vpx/vp9/decoder/vp9_decodframe.c

1719 lines
58 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconintra4x4.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
2010-05-18 11:58:33 -04:00
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
2010-05-18 11:58:33 -04:00
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
2011-10-05 11:26:00 +01:00
2010-05-18 11:58:33 -04:00
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
i = vp9_inv_recenter_nonneg(v + 1, m);
} else {
i = n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m);
}
return i;
}
static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) {
int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_de_quantizer(VP9D_COMP *pbi) {
int i;
int Q;
VP9_COMMON *const pc = &pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++) {
pc->Y1dequant[Q][0] = (short)vp9_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp9_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp9_dc_uv_quant(Q, pc->uvdc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
int rc = vp9_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp9_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp9_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp9_ac_uv_quant(Q, pc->uvac_delta_q);
2010-05-18 11:58:33 -04:00
}
}
2010-05-18 11:58:33 -04:00
}
static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *xd) {
int i;
int QIndex;
VP9_COMMON *const pc = &pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) {
/* Abs Value */
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
QIndex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
/* Delta Value */
else {
QIndex = pc->base_qindex +
vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
2010-05-18 11:58:33 -04:00
}
} else
QIndex = pc->base_qindex;
xd->q_index = QIndex;
2010-05-18 11:58:33 -04:00
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++) {
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
2010-05-18 11:58:33 -04:00
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
#if CONFIG_LOSSLESS
if (!QIndex) {
pbi->mb.inv_xform4x4_1_x8 = vp9_short_inv_walsh4x4_1_x8;
pbi->mb.inv_xform4x4_x8 = vp9_short_inv_walsh4x4_x8;
pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1_lossless;
pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4_lossless;
pbi->idct_add = vp9_dequant_idct_add_lossless_c;
pbi->dc_idct_add = vp9_dequant_dc_idct_add_lossless_c;
pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block_lossless_c;
pbi->idct_add_y_block = vp9_dequant_idct_add_y_block_lossless_c;
pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c;
} else {
pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1;
pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm;
pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1;
pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4;
pbi->idct_add = vp9_dequant_idct_add;
pbi->dc_idct_add = vp9_dequant_dc_idct_add;
pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block;
pbi->idct_add_y_block = vp9_dequant_idct_add_y_block;
pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block;
}
#else
pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1;
pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm;
pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1;
pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4;
pbi->idct_add = vp9_dequant_idct_add;
pbi->dc_idct_add = vp9_dequant_dc_idct_add;
pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block;
pbi->idct_add_y_block = vp9_dequant_idct_add_y_block;
pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block;
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-13 19:03:31 -07:00
#endif
for (i = 16; i < 24; i++) {
xd->block[i].dequant = pc->UVdequant[QIndex];
}
2010-05-18 11:58:33 -04:00
xd->block[24].dequant = pc->Y2dequant[QIndex];
2010-05-18 11:58:33 -04:00
}
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd) {
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp9_build_intra_predictors_sbuv_s(xd);
vp9_build_intra_predictors_sby_s(xd);
} else {
#endif
vp9_build_intra_predictors_mbuv_s(xd);
vp9_build_intra_predictors_mby_s(xd);
#if CONFIG_SUPERBLOCKS
}
#endif
} else {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp9_build_inter32x32_predictors_sb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
} else {
#endif
vp9_build_1st_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
vp9_build_2nd_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#if CONFIG_COMP_INTERINTRA_PRED
else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#endif
#if CONFIG_SUPERBLOCKS
}
#endif
}
2010-05-18 11:58:33 -04:00
}
static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
BLOCKD *bd = &xd->block[0];
TX_TYPE tx_type = get_tx_type_16x16(xd, bd);
assert(get_2nd_order_usage(xd) == 0);
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 16x16\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("predictor\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff,
