_tab)/sizeof(rate_tab[0]);
assert(x >= 0.0);
return linear_interpolate(x, rate_tab_num, rate_tab_step, rate_tab);
}
static double model_dist_norm(double x) {
// Normalized distortion
// This function models the normalized distortion for a Laplacian source
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance)
// Note the actual distortion is Dn * variance.
static const double dist_tab_step = 0.25;
static const double dist_tab[] = {
0.000000, 0.005189, 0.020533, 0.045381,
0.078716, 0.119246, 0.165508, 0.215979,
0.269166, 0.323686, 0.378318, 0.432034,
0.484006, 0.533607, 0.580389, 0.624063,
0.664475, 0.701581, 0.735418, 0.766092,
0.793751, 0.818575, 0.840761, 0.860515,
0.878045, 0.893554, 0.907238, 0.919281,
0.929857, 0.939124, 0.947229, 0.954306,
0.960475, 0.965845, 0.970512, 0.974563,
0.978076, 0.981118, 0.983750, 0.986024,
0.987989, 0.989683, 0.991144, 0.992402,
0.993485, 0.994417, 0.995218, 0.995905,
0.996496, 0.997002, 0.997437, 0.997809,
0.998128, 0.998401, 0.998635, 0.998835,
0.999006, 0.999152, 0.999277, 0.999384,
0.999475, 0.999553, 0.999619, 0.999676,
0.999724, 0.999765, 0.999800, 0.999830,
0.999855, 0.999877, 0.999895, 0.999911,
0.999924, 0.999936, 0.999945, 0.999954,
0.999961, 0.999967, 0.999972, 0.999976,
0.999980, 0.999983, 0.999985, 0.999988,
0.999989, 0.999991, 0.999992, 0.999994,
0.999995, 0.999995, 0.999996, 0.999997,
0.999997, 0.999998, 0.999998, 0.999998,
0.999999, 0.999999, 0.999999, 0.999999,
0.999999, 0.999999, 0.999999, 1.000000,
};
const int dist_tab_num = sizeof(dist_tab)/sizeof(dist_tab[0]);
assert(x >= 0.0);
return linear_interpolate(x, dist_tab_num, dist_tab_step, dist_tab);
}
static void model_rd_from_var_lapndz(int var, int n, int qstep,
int *rate, int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance)
vp9_clear_system_state();
if (var == 0 || n == 0) {
*rate = 0;
*dist = 0;
} else {
double D, R;
double s2 = (double) var / n;
double x = qstep / sqrt(s2);
// TODO(debargha): Make the modeling functions take (qstep^2 / s2)
// as argument rather than qstep / sqrt(s2) to obviate the need for
// the sqrt() operation.
D = model_dist_norm(x);
R = model_rate_norm(x);
if (R < 0) {
R = 0;
D = var;
}
*rate = (n * R * 256 + 0.5);
*dist = (n * D * s2 + 0.5);
}
vp9_clear_system_state();
}
static enum BlockSize get_plane_block_size(BLOCK_SIZE_TYPE bsize,
struct macroblockd_plane *pd) {
return get_block_size(plane_block_width(bsize, pd),
plane_block_height(bsize, pd));
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int i, rate_sum = 0;
int64_t dist_sum = 0;
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
// TODO(dkovalev) the same code in get_plane_block_size
const int bw = plane_block_width(bsize, pd);
const int bh = plane_block_height(bsize, pd);
const enum BlockSize bs = get_block_size(bw, bh);
int rate;
int64_t dist;
cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
model_rd_from_var_lapndz(sse, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*out_rate_sum = rate_sum;
*out_dist_sum = dist_sum << 4;
}
2010-05-18 17:58:33 +02:00
static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
}
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
int bestsme = INT_MAX;
int further_steps, step_param;
int sadpb = x->sadperbit16;
int_mv mvp_full;
int ref = mbmi->ref_frame[0];
int_mv ref_mv = mbmi->ref_mvs[ref][0];
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
setup_pre_planes(xd, scaled_ref_frame, NULL, mi_row, mi_col,
NULL, NULL);
}
vp9_clamp_mv_min_max(x, &ref_mv);
step_param = vp9_init_search_range(
cpi, MIN(cpi->common.width, cpi->common.height));
// mvp_full.as_int = ref_mv[0].as_int;
mvp_full.as_int =
mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int;
mvp_full.as_mv.col >>= 3;
mvp_full.as_mv.row >>= 3;
// Further step/diamond searches as necessary
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
sadpb, further_steps, 1,
&cpi->fn_ptr[block_size],
&ref_mv, tmp_mv);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse);
}
*rate_mv = vp9_mv_bit_cost(tmp_mv, &ref_mv,
x->nmvjointcost, x->mvcost,
96, xd->allow_high_precision_mv);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
}
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int_mv *frame_mv,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv) {
int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv ref_mv[2];
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
int ite;
// Prediction buffer from second frame.
uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t));
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}};
struct buf_2d scaled_first_yv12;
int last_besterr[2] = {INT_MAX, INT_MAX};
YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL};
scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]);
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
if (scaled_ref_frame[0]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
setup_pre_planes(xd, scaled_ref_frame[0], NULL, mi_row, mi_col,
NULL, NULL);
}
if (scaled_ref_frame[1]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
backup_second_yv12[i] = xd->plane[i].pre[1];
setup_pre_planes(xd, scaled_ref_frame[1], NULL, mi_row, mi_col,
NULL, NULL);
}
xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0],
mi_row, mi_col);
xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1],
mi_row, mi_col);
scaled_first_yv12 = xd->plane[0].pre[0];
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
// Allow joint search multiple times iteratively for each ref frame
// and break out the search loop if it couldn't find better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
int_mv tmp_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int id = ite % 2;
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
// Get pred block from second frame.
vp9_build_inter_predictor(ref_yv12[!id].buf,
ref_yv12[!id].stride,
second_pred, pw,
&frame_mv[refs[!id]],
&xd->scale_factor[!id],
pw, ph, 0,
&xd->subpix, MV_PRECISION_Q3);
// Compound motion search on first ref frame.
if (id)
xd->plane[0].pre[0] = ref_yv12[id];
vp9_clamp_mv_min_max(x, &ref_mv[id]);
// Use mv result from single mode as mvp.
tmp_mv.as_int = frame_mv[refs[id]].as_int;
tmp_mv.as_mv.col >>= 3;
tmp_mv.as_mv.row >>= 3;
// Small-range full-pixel motion search
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
search_range,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&ref_mv[id], second_pred,
pw, ph);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
bestsme = vp9_find_best_sub_pixel_comp(x, &tmp_mv,
&ref_mv[id],
x->errorperbit,
&cpi->fn_ptr[block_size],
x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred,
pw, ph);
}
if (id)
xd->plane[0].pre[0] = scaled_first_yv12;
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_int = tmp_mv.as_int;
last_besterr[id] = bestsme;
} else {
break;
}
}
// restore the predictor
if (scaled_ref_frame[0]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
if (scaled_ref_frame[1]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[1] = backup_second_yv12[i];
}
*rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
&mbmi->ref_mvs[refs[0]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
*rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
&mbmi->ref_mvs[refs[1]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
vpx_free(second_pred);
}
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize,
int64_t txfm_cache[],
int *rate2, int64_t *distortion,
int *skippable,
int *rate_y, int64_t *distortion_y,
int *rate_uv, int64_t *distortion_uv,
int *mode_excluded, int *disable_skip,
INTERPOLATIONFILTERTYPE *best_filter,
int_mv *frame_mv,
int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES]) {
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
const enum BlockSize uv_block_size = get_plane_block_size(bsize,
&xd->plane[1]);
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const int is_comp_pred = (mbmi->ref_frame[1] > 0);
const int num_refs = is_comp_pred ? 2 : 1;
const int this_mode = mbmi->mode;
int i;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv cur_mv[2];
int64_t this_rd = 0;
unsigned char tmp_buf[MAX_MB_PLANE][64 * 64];
int pred_exists = 0;
int interpolating_intpel_seen = 0;
int intpel_mv;
int64_t rd, best_rd = INT64_MAX;
switch (this_mode) {
int rate_mv;
case NEWMV:
if (is_comp_pred) {
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh < bsize) {
joint_motion_search(cpi, x, bsize, frame_mv,
mi_row, mi_col, single_newmv, &rate_mv);
} else {
rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
&mbmi->ref_mvs[refs[0]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
&mbmi->ref_mvs[refs[1]][0],
x->nmvjointcost, x->mvcost, 96,
x->e_mbd.allow_high_precision_mv);
}
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV)
return INT64_MAX;
*rate2 += rate_mv;
} else {
int_mv tmp_mv;
single_motion_search(cpi, x, bsize, mi_row, mi_col,
&tmp_mv, &rate_mv);
