vpx/vp8/encoder/x86/denoising_sse2.c

380 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/encoder/denoising.h"
#include "vp8/common/reconinter.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8_rtcd.h"
#include <emmintrin.h>
#include "vpx_ports/emmintrin_compat.h"
/* Compute the sum of all pixel differences of this MB. */
static inline unsigned int abs_sum_diff_16x1(__m128i acc_diff) {
const __m128i k_1 = _mm_set1_epi16(1);
const __m128i acc_diff_lo = _mm_srai_epi16(
_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
const __m128i acc_diff_hi = _mm_srai_epi16(
_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
const __m128i hgfe_dcba = _mm_add_epi32(hg_fe_dc_ba,
_mm_srli_si128(hg_fe_dc_ba, 8));
const __m128i hgfedcba = _mm_add_epi32(hgfe_dcba,
_mm_srli_si128(hgfe_dcba, 4));
unsigned int sum_diff = _mm_cvtsi128_si32(hgfedcba);
return abs(sum_diff);
}
int vp8_denoiser_filter_sse2(unsigned char *mc_running_avg_y,
int mc_avg_y_stride,
unsigned char *running_avg_y, int avg_y_stride,
unsigned char *sig, int sig_stride,
unsigned int motion_magnitude,
int increase_denoising)
{
unsigned char *running_avg_y_start = running_avg_y;
unsigned char *sig_start = sig;
int sum_diff_thresh;
int r;
int shift_inc = (increase_denoising &&
motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0;
__m128i acc_diff = _mm_setzero_si128();
const __m128i k_0 = _mm_setzero_si128();
const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
const __m128i k_8 = _mm_set1_epi8(8);
const __m128i k_16 = _mm_set1_epi8(16);
/* Modify each level's adjustment according to motion_magnitude. */
const __m128i l3 = _mm_set1_epi8(
(motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ?
7 + shift_inc : 6);
/* Difference between level 3 and level 2 is 2. */
const __m128i l32 = _mm_set1_epi8(2);
/* Difference between level 2 and level 1 is 1. */
const __m128i l21 = _mm_set1_epi8(1);
for (r = 0; r < 16; ++r)
{
/* Calculate differences */
const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
const __m128i v_mc_running_avg_y = _mm_loadu_si128(
(__m128i *)(&mc_running_avg_y[0]));
__m128i v_running_avg_y;
const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
/* Obtain the sign. FF if diff is negative. */
const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
/* Clamp absolute difference to 16 to be used to get mask. Doing this
* allows us to use _mm_cmpgt_epi8, which operates on signed byte. */
const __m128i clamped_absdiff = _mm_min_epu8(
_mm_or_si128(pdiff, ndiff), k_16);
/* Get masks for l2 l1 and l0 adjustments */
const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff);
const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff);
const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff);
/* Get adjustments for l2, l1, and l0 */
__m128i adj2 = _mm_and_si128(mask2, l32);
const __m128i adj1 = _mm_and_si128(mask1, l21);
const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
__m128i adj, padj, nadj;
/* Combine the adjustments and get absolute adjustments. */
adj2 = _mm_add_epi8(adj2, adj1);
adj = _mm_sub_epi8(l3, adj2);
adj = _mm_andnot_si128(mask0, adj);
adj = _mm_or_si128(adj, adj0);
/* Restore the sign and get positive and negative adjustments. */
padj = _mm_andnot_si128(diff_sign, adj);
nadj = _mm_and_si128(diff_sign, adj);
/* Calculate filtered value. */
v_running_avg_y = _mm_adds_epu8(v_sig, padj);
v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
_mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
/* Adjustments <=7, and each element in acc_diff can fit in signed
* char.
*/
acc_diff = _mm_adds_epi8(acc_diff, padj);
acc_diff = _mm_subs_epi8(acc_diff, nadj);
/* Update pointers for next iteration. */
sig += sig_stride;
mc_running_avg_y += mc_avg_y_stride;
running_avg_y += avg_y_stride;
}
{
/* Compute the sum of all pixel differences of this MB. */
unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff);
sum_diff_thresh = SUM_DIFF_THRESHOLD;
if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
if (abs_sum_diff > sum_diff_thresh) {
// Before returning to copy the block (i.e., apply no denoising),
// checK if we can still apply some (weaker) temporal filtering to
// this block, that would otherwise not be denoised at all. Simplest
// is to apply an additional adjustment to running_avg_y to bring it
// closer to sig. The adjustment is capped by a maximum delta, and
// chosen such that in most cases the resulting sum_diff will be
// within the accceptable range given by sum_diff_thresh.