xd->block[0].dequant, xd->predictor,
xd->dst.y_buffer, 16, xd->dst.y_stride);
} else {
vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
16, xd->dst.y_stride, xd->eobs[0]);
}
vp9_dequant_idct_add_uv_block_8x8(
xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16, xd);
}
static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
// First do Y
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]);
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 8x8\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i;
assert(get_2nd_order_usage(xd) == 0);
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
short *q = xd->block[idx].qcoeff;
short *dq = xd->block[0].dequant;
unsigned char *pre = xd->block[ib].predictor;
unsigned char *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
BLOCKD *b = &xd->block[ib];
if (xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(b, i8x8mode, b->predictor);
}
tx_type = get_tx_type_8x8(xd, &xd->block[ib]);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride);
} else {
vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride,
0, xd->eobs[idx]);
}
}
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
assert(get_2nd_order_usage(xd) == 0);
vp9_dequant_idct_add_y_block_8x8(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd->eobs, xd);
} else {
BLOCKD *b = &xd->block[24];
assert(get_2nd_order_usage(xd) == 1);
vp9_dequantize_b_2x2(b);
vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
vp9_dequant_dc_idct_add_y_block_8x8(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd->eobs,
xd->block[24].diff,
xd);
}
// Now do UV
if (xd->mode_info_context->mbmi.mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(&xd->block[16 + i], i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(&xd->block[20 + i], i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16);
} else {
vp9_dequant_idct_add_uv_block_8x8
(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16, xd);
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("predictor\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
}
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
TX_TYPE tx_type;
int i, eobtotal = 0;
MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == I8X8_PRED) {
assert(get_2nd_order_usage(xd) == 0);
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
int i8x8mode;
BLOCKD *b;
b = &xd->block[ib];
i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(b, i8x8mode, b->predictor);
for (j = 0; j < 4; j++) {
b = &xd->block[ib + iblock[j]];
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16,
b->dst_stride);
} else {
vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
}
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(b, i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(b, i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
} else if (mode == B_PRED) {
assert(get_2nd_order_usage(xd) == 0);
for (i = 0; i < 16; i++) {
int b_mode;
#if CONFIG_COMP_INTRA_PRED
int b_mode2;
#endif
BLOCKD *b = &xd->block[i];
b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context =
vp9_find_bpred_context(b);
#endif
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i);
#if CONFIG_COMP_INTRA_PRED
b_mode2 = xd->mode_info_context->bmi[i].as_mode.second;
if (b_mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
vp9_intra4x4_predict(b, b_mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp9_comp_intra4x4_predict(b, b_mode, b_mode2, b->predictor);
}
#endif
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
} else {
vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
xd->above_context->y2 = 1;
xd->left_context->y2 = 1;
}
if (!xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc);
}
vp9_build_intra_predictors_mbuv(xd);
pbi->idct_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd->eobs + 16);
} else if (mode == SPLITMV) {
assert(get_2nd_order_usage(xd) == 0);
pbi->idct_add_y_block(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd->eobs);
pbi->idct_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd->eobs + 16);
} else {
#ifdef DEC_DEBUG
if (dec_debug) {
int i;
printf("\n");
printf("qcoeff 4x4\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("predictor\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
}
#endif
tx_type = get_tx_type_4x4(xd, &xd->block[0]);
if (tx_type != DCT_DCT) {
assert(get_2nd_order_usage(xd) == 0);
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16,
b->dst_stride);
} else {
vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
}
} else {
BLOCKD *b = &xd->block[24];
assert(get_2nd_order_usage(xd) == 1);
vp9_dequantize_b(b);
if (xd->eobs[24] > 1) {
vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
} else {
xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
vp9_dequantize_b(b);
pbi->dc_idct_add_y_block(xd->qcoeff,
xd->block[0].dequant,
xd->predictor,
xd->dst.y_buffer,
xd->dst.y_stride,
xd->eobs,