*rate2 += rate_mv;
frame_mv[refs[0]].as_int =
xd->mode_info_context->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
single_newmv[refs[0]].as_int = tmp_mv.as_int;
}
break;
case NEARMV:
case NEARESTMV:
case ZEROMV:
default:
break;
}
for (i = 0; i < num_refs; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode == NEWMV)
assert(!clamp_mv2(&cur_mv[i], xd));
else
clamp_mv2(&cur_mv[i], xd);
if (mv_check_bounds(x, &cur_mv[i]))
return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
2010-05-18 17:58:33 +02:00
/* We don't include the cost of the second reference here, because there
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
* words if you present them in that order, the second one is always known
* if the first is known */
*rate2 += vp9_cost_mv_ref(cpi, this_mode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
2010-05-18 17:58:33 +02:00
pred_exists = 0;
interpolating_intpel_seen = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
(mbmi->mv[0].as_mv.col & 15) == 0;
if (is_comp_pred)
intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
(mbmi->mv[1].as_mv.col & 15) == 0;
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
if (cpi->sf.use_8tap_always) {
*best_filter = EIGHTTAP;
} else {
int i, newbest;
int tmp_rate_sum = 0;
int64_t tmp_dist_sum = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
int rs = 0;
const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i];
const int is_intpel_interp = intpel_mv &&
vp9_is_interpolating_filter[filter];
mbmi->interp_filter = filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
2010-05-18 17:58:33 +02:00
if (cm->mcomp_filter_type == SWITCHABLE)
rs = get_switchable_rate(cm, x);
if (interpolating_intpel_seen && is_intpel_interp) {
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_sum, tmp_dist_sum);
} else {
int rate_sum = 0;
int64_t dist_sum = 0;
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_sum, dist_sum);
if (!interpolating_intpel_seen && is_intpel_interp) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
newbest = i == 0 || rd < best_rd;
2010-05-18 17:58:33 +02:00
if (newbest) {
best_rd = rd;
*best_filter = mbmi->interp_filter;
}
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
(cm->mcomp_filter_type != SWITCHABLE &&
cm->mcomp_filter_type == mbmi->interp_filter)) {
int p;
for (p = 0; p < MAX_MB_PLANE; p++) {
const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y;
const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x;
int i;
for (i = 0; i < y; i++)
vpx_memcpy(&tmp_buf[p][64 * i],
xd->plane[p].dst.buf + i * xd->plane[p].dst.stride, x);
}
pred_exists = 1;
}
interpolating_intpel_seen |= is_intpel_interp;
}
}
// Set the appripriate filter
mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
cm->mcomp_filter_type : *best_filter;
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (pred_exists) {
int p;
for (p = 0; p < MAX_MB_PLANE; p++) {
const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y;
const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x;
int i;
for (i = 0; i < y; i++)
vpx_memcpy(xd->plane[p].dst.buf + i * xd->plane[p].dst.stride,
&tmp_buf[p][64 * i], x);
}
} else {
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear, 6-tap) is indicated at the frame level
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
if (cpi->common.mcomp_filter_type == SWITCHABLE)
*rate2 += get_switchable_rate(cm, x);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
x->skip = 1;
else if (x->encode_breakout) {
unsigned int var, sse;
int threshold = (xd->plane[0].dequant[1]
* xd->plane[0].dequant[1] >> 4);
if (threshold < x->encode_breakout)
threshold = x->encode_breakout;
var = cpi->fn_ptr[block_size].vf(x->plane[0].src.buf,
x->plane[0].src.stride,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
&sse);
if ((int)sse < threshold) {
unsigned int q2dc = xd->plane[0].dequant[0];
/* If there is no codeable 2nd order dc
or a very small uniform pixel change change */
if ((sse - var < q2dc * q2dc >> 4) ||
(sse / 2 > var && sse - var < 64)) {
// Check u and v to make sure skip is ok
int sse2;
unsigned int sse2u, sse2v;
var = cpi->fn_ptr[uv_block_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse2u);
var = cpi->fn_ptr[uv_block_size].vf(x->plane[2].src.buf,
x->plane[1].src.stride,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride, &sse2v);
sse2 = sse2u + sse2v;
if (sse2 * 2 < threshold) {
x->skip = 1;
*distortion = sse + sse2;