// The delta is set by the excess of absolute pixel diff over the
// threshold.
int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1;
// Only apply the adjustment for max delta up to 3.
if (delta < 4) {
const __m128i k_delta = _mm_set1_epi8(delta);
sig -= sig_stride * 16;
mc_running_avg_y -= mc_avg_y_stride * 16;
running_avg_y -= avg_y_stride * 16;
for (r = 0; r < 16; ++r) {
__m128i v_running_avg_y =
_mm_loadu_si128((__m128i *)(&running_avg_y[0]));
// Calculate differences.
const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0]));
const __m128i v_mc_running_avg_y =
_mm_loadu_si128((__m128i *)(&mc_running_avg_y[0]));
const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
// Obtain the sign. FF if diff is negative.
const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
// Clamp absolute difference to delta to get the adjustment.
const __m128i adj =
_mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
// Restore the sign and get positive and negative adjustments.
__m128i padj, nadj;
padj = _mm_andnot_si128(diff_sign, adj);
nadj = _mm_and_si128(diff_sign, adj);
// Calculate filtered value.
v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
_mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
// Accumulate the adjustments.
acc_diff = _mm_subs_epi8(acc_diff, padj);
acc_diff = _mm_adds_epi8(acc_diff, nadj);
// Update pointers for next iteration.
sig += sig_stride;
mc_running_avg_y += mc_avg_y_stride;
running_avg_y += avg_y_stride;
}
abs_sum_diff = abs_sum_diff_16x1(acc_diff);
if (abs_sum_diff > sum_diff_thresh) {
return COPY_BLOCK;
}
} else {
return COPY_BLOCK;
}
}
}
vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
return FILTER_BLOCK;
}
int vp8_denoiser_filter_uv_sse2(unsigned char *mc_running_avg,
int mc_avg_stride,
unsigned char *running_avg, int avg_stride,
unsigned char *sig, int sig_stride,
unsigned int motion_magnitude,
int increase_denoising) {
unsigned char *running_avg_start = running_avg;
unsigned char *sig_start = sig;
int sum_diff_thresh;
int r;
int shift_inc = (increase_denoising &&
motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ? 1 : 0;
__m128i acc_diff = _mm_setzero_si128();
const __m128i k_0 = _mm_setzero_si128();
const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
const __m128i k_8 = _mm_set1_epi8(8);
const __m128i k_16 = _mm_set1_epi8(16);
/* Modify each level's adjustment according to motion_magnitude. */
const __m128i l3 = _mm_set1_epi8(
(motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ?
7 + shift_inc : 6);
/* Difference between level 3 and level 2 is 2. */
const __m128i l32 = _mm_set1_epi8(2);
/* Difference between level 2 and level 1 is 1. */
const __m128i l21 = _mm_set1_epi8(1);
{
const __m128i k_1 = _mm_set1_epi16(1);
__m128i vec_sum_block = _mm_setzero_si128();
// Avoid denoising color signal if its close to average level.
for (r = 0; r < 8; ++r) {
const __m128i v_sig = _mm_loadl_epi64((__m128i *)(&sig[0]));
const __m128i v_sig_unpack = _mm_unpacklo_epi8(v_sig, k_0);
vec_sum_block = _mm_add_epi16(vec_sum_block, v_sig_unpack);
sig += sig_stride;
}
sig -= sig_stride * 8;
{
const __m128i hg_fe_dc_ba = _mm_madd_epi16(vec_sum_block, k_1);
const __m128i hgfe_dcba = _mm_add_epi32(hg_fe_dc_ba,
_mm_srli_si128(hg_fe_dc_ba, 8));
const __m128i hgfedcba = _mm_add_epi32(hgfe_dcba,
_mm_srli_si128(hgfe_dcba, 4));
const int sum_block = _mm_cvtsi128_si32(hgfedcba);
if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
return COPY_BLOCK;
}
}
}
for (r = 0; r < 4; ++r) {
/* Calculate differences */
const __m128i v_sig_low = _mm_castpd_si128(
_mm_load_sd((double *)(&sig[0])));
const __m128i v_sig = _mm_castpd_si128(
_mm_loadh_pd(_mm_castsi128_pd(v_sig_low),
(double *)(&sig[sig_stride])));
const __m128i v_mc_running_avg_low = _mm_castpd_si128(
_mm_load_sd((double *)(&mc_running_avg[0])));
const __m128i v_mc_running_avg = _mm_castpd_si128(
_mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low),
(double *)(&mc_running_avg[mc_avg_stride])));
const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig);
const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg);
/* Obtain the sign. FF if diff is negative. */
const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
/* Clamp absolute difference to 16 to be used to get mask. Doing this
* allows us to use _mm_cmpgt_epi8, which operates on signed byte. */
const __m128i clamped_absdiff = _mm_min_epu8(
_mm_or_si128(pdiff, ndiff), k_16);
/* Get masks for l2 l1 and l0 adjustments */
const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff);
const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff);
const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff);
/* Get adjustments for l2, l1, and l0 */
__m128i adj2 = _mm_and_si128(mask2, l32);
const __m128i adj1 = _mm_and_si128(mask1, l21);
const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
__m128i adj, padj, nadj;
__m128i v_running_avg;
/* Combine the adjustments and get absolute adjustments. */
adj2 = _mm_add_epi8(adj2, adj1);
adj = _mm_sub_epi8(l3, adj2);
adj = _mm_andnot_si128(mask0, adj);
adj = _mm_or_si128(adj, adj0);
/* Restore the sign and get positive and negative adjustments. */
padj = _mm_andnot_si128(diff_sign, adj);
nadj = _mm_and_si128(diff_sign, adj);
/* Calculate filtered value. */
v_running_avg = _mm_adds_epu8(v_sig, padj);
v_running_avg = _mm_subs_epu8(v_running_avg, nadj);
_mm_storel_pd((double *)&running_avg[0],
_mm_castsi128_pd(v_running_avg));
_mm_storeh_pd((double *)&running_avg[avg_stride],
_mm_castsi128_pd(v_running_avg));
/* Adjustments <=7, and each element in acc_diff can fit in signed
* char.