xd->block[24].diff);
}
pbi->idct_add_uv_block(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->predictor + 16 * 16,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.uv_stride,
xd->eobs + 16);
}
}
#if CONFIG_SUPERBLOCKS
static void decode_16x16_sb(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc, int n) {
int x_idx = n & 1, y_idx = n >> 1;
TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_16x16_c(
tx_type, xd->qcoeff, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride);
} else {
vp9_dequant_idct_add_16x16(
xd->qcoeff, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]);
}
vp9_dequant_idct_add_uv_block_8x8_inplace_c(
xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
};
static void decode_8x8_sb(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc, int n) {
BLOCKD *b = &xd->block[24];
int x_idx = n & 1, y_idx = n >> 1;
TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]);
if (tx_type != DCT_DCT) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
short *q = xd->block[idx].qcoeff;
short *dq = xd->block[0].dequant;
int stride = xd->dst.y_stride;
BLOCKD *b = &xd->block[ib];
tx_type = get_tx_type_8x8(xd, &xd->block[ib]);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_8x8_c(
tx_type, q, dq,
xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride
+ x_idx * 16 + (i & 1) * 8,
xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride
+ x_idx * 16 + (i & 1) * 8,
stride, stride);
} else {
vp9_dequant_idct_add_8x8_c(
q, dq,
xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride
+ x_idx * 16 + (i & 1) * 8,
xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride
+ x_idx * 16 + (i & 1) * 8,
stride, stride, 0, b->eob);
}
vp9_dequant_idct_add_uv_block_8x8_inplace_c(
xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
}
} else {
vp9_dequantize_b_2x2(b);
vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
vp9_dequant_dc_idct_add_y_block_8x8_inplace_c(
xd->qcoeff, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
vp9_dequant_idct_add_uv_block_8x8_inplace_c(
xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
}
};
static void decode_4x4_sb(VP9D_COMP *pbi, MACROBLOCKD *xd,
BOOL_DECODER* const bc, int n) {
BLOCKD *b = &xd->block[24];
int x_idx = n & 1, y_idx = n >> 1;
TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[0]);
if (tx_type != DCT_DCT) {
int i;
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
tx_type = get_tx_type_4x4(xd, b);
if (tx_type != DCT_DCT) {
vp9_ht_dequant_idct_add_c(
tx_type, b->qcoeff, b->dequant,
xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride
+ x_idx * 16 + (i & 3) * 4,
xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride
+ x_idx * 16 + (i & 3) * 4,
xd->dst.y_stride, xd->dst.y_stride);
} else {
vp9_dequant_idct_add_c(
b->qcoeff, b->dequant,
xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride
+ x_idx * 16 + (i & 3) * 4,
xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride
+ x_idx * 16 + (i & 3) * 4,
xd->dst.y_stride, xd->dst.y_stride);
}
}
} else {
vp9_dequantize_b(b);
if (xd->eobs[24] > 1) {
vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
} else {
xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
vp9_dequant_dc_idct_add_y_block_4x4_inplace_c(
xd->qcoeff, xd->block[0].dequant,
xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
}
vp9_dequant_idct_add_uv_block_4x4_inplace_c(
xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
};
static void decode_superblock(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, unsigned int mb_col,
BOOL_DECODER* const bc) {
int i, n, eobtotal;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *orig_mi = xd->mode_info_context;
assert(xd->mode_info_context->mbmi.encoded_as_sb);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc);
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_mb_tokens_context(xd);
if (mb_col < pc->mb_cols - 1)
xd->above_context++;
if (mb_row < pc->mb_rows - 1)
xd->left_context++;
vp9_reset_mb_tokens_context(xd);
if (mb_col < pc->mb_cols - 1)
xd->above_context--;
if (mb_row < pc->mb_rows - 1)
xd->left_context--;
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
*/
skip_recon_mb(pbi, xd);
return;
}
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd);
vp9_build_intra_predictors_sbuv_s(xd);
} else {
vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
/* dequantization and idct */
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
if (mb_col + x_idx >= pc->mb_cols || mb_row + y_idx >= pc->mb_rows)
continue;
xd->above_context = pc->above_context + mb_col + x_idx;
xd->left_context = pc->left_context + y_idx;
xd->mode_info_context = orig_mi + x_idx + y_idx * pc->mode_info_stride;
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
eobtotal = vp9_decode_mb_tokens(pbi, xd, bc);
if (eobtotal == 0) { // skip loopfilter
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
continue;
}
if (tx_size == TX_16X16) {
decode_16x16_sb(pbi, xd, bc, n);