*rate2 = 500;
/* for best_yrd calculation */
*rate_uv = 0;
*distortion_uv = sse2;
*disable_skip = 1;
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
}
}
}
}
if (!x->skip) {
int skippable_y, skippable_uv;
// Y cost and distortion
super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y,
bsize, txfm_cache);
*rate2 += *rate_y;
*distortion += *distortion_y;
super_block_uvrd(cm, x, rate_uv, distortion_uv,
&skippable_uv, bsize);
*rate2 += *rate_uv;
*distortion += *distortion_uv;
*skippable = skippable_y && skippable_uv;
}
if (!(*mode_excluded)) {
if (is_comp_pred) {
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
} else {
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
}
}
return this_rd; // if 0, this will be re-calculated by caller
}
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int *returnrate, int64_t *returndist,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int rate_y = 0, rate_uv = 0;
int rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int64_t dist_y = 0, dist_uv = 0;
int y_skip = 0, uv_skip = 0;
int64_t txfm_cache[NB_TXFM_MODES], err;
MB_PREDICTION_MODE mode;
TX_SIZE txfm_size;
int rate4x4_y, rate4x4_y_tokenonly;
int64_t dist4x4_y;
int64_t err4x4 = INT64_MAX;
int i;
vpx_memset(&txfm_cache,0,sizeof(txfm_cache));
ctx->skip = 0;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.ref_frame[0] = INTRA_FRAME;
err = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, bsize, txfm_cache);
mode = xd->mode_info_context->mbmi.mode;
txfm_size = xd->mode_info_context->mbmi.txfm_size;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip,
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 :
bsize);
if (bsize < BLOCK_SIZE_SB8X8)
err4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4_y,
&rate4x4_y_tokenonly,
&dist4x4_y, err);
if (y_skip && uv_skip) {
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
*returndist = dist_y + (dist_uv >> 2);
memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
xd->mode_info_context->mbmi.mode = mode;
xd->mode_info_context->mbmi.txfm_size = txfm_size;
} else if (bsize < BLOCK_SIZE_SB8X8 && err4x4 < err) {
*returnrate = rate4x4_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist4x4_y + (dist_uv >> 2);
vpx_memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
} else {
*returnrate = rate_y + rate_uv +
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
*returndist = dist_y + (dist_uv >> 2);
for (i = 0; i < NB_TXFM_MODES; i++) {
ctx->txfm_rd_diff[i] = txfm_cache[i] - txfm_cache[cm->txfm_mode];
}
xd->mode_info_context->mbmi.txfm_size = txfm_size;
xd->mode_info_context->mbmi.mode = mode;
}
ctx->mic = *xd->mode_info_context;
}
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
int *returnrate,
int64_t *returndistortion,
BLOCK_SIZE_TYPE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
MB_PREDICTION_MODE this_mode;
MB_PREDICTION_MODE best_mode = DC_PRED;
MV_REFERENCE_FRAME ref_frame;
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
int_mv single_newmv[MAX_REF_FRAMES];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int idx_list[4] = {0,
cpi->lst_fb_idx,
cpi->gld_fb_idx,
cpi->alt_fb_idx};
int64_t best_rd = INT64_MAX;
int64_t best_txfm_rd[NB_TXFM_MODES];
int64_t best_txfm_diff[NB_TXFM_MODES];
int64_t best_pred_diff[NB_PREDICTION_TYPES];
int64_t best_pred_rd[NB_PREDICTION_TYPES];
MB_MODE_INFO best_mbmode;
int j;
int mode_index, best_mode_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vp9_prob comp_mode_p;
int64_t best_overall_rd = INT64_MAX;
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB];
int64_t dist_uv[TX_SIZE_MAX_SB];
int skip_uv[TX_SIZE_MAX_SB];
MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB];
struct scale_factors scale_factor[4];
unsigned int ref_frame_mask = 0;
unsigned int mode_mask = 0;
int64_t mode_distortions[MB_MODE_COUNT] = {-1};
int64_t frame_distortions[MAX_REF_FRAMES] = {-1};
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
cpi->common.y_dc_delta_q);
int_mv seg_mvs[4][MAX_REF_FRAMES];
union b_mode_info best_bmodes[4];
PARTITION_INFO best_partition;
int bwsl = b_width_log2(bsize);
int bws = (1 << bwsl) / 4; // mode_info step for subsize
int bhsl = b_height_log2(bsize);
int bhs = (1 << bhsl) / 4; // mode_info step for subsize
for (i = 0; i < 4; i++) {
int j;
for (j = 0; j < MAX_REF_FRAMES; j++)
seg_mvs[i][j].as_int = INVALID_MV;
}
// Everywhere the flag is set the error is much higher than its neighbors.