*/
acc_diff = _mm_adds_epi8(acc_diff, padj);
acc_diff = _mm_subs_epi8(acc_diff, nadj);
/* Update pointers for next iteration. */
sig += sig_stride * 2;
mc_running_avg += mc_avg_stride * 2;
running_avg += avg_stride * 2;
}
{
unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff);
sum_diff_thresh = SUM_DIFF_THRESHOLD_UV;
if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
if (abs_sum_diff > sum_diff_thresh) {
// Before returning to copy the block (i.e., apply no denoising),
// checK if we can still apply some (weaker) temporal filtering to
// this block, that would otherwise not be denoised at all. Simplest
// is to apply an additional adjustment to running_avg_y to bring it
// closer to sig. The adjustment is capped by a maximum delta, and
// chosen such that in most cases the resulting sum_diff will be
// within the accceptable range given by sum_diff_thresh.
// The delta is set by the excess of absolute pixel diff over the
// threshold.
int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1;
// Only apply the adjustment for max delta up to 3.
if (delta < 4) {
const __m128i k_delta = _mm_set1_epi8(delta);
sig -= sig_stride * 8;
mc_running_avg -= mc_avg_stride * 8;
running_avg -= avg_stride * 8;
for (r = 0; r < 4; ++r) {
// Calculate differences.
const __m128i v_sig_low = _mm_castpd_si128(
_mm_load_sd((double *)(&sig[0])));
const __m128i v_sig = _mm_castpd_si128(
_mm_loadh_pd(_mm_castsi128_pd(v_sig_low),
(double *)(&sig[sig_stride])));
const __m128i v_mc_running_avg_low = _mm_castpd_si128(
_mm_load_sd((double *)(&mc_running_avg[0])));
const __m128i v_mc_running_avg = _mm_castpd_si128(
_mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low),
(double *)(&mc_running_avg[mc_avg_stride])));
const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig);
const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg);
// Obtain the sign. FF if diff is negative.
const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
// Clamp absolute difference to delta to get the adjustment.
const __m128i adj =
_mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
// Restore the sign and get positive and negative adjustments.
__m128i padj, nadj;
const __m128i v_running_avg_low = _mm_castpd_si128(
_mm_load_sd((double *)(&running_avg[0])));
__m128i v_running_avg = _mm_castpd_si128(
_mm_loadh_pd(_mm_castsi128_pd(v_running_avg_low),
(double *)(&running_avg[avg_stride])));
padj = _mm_andnot_si128(diff_sign, adj);
nadj = _mm_and_si128(diff_sign, adj);
// Calculate filtered value.
v_running_avg = _mm_subs_epu8(v_running_avg, padj);
v_running_avg = _mm_adds_epu8(v_running_avg, nadj);
_mm_storel_pd((double *)&running_avg[0],
_mm_castsi128_pd(v_running_avg));
_mm_storeh_pd((double *)&running_avg[avg_stride],
_mm_castsi128_pd(v_running_avg));
// Accumulate the adjustments.
acc_diff = _mm_subs_epi8(acc_diff, padj);
acc_diff = _mm_adds_epi8(acc_diff, nadj);
// Update pointers for next iteration.
sig += sig_stride * 2;
mc_running_avg += mc_avg_stride * 2;
running_avg += avg_stride * 2;
}
abs_sum_diff = abs_sum_diff_16x1(acc_diff);
if (abs_sum_diff > sum_diff_thresh) {
return COPY_BLOCK;
}
} else {
return COPY_BLOCK;
}
}
}
vp8_copy_mem8x8(running_avg_start, avg_stride, sig_start, sig_stride);
return FILTER_BLOCK;
}