} else if (tx_size == TX_8X8) {
decode_8x8_sb(pbi, xd, bc, n);
} else {
decode_4x4_sb(pbi, xd, bc, n);
}
}
xd->above_context = pc->above_context + mb_col;
xd->left_context = pc->left_context;
xd->mode_info_context = orig_mi;
}
#endif
static void decode_macroblock(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, unsigned int mb_col,
BOOL_DECODER* const bc) {
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int i;
int tx_size;
#if CONFIG_SUPERBLOCKS
assert(!xd->mode_info_context->mbmi.encoded_as_sb);
#endif
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
tx_size = xd->mode_info_context->mbmi.txfm_size;
mode = xd->mode_info_context->mbmi.mode;
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_mb_tokens_context(xd);
} else if (!bool_error(bc)) {
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
if (mode != B_PRED) {
eobtotal = vp9_decode_mb_tokens(pbi, xd, bc);
}
}
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&& !bool_error(bc)) {
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_mb(pbi, xd);
return;
}
#ifdef DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size);
#endif
// moved to be performed before detokenization
// if (xd->segmentation_enabled)
// mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (mode != I8X8_PRED) {
vp9_build_intra_predictors_mbuv(xd);
if (mode != B_PRED) {
vp9_build_intra_predictors_mby(xd);
}
2010-05-18 11:58:33 -04:00
}
} else {
#ifdef DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d interp %d\n",
xd->mode_info_context->mbmi.mode, tx_size,
xd->mode_info_context->mbmi.interp_filter);
#endif
vp9_build_inter_predictors_mb(xd);
}
if (tx_size == TX_16X16) {
decode_16x16(pbi, xd, bc);
} else if (tx_size == TX_8X8) {
decode_8x8(pbi, xd, bc);
} else {
decode_4x4(pbi, xd, bc);
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
2010-05-18 11:58:33 -04:00
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
}
2010-05-18 11:58:33 -04:00
static int get_delta_q(vp9_reader *bc, int prev, int *q_update) {
int ret_val = 0;
2010-05-18 11:58:33 -04:00
if (vp9_read_bit(bc)) {
ret_val = vp9_read_literal(bc, 4);
2010-05-18 11:58:33 -04:00
if (vp9_read_bit(bc))
ret_val = -ret_val;
}
2010-05-18 11:58:33 -04:00
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
2010-05-18 11:58:33 -04:00
return ret_val;
2010-05-18 11:58:33 -04:00
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
/* Decode a row of Superblocks (2x2 region of MBs) */
static void
decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mbrow, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
int i;
int sb_col;
int mb_row, mb_col;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
int sb_cols = (pc->mb_cols + 1) >> 1;
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
mb_row = mbrow;
mb_col = 0;
for (sb_col = 0; sb_col < sb_cols; sb_col++) {
MODE_INFO *mi = xd->mode_info_context;
#if CONFIG_SUPERBLOCKS
mi->mbmi.encoded_as_sb = vp9_read(bc, pc->sb_coded);
#endif
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
xd->mb_index = i;
mi = xd->mode_info_context;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
// MB lies outside frame, skip on to next
mb_row += dy;
mb_col += dx;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
continue;
}
#if CONFIG_SUPERBLOCKS
if (i)
mi->mbmi.encoded_as_sb = 0;
#endif
// Set above context pointer
xd->above_context = pc->above_context + mb_col;
xd->left_context = pc->left_context + (i >> 1);
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_left_edge = -((mb_col * 16) << 3);
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
xd->mb_to_bottom_edge = ((pc->mb_rows - 2 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((pc->mb_cols - 2 - mb_col) * 16) << 3;
} else {
#endif
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_SUPERBLOCKS
}
#endif
#ifdef DEC_DEBUG
dec_debug = (pbi->common.current_video_frame == 46 &&
mb_row == 5 && mb_col == 2);
if (dec_debug)
#if CONFIG_SUPERBLOCKS
printf("Enter Debug %d %d sb %d\n", mb_row, mb_col,
mi->mbmi.encoded_as_sb);
#else
printf("Enter Debug %d %d\n", mb_row, mb_col);
#endif
#endif
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc);
update_blockd_bmi(xd);
#ifdef DEC_DEBUG
if (dec_debug)
printf("Hello\n");
#endif
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer =
pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
if (mb_col < pc->mb_cols - 1)
mi[1] = mi[0];
if (mb_row < pc->mb_rows - 1) {
mi[pc->mode_info_stride] = mi[0];
if (mb_col < pc->mb_cols - 1)
mi[pc->mode_info_stride + 1] = mi[0];
}
}
if (xd->mode_info_context->mbmi.encoded_as_sb) {
decode_superblock(pbi, xd, mb_row, mb_col, bc);
} else {
#endif
vp9_intra_prediction_down_copy(xd);
decode_macroblock(pbi, xd, mb_row, mb_col, bc);
#if CONFIG_SUPERBLOCKS
}
#endif
/* check if the boolean decoder has suffered an error */
xd->corrupted |= bool_error(bc);
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
xd->mode_info_context += 2;
xd->prev_mode_info_context += 2;