ctx->frames_with_high_error = 0;
ctx->modes_with_high_error = 0;
xd->mode_info_context->mbmi.segment_id = segment_id;
estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
vpx_memset(&single_newmv, 0, sizeof(single_newmv));
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = INT64_MAX;
for (i = 0; i < NB_TXFM_MODES; i++)
best_txfm_rd[i] = INT64_MAX;
// Create a mask set to 1 for each frame used by a smaller resolution.
if (cpi->sf.use_avoid_tested_higherror) {
switch (block_size) {
case BLOCK_64X64:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
ref_frame_mask |= x->mb_context[i][j].frames_with_high_error;
mode_mask |= x->mb_context[i][j].modes_with_high_error;
}
}
for (i = 0; i < 4; i++) {
ref_frame_mask |= x->sb32_context[i].frames_with_high_error;
mode_mask |= x->sb32_context[i].modes_with_high_error;
}
break;
case BLOCK_32X32:
for (i = 0; i < 4; i++) {
ref_frame_mask |=
x->mb_context[xd->sb_index][i].frames_with_high_error;
mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error;
}
break;
default:
// Until we handle all block sizes set it to present;
ref_frame_mask = 0;
mode_mask = 0;
break;
}
ref_frame_mask = ~ref_frame_mask;
mode_mask = ~mode_mask;
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV],
yv12_mb, scale_factor);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
if (!cpi->sf.use_avoid_tested_higherror
|| (cpi->sf.use_avoid_tested_higherror
&& (ref_frame_mask & (1 << INTRA_FRAME)))) {
mbmi->mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
for (i = 0; i <= (bsize < BLOCK_SIZE_MB16X16 ? TX_4X4 :
(bsize < BLOCK_SIZE_SB32X32 ? TX_8X8 :
(bsize < BLOCK_SIZE_SB64X64 ? TX_16X16 : TX_32X32)));
i++) {
mbmi->txfm_size = i;
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[i], &rate_uv_tokenonly[i],
&dist_uv[i], &skip_uv[i],
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 :
bsize);
mode_uv[i] = mbmi->uv_mode;
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
}
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable;
int64_t txfm_cache[NB_TXFM_MODES];
int i;
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = INT64_MAX;
// Test best rd so far against threshold for trying this mode.
if ((best_rd < ((cpi->rd_threshes[bsize][mode_index] *
cpi->rd_thresh_freq_fact[bsize][mode_index]) >> 4)) ||
cpi->rd_threshes[bsize][mode_index] == INT_MAX)
continue;
// Do not allow compound prediction if the segment level reference
// frame feature is in use as in this case there can only be one reference.
if ((vp9_mode_order[mode_index].second_ref_frame > INTRA_FRAME) &&
vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME))
continue;
x->skip = 0;
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame;
if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_SIZE_SB8X8) {
if (!(ref_frame_mask & (1 << ref_frame))) {
continue;
}
if (!(mode_mask & (1 << this_mode))) {
continue;
}
if (vp9_mode_order[mode_index].second_ref_frame != NONE
&& !(ref_frame_mask
& (1 << vp9_mode_order[mode_index].second_ref_frame))) {
continue;
}
}
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = vp9_mode_order[mode_index].second_ref_frame;
if (!(ref_frame == INTRA_FRAME
|| (cpi->ref_frame_flags & flag_list[ref_frame]))) {
continue;
}
if (!(mbmi->ref_frame[1] == NONE
|| (cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))) {
continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// SPLITMV.
if (mbmi->ref_frame[0] > 0 &&
(scale_factor[mbmi->ref_frame[0]].x_scale_fp !=
(1 << VP9_REF_SCALE_SHIFT) ||
scale_factor[mbmi->ref_frame[0]].y_scale_fp !=
(1 << VP9_REF_SCALE_SHIFT)) &&
this_mode == SPLITMV)
continue;
if (mbmi->ref_frame[1] > 0 &&
(scale_factor[mbmi->ref_frame[1]].x_scale_fp !=
(1 << VP9_REF_SCALE_SHIFT) ||
scale_factor[mbmi->ref_frame[1]].y_scale_fp !=
(1 << VP9_REF_SCALE_SHIFT)) &&
this_mode == SPLITMV)
continue;
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mbmi->interp_filter = cm->mcomp_filter_type;
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (bsize >= BLOCK_SIZE_SB8X8 &&
(this_mode == I4X4_PRED || this_mode == SPLITMV))
continue;
if (bsize < BLOCK_SIZE_SB8X8 &&
!(this_mode == I4X4_PRED || this_mode == SPLITMV))
continue;
if (comp_pred) {
if (!(cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))
continue;
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
} else {
// mbmi->ref_frame[1] = vp9_mode_order[mode_index].ref_frame[1];
if (ref_frame != INTRA_FRAME) {
if (mbmi->ref_frame[1] != INTRA_FRAME)
mode_excluded =
mode_excluded ?