break;
}
#endif
// skip to next MB
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
mb_row += dy;
mb_col += dx;
2010-05-18 11:58:33 -04:00
}
}
2010-05-18 11:58:33 -04:00
/* skip prediction column */
xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
xd->prev_mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
2010-05-18 11:58:33 -04:00
}
static unsigned int read_partition_size(const unsigned char *cx_size) {
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
2010-05-18 11:58:33 -04:00
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end) {
return (start + len > start && start + len <= end);
}
static void setup_token_decoder(VP9D_COMP *pbi,
const unsigned char *cx_data,
BOOL_DECODER* const bool_decoder) {
VP9_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Set up pointers to token partition
partition = cx_data;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end)) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp9_start_decode(bool_decoder,
partition, (unsigned int)partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
2010-05-18 11:58:33 -04:00
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
2010-05-18 11:58:33 -04:00
if (pc->frame_type == KEY_FRAME) {
/* Various keyframe initializations */
vp9_init_mv_probs(pc);
2010-05-18 11:58:33 -04:00
vp9_init_mbmode_probs(pc);
vp9_default_bmode_probs(pc->fc.bmode_prob);
2010-05-18 11:58:33 -04:00
vp9_default_coef_probs(pc);
vp9_kf_default_bmode_probs(pc->kf_bmode_prob);
2010-05-18 11:58:33 -04:00
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
vp9_clearall_segfeatures(xd);
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
2010-05-18 11:58:33 -04:00
/* reset the mode ref deltasa for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
2010-05-18 11:58:33 -04:00
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
2010-05-18 11:58:33 -04:00
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vp9_init_mode_contexts(&pbi->common);
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
vpx_memset(pc->prev_mip, 0,
(pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO));
vpx_memset(pc->mip, 0,
(pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO));
vp9_update_mode_info_border(pc, pc->mip);
vp9_update_mode_info_in_image(pc, pc->mi);
} else {
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = EIGHTTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interpolation filters */
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
2010-05-18 11:58:33 -04:00
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if (pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
2010-05-18 11:58:33 -04:00
}
static void read_coef_probs_common(
BOOL_DECODER* const bc,
vp9_prob coef_probs[BLOCK_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
int i, j, k, l;
if (vp9_read_bit(bc)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = !i; j < COEF_BANDS; j++) {
/* NB: This j loop starts from 1 on block type i == 0 */
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
for (l = 0; l < ENTROPY_NODES; l++) {
vp9_prob *const p = coef_probs[i][j][k] + l;
if (vp9_read(bc, COEF_UPDATE_PROB)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) {
VP9_COMMON *const pc = &pbi->common;
read_coef_probs_common(bc, pc->fc.coef_probs);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs);
if (pbi->common.txfm_mode != ONLY_4X4) {
read_coef_probs_common(bc, pc->fc.coef_probs_8x8);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_8x8);
}
if (pbi->common.txfm_mode > ALLOW_8X8) {
read_coef_probs_common(bc, pc->fc.coef_probs_16x16);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_16x16);
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) {
BOOL_DECODER header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes = 0;
int mb_row;
int i, j;
int corrupt_tokens = 0;
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
} else {
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
if ((data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (data + 6 < data_end) {
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
}
data += 7;
if (Width != pc->Width || Height != pc->Height) {
if (pc->Width <= 0) {
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
2010-05-18 11:58:33 -04:00
if (pc->Height <= 0) {
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp9_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
}
}
#ifdef DEC_DEBUG
printf("Decode frame %d\n", pc->current_video_frame);
#endif
2010-05-18 11:58:33 -04:00
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0) {
return -1;
}
init_frame(pbi);
2010-05-18 11:58:33 -04:00
if (vp9_start_decode(&header_bc, data,
(unsigned int)first_partition_length_in_bytes))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
}
2010-05-18 11:58:33 -04:00
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly
// updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
// If so what method will be used.
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled
// Read the probs used to decode the segment id for each macro
// block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
xd->mb_segment_tree_probs[i] = vp9_read_bit(&header_bc) ?
(vp9_prob)vp9_read_literal(&header_bc, 8) : 255;
}
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
// Read the prediction probs needed to decode the segment id
pc->temporal_update = (unsigned char)vp9_read_bit(&header_bc);
for (i = 0; i < PREDICTION_PROBS; i++) {
if (pc->temporal_update) {
pc->segment_pred_probs[i] = vp9_read_bit(&header_bc) ?
(vp9_prob)vp9_read_literal(&header_bc, 8) : 255;
} else {
pc->segment_pred_probs[i] = 255;
}
}
}
// Is the segment data being updated
xd->update_mb_segmentation_data = (unsigned char)vp9_read_bit(&header_bc);
if (xd->update_mb_segmentation_data) {
int data;
xd->mb_segment_abs_delta = (unsigned char)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
vp9_clearall_segfeatures(xd);
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++) {
// Is the feature enabled
if (vp9_read_bit(&header_bc)) {
// Update the feature data and mask
vp9_enable_segfeature(xd, i, j);
data = vp9_decode_unsigned_max(&header_bc,
vp9_seg_feature_data_max(j));
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
if (vp9_read_bit(&header_bc))
data = -data;
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 11:13:33 +00:00
}
} else
data = 0;
vp9_set_segdata(xd, i, j, data);
2010-05-18 11:58:33 -04:00
}
}
2010-05-18 11:58:33 -04:00
}
}
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (vp9_read_bit(&header_bc))
pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
#if CONFIG_SUPERBLOCKS
pc->sb_coded = vp9_read_literal(&header_bc, 8);
#endif
/* Read the loop filter level and type */
pc->txfm_mode = vp9_read_literal(&header_bc, 2);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_literal(&header_bc, 8);
pc->prob_tx[1] = vp9_read_literal(&header_bc, 8);
}
Improved coding using 8x8 transform In summary, this commit encompasses a series of changes in attempt to improve the 8x8 transform based coding to help overall compression quality, please refer to the detailed commit history below for what are the rationale underly the series of changes: a. A frame level flag to indicate if 8x8 transform is used at all. b. 8x8 transform is not used for key frames and small image size. c. On inter coded frame, macroblocks using modes B_PRED, SPLIT_MV and I8X8_PRED are forced to using 4x4 transform based coding, the rest uses 8x8 transform based coding. d. Encoder and decoder has the same assumption on the relationship between prediction modes and transform size, therefore no signaling is encoded in bitstream. e. Mode decision process now calculate the rate and distortion scores using their respective transforms. Overall test results: 1. HD set http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120206.html (avg psnr: 3.09% glb psnr: 3.22%, ssim: 3.90%) 2. Cif set: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120206.html (avg psnr: -0.03%, glb psnr: -0.02%, ssim: -0.04%) It should be noted here, as 8x8 transform coding itself is disabled for cif size clips, the 0.03% loss is purely from the 1 bit/frame flag overhead on if 8x8 transform is used or not for the frame. ---patch history for future reference--- Patch 1: this commit tries to select transform size based on macroblock prediction mode. If the size of a prediction mode is 16x16, then the macroblock is forced to use 8x8 transform. If the prediction mode is B_PRED, SPLITMV or I8X8_PRED, then the macroblock is forced to use 4x4 transform. Tests on the following HD clips showed mixed results: (all hd clips only used first 100 frames in the test) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_log.html while the results are mixed and overall negative, it is interesting to see 8x8 helped a few of the clips. Patch 2: this patch tries to hard-wire selection of transform size based on prediction modes without using segmentation to signal the transform size. encoder and decoder both takes the same assumption that all macroblocks use 8x8 transform except when prediciton mode is