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
}
// Select predictors
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred)
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
continue;
// If the segment skip feature is enabled....
// then do nothing if the current mode is not allowed..
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) &&
(this_mode != ZEROMV && ref_frame != INTRA_FRAME)) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
continue;
}
}
}
// TODO(JBB): This is to make up for the fact that we don't have sad
// functions that work when the block size reads outside the umv. We
// should fix this either by making the motion search just work on
// a representative block in the boundary ( first ) and then implement a
// function that does sads when inside the border..
if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) &&
this_mode == NEWMV) {
continue;
}
if (this_mode == I4X4_PRED) {
int rate;
mbmi->txfm_size = TX_4X4;
rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
&distortion_y, INT64_MAX);
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
rate2 += rate_uv_intra[TX_4X4];
rate_uv = rate_uv_intra[TX_4X4];
distortion2 += dist_uv[TX_4X4];
distortion_uv = dist_uv[TX_4X4];
mbmi->uv_mode = mode_uv[TX_4X4];
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = txfm_cache[ONLY_4X4];
} else if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
bsize, txfm_cache);
uv_tx = mbmi->txfm_size;
if (bsize < BLOCK_SIZE_MB16X16 && uv_tx == TX_8X8)
uv_tx = TX_4X4;
if (bsize < BLOCK_SIZE_SB32X32 && uv_tx == TX_16X16)
uv_tx = TX_8X8;
else if (bsize < BLOCK_SIZE_SB64X64 && uv_tx == TX_32X32)
uv_tx = TX_16X16;
rate_uv = rate_uv_intra[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv;
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
} else if (this_mode == SPLITMV) {
const int is_comp_pred = mbmi->ref_frame[1] > 0;
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref = is_comp_pred ?
&mbmi->ref_mvs[mbmi->ref_frame[1]][0] : NULL;
union b_mode_info tmp_best_bmodes[16];
MB_MODE_INFO tmp_best_mbmode;
PARTITION_INFO tmp_best_partition;
int pred_exists = 0;
int uv_skippable;
this_rd_thresh = (mbmi->ref_frame[0] == LAST_FRAME) ?
cpi->rd_threshes[bsize][THR_NEWMV] :
cpi->rd_threshes[bsize][THR_NEWA];
this_rd_thresh = (mbmi->ref_frame[0] == GOLDEN_FRAME) ?
cpi->rd_threshes[bsize][THR_NEWG] : this_rd_thresh;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
for (switchable_filter_index = 0;
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest;
mbmi->interp_filter =
vp9_switchable_interp[switchable_filter_index];
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
second_ref, INT64_MAX,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs,
mi_row, mi_col);
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
const int rs = get_switchable_rate(cm, x);
tmp_rd += RDCOST(x->rdmult, x->rddiv, rs, 0);
}
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mbmi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
(mbmi->interp_filter == cm->mcomp_filter_type &&
cm->mcomp_filter_type != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
tmp_best_partition = *x->partition_info;
for (i = 0; i < 4; i++)
tmp_best_bmodes[i] = xd->mode_info_context->bmi[i];
pred_exists = 1;
}
} // switchable_filter_index loop
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
tmp_best_filter : cm->mcomp_filter_type);
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
second_ref, INT64_MAX,
&rate, &rate_y, &distortion,
&skippable,
(int)this_rd_thresh, seg_mvs,
mi_row, mi_col);
} else {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
int rs = get_switchable_rate(cm, x);
tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
}
tmp_rd = tmp_best_rdu;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
*x->partition_info = tmp_best_partition;
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i] = tmp_best_bmodes[i];
}
rate2 += rate;
distortion2 += distortion;
if (cpi->common.mcomp_filter_type == SWITCHABLE)
rate2 += get_switchable_rate(cm, x);
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
BLOCK_SIZE_SB8X8);
vp9_subtract_sbuv(x, BLOCK_SIZE_SB8X8);
super_block_uvrd_for_txfm(cm, x, &rate_uv, &distortion_uv,
&uv_skippable, BLOCK_SIZE_SB8X8, TX_4X4);
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
for (i = 0; i < NB_TXFM_MODES; ++i)
txfm_cache[i] = txfm_cache[ONLY_4X4];
if (!mode_excluded) {