B_PRED, I8X8_PRED or SPLITMV. Test results are as follows: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cifmodebase8x8_0125.html http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdmodebased8x8_0125log.html Interestingly, by removing the overhead or coding the segmentation, the results on this limited HD set have turn positive on average. Patch 3: this patch disabled the usage of 8x8 transform on key frames, and kept the logic from patch 2 for inter frames only. test results on HD set turned decidedly positive with 8x8 transform enabled on inter frame with 16x16 prediction modes: (avg psnr: .81% glb psnr: .82 ssim: .55%) http://www.corp.google.com/~yaowu/no_crawl/t8x8/hdintermode8x8_0125.html results on cif set still negative overall Patch 4: continued from last patch, but now in mode decision process, the rate and distortion estimates are computed based on 8x8 transform results for MBs with modes associated with 8x8 transform. This patch also fixed a problem related to segment based eob coding when 8x8 transform is used. The patch significantly improved the results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/hd8x8RDintermode.html (avg psnr: 2.70% glb psnr: 2.76% ssim: 3.34%) results on cif also improved, though they are still negative compared to baseline that uses 4x4 transform only: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif8x8RDintermode.html (avg psnr: -.78% glb psnr: -.86% ssim: -.19%) Patch 5: This patch does 3 things: a. a bunch of decoder bug fixes, encodings and decodings were verified to have matched recon buffer on a number of encodes on cif size mobile and hd version of _pedestrian. b. the patch further improved the rate distortion calculation of MBS that use 8x8 transform. This provided some further gain on compression. c. the patch also got the experimental work SEG_LVL_EOB to work with 8x8 transformed macroblock, test results indicates it improves the cif set but hurt the HD set slightly. Tests results on HD clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/HD_t8x8_20120201.html (avg psnr: 3.19% glb psnr: 3.30% ssim: 3.93%) Test results on cif clips: http://www.corp.google.com/~yaowu/no_crawl/t8x8/cif_t8x8_20120201.html (avg psnr: -.47% glb psnr: -.51% ssim: +.28%) Patch 6: Added a frame level flag to indicate if 8x8 transform is allowed at all. temporarily the decision is based on frame size, can be optimized later one. This get the cif results to basically unchanged, with one bit per frame overhead on both cif and hd clips. Patch 8: Rebase and Merge to head by PGW. Fixed some suspect 4s that look like hey should be 64s in regard to segmented EOB. Perhaps #defines would be bette. Bulit and tested without T8x8 enabled and produces unchanged output. Patch 9: Corrected misalligned code/decode of "txfm_mode" bit. Limited testing for correct encode and decode with T8x8 configured on derf clips. Change-Id: I156e1405d25f81579d579dff8ab9af53944ec49c
2012-02-09 16:12:23 -08:00
pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(&header_bc);
pc->filter_level = vp9_read_literal(&header_bc, 6);
pc->sharpness_level = vp9_read_literal(&header_bc, 3);
2010-05-18 11:58:33 -04:00
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
if (xd->mode_ref_lf_delta_enabled) {
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
if (xd->mode_ref_lf_delta_update) {
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(&header_bc)) {
/*sign = vp9_read_bit( &header_bc );*/
xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6);
2010-05-18 11:58:33 -04:00
if (vp9_read_bit(&header_bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
2010-05-18 11:58:33 -04:00
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(&header_bc)) {
/*sign = vp9_read_bit( &header_bc );*/
xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6);
2010-05-18 11:58:33 -04:00
if (vp9_read_bit(&header_bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
2010-05-18 11:58:33 -04:00
}
}
2010-05-18 11:58:33 -04:00
}
}
// Dummy read for now
vp9_read_literal(&header_bc, 2);
setup_token_decoder(pbi, data + first_partition_length_in_bytes,
&residual_bc);
/* Read the default quantizers. */