if (is_comp_pred)
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
else
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
}
compmode_cost = vp9_cost_bit(comp_mode_p, is_comp_pred);
} else {
compmode_cost = vp9_cost_bit(comp_mode_p,
mbmi->ref_frame[1] > INTRA_FRAME);
this_rd = handle_inter_mode(cpi, x, bsize,
txfm_cache,
&rate2, &distortion2, &skippable,
&rate_y, &distortion_y,
&rate_uv, &distortion_uv,
&mode_excluded, &disable_skip,
&tmp_best_filter, frame_mv[this_mode],
mi_row, mi_col,
single_newmv);
if (this_rd == INT64_MAX)
continue;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (mbmi->ref_frame[1] > INTRA_FRAME) {
rate2 += ref_costs_comp[mbmi->ref_frame[0]];
} else {
rate2 += ref_costs_single[mbmi->ref_frame[0]];
}
if (!disable_skip) {
// Test for the condition where skip block will be activated
// because there are no non zero coefficients and make any
// necessary adjustment for rate. Ignore if skip is coded at
// segment level as the cost wont have been added in.
int mb_skip_allowed;
// Is Mb level skip allowed (i.e. not coded at segment level).
mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
if (skippable && bsize >= BLOCK_SIZE_SB8X8) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// for best_yrd calculation
rate_uv = 0;
if (mb_skip_allowed) {
int prob_skip_cost;
// Cost the skip mb case
vp9_prob skip_prob =
vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
if (skip_prob) {
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
rate2 += prob_skip_cost;
}
}
} else if (mb_skip_allowed) {
// Add in the cost of the no skip flag.
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd,
PRED_MBSKIP), 0);
rate2 += prob_skip_cost;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
#if 0
// Keep record of best intra distortion
if ((xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) &&
(this_rd < best_intra_rd)) {
best_intra_rd = this_rd;
*returnintra = distortion2;
}
#endif
if (!disable_skip && mbmi->ref_frame[0] == INTRA_FRAME)
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
if (this_rd < best_overall_rd) {
best_overall_rd = this_rd;
best_filter = tmp_best_filter;
best_mode = this_mode;
}
if (this_mode != I4X4_PRED && this_mode != SPLITMV) {
// Store the respective mode distortions for later use.
if (mode_distortions[this_mode] == -1
|| distortion2 < mode_distortions[this_mode]) {
mode_distortions[this_mode] = distortion2;
}
if (frame_distortions[mbmi->ref_frame[0]] == -1
|| distortion2 < frame_distortions[mbmi->ref_frame[0]]) {
frame_distortions[mbmi->ref_frame[0]] = distortion2;
}
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
best_mbmode = *mbmi;
best_partition = *x->partition_info;
if (this_mode == I4X4_PRED || this_mode == SPLITMV)
for (i = 0; i < 4; i++)
best_bmodes[i] = xd->mode_info_context->bmi[i];
}
#if 0
// Testing this mode gave rise to an improvement in best error score.
// Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] =
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
} else {
// If the mode did not help improve the best error case then
// raise the threshold for testing that mode next time around.
#if 0
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] =
(cpi->rd_baseline_thresh[mode_index] >> 7)
* cpi->rd_thresh_mult[mode_index];
#endif
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && mbmi->ref_frame[0] != INTRA_FRAME) {
int single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (mbmi->ref_frame[1] <= INTRA_FRAME &&
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
} else if (mbmi->ref_frame[1] > INTRA_FRAME &&
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
}
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
}
/* keep record of best txfm size */
if (bsize < BLOCK_SIZE_SB32X32) {
if (bsize < BLOCK_SIZE_MB16X16) {
if (this_mode == SPLITMV || this_mode == I4X4_PRED)
txfm_cache[ALLOW_8X8] = txfm_cache[ONLY_4X4];
txfm_cache[ALLOW_16X16] = txfm_cache[ALLOW_8X8];
}
txfm_cache[ALLOW_32X32] = txfm_cache[ALLOW_16X16];
}
if (!mode_excluded && this_rd != INT64_MAX) {
for (i = 0; i < NB_TXFM_MODES; i++) {
int64_t adj_rd = INT64_MAX;
if (this_mode != I4X4_PRED) {
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode];
} else {
adj_rd = this_rd;
}
if (adj_rd < best_txfm_rd[i])
best_txfm_rd[i] = adj_rd;
}
}
if (x->skip && !mode_excluded)
break;
}
// Flag all modes that have a distortion thats > 2x the best we found at
// this level.
for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) {
if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV)
continue;
if (mode_distortions[mode_index] > 2 * *returndistortion) {
ctx->modes_with_high_error |= (1 << mode_index);
}
}
// Flag all ref frames that have a distortion thats > 2x the best we found at
// this level.
for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (frame_distortions[ref_frame] > 2 * *returndistortion) {
ctx->frames_with_high_error |= (1 << ref_frame);
}
}
if (best_rd == INT64_MAX && bsize < BLOCK_SIZE_SB8X8) {
*returnrate = INT_MAX;
*returndistortion = INT_MAX;
return best_rd;
}
assert((cm->mcomp_filter_type == SWITCHABLE) ||
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
(best_mbmode.ref_frame[0] == INTRA_FRAME));
// Accumulate filter usage stats
// TODO(agrange): Use RD criteria to select interpolation filter mode.
if (is_inter_mode(best_mode))
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
// Updating rd_thresh_freq_fact[] here means that the differnt
// partition/block sizes are handled independently based on the best
// choice for the current partition. It may well be better to keep a scaled
// best rd so far value and update rd_thresh_freq_fact based on the mode/size
// combination that wins out.
if (cpi->sf.adpative_rd_thresh) {
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
if (mode_index == best_mode_index) {
cpi->rd_thresh_freq_fact[bsize][mode_index] = BASE_RD_THRESH_FREQ_FACT;
} else {
cpi->rd_thresh_freq_fact[bsize][mode_index] += MAX_RD_THRESH_FREQ_INC;
if (cpi->rd_thresh_freq_fact[bsize][mode_index] >
(cpi->sf.adpative_rd_thresh * MAX_RD_THRESH_FREQ_FACT)) {
cpi->rd_thresh_freq_fact[bsize][mode_index] =
cpi->sf.adpative_rd_thresh * MAX_RD_THRESH_FREQ_FACT;
}
}
}
}
// TODO(rbultje) integrate with RD trd_thresh_freq_facthresholding
#if 0
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] =
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] =
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
}
#endif
// This code forces Altref,0,0 and skip for the frame that overlays a
// an alrtef unless Altref is filtered. However, this is unsafe if
// segment level coding of ref frame is enabled for this segment.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
cpi->is_src_frame_alt_ref &&
(cpi->oxcf.arnr_max_frames == 0) &&
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame[0] != ALTREF_FRAME)
&& bsize >= BLOCK_SIZE_SB8X8) {
mbmi->mode = ZEROMV;
mbmi->ref_frame[0] = ALTREF_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->mv[0].as_int = 0;
mbmi->uv_mode = DC_PRED;
mbmi->mb_skip_coeff = 1;
if (cm->txfm_mode == TX_MODE_SELECT) {
if (bsize >= BLOCK_SIZE_SB32X32)
mbmi->txfm_size = TX_32X32;
else if (bsize >= BLOCK_SIZE_MB16X16)
mbmi->txfm_size = TX_16X16;
else
mbmi->txfm_size = TX_8X8;
}
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
goto end;
}
// macroblock modes
*mbmi = best_mbmode;
if (best_mbmode.ref_frame[0] == INTRA_FRAME &&
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
}
if (best_mbmode.ref_frame[0] != INTRA_FRAME &&
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[0].as_int =
best_bmodes[i].as_mv[0].as_int;
if (mbmi->ref_frame[1] > 0)
for (i = 0; i < 4; i++)
xd->mode_info_context->bmi[i].as_mv[1].as_int =
best_bmodes[i].as_mv[1].as_int;
*x->partition_info = best_partition;
mbmi->mv[0].as_int = x->partition_info->bmi[3].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[3].second_mv.as_int;
}
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < NB_TXFM_MODES; i++) {
if (best_txfm_rd[i] == INT64_MAX)
best_txfm_diff[i] = 0;
else
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
}
} else {
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
}
end:
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
scale_factor);
store_coding_context(x, ctx, best_mode_index,
&best_partition,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
&mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 :
mbmi->ref_frame[1]][0],
best_pred_diff, best_txfm_diff);
return best_rd;
}