{
int Q, q_update;
Q = vp9_read_literal(&header_bc, QINDEX_BITS);
pc->base_qindex = Q;
q_update = 0;
/* AC 1st order Q = default */
pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(&header_bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(&header_bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp9_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type != KEY_FRAME) {
/* Should the GF or ARF be updated from the current frame */
pc->refresh_golden_frame = vp9_read_bit(&header_bc);
pc->refresh_alt_ref_frame = vp9_read_bit(&header_bc);
if (pc->refresh_alt_ref_frame) {
vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc));
} else {
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
2010-05-18 11:58:33 -04:00
}
/* Buffer to buffer copy flags. */
pc->copy_buffer_to_gf = 0;
2010-05-18 11:58:33 -04:00
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp9_read_literal(&header_bc, 2);
2010-05-18 11:58:33 -04:00
pc->copy_buffer_to_arf = 0;
2010-05-18 11:58:33 -04:00
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp9_read_literal(&header_bc, 2);
2010-05-18 11:58:33 -04:00
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
Supporting high precision 1/8-pel motion vectors This is the initial patch for supporting 1/8th pel motion. Currently if we configure with enable-high-precision-mv, all motion vectors would default to 1/8 pel. Encode and decode syncs fine with the current code. In the next phase the code will be refactored so that we can choose the 1/8 pel mode adaptively at a frame/segment/mb level. Derf results: http://www.corp.google.com/~debargha/vp8_results/enhinterp_hpmv.html (about 0.83% better than 8-tap interpoaltion) Patch 3: Rebased. Also adding 1/16th pel interpolation for U and V Patch 4: HD results. http://www.corp.google.com/~debargha/vp8_results/enhinterp_hd_hpmv.html Seems impressive (unless I am doing something wrong). Patch 5: Added mmx/sse for bilateral filtering, as well as enforced use of c-versions of subpel filters with 8-taps and 1/16th pel; Also redesigned the 8-tap filters to reduce the cut-off in order to introduce a denoising effect. There is a new configure option sixteenth-subpel-uv which will use 1/16 th pel interpolation for uv, if the motion vectors have 1/8 pel accuracy. With the fixes the results are promising on the derf set. The enhanced interpolation option with 8-taps alone gives 3% improvement over thei derf set: http://www.corp.google.com/~debargha/vp8_results/enhinterpn.html Results on high precision mv and on the hd set are to follow. Patch 6: Adding a missing condition for CONFIG_SIXTEENTH_SUBPEL_UV in vp8/common/x86/x86_systemdependent.c Patch 7: Cleaning up various debug messages. Patch 8: Merge conflict Change-Id: I5b1d844457aefd7414a9e4e0e06c6ed38fd8cc04
2012-02-16 09:29:54 -08:00
/* Is high precision mv allowed */
xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc);
// Read the type of subpel filter to use
if (vp9_read_bit(&header_bc)) {
pc->mcomp_filter_type = SWITCHABLE;
} else {
pc->mcomp_filter_type = vp9_read_literal(&header_bc, 2);
2010-05-18 11:58:33 -04:00
}
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
/* To enable choice of different interploation filters */
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
if (pc->refresh_entropy_probs == 0) {
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = (pc->frame_type == KEY_FRAME)
|| vp9_read_bit(&header_bc);
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (vp9_read(&header_bc, 252)) {
pc->fc.vp9_mode_contexts[i][j] =
(vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
}
}
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
2010-05-18 11:58:33 -04:00
vp9_copy(pbi->common.fc.pre_coef_probs,
pbi->common.fc.coef_probs);
vp9_copy(pbi->common.fc.pre_hybrid_coef_probs,
pbi->common.fc.hybrid_coef_probs);
vp9_copy(pbi->common.fc.pre_coef_probs_8x8,
pbi->common.fc.coef_probs_8x8);
vp9_copy(pbi->common.fc.pre_hybrid_coef_probs_8x8,
pbi->common.fc.hybrid_coef_probs_8x8);
vp9_copy(pbi->common.fc.pre_coef_probs_16x16,
pbi->common.fc.coef_probs_16x16);
vp9_copy(pbi->common.fc.pre_hybrid_coef_probs_16x16,
pbi->common.fc.hybrid_coef_probs_16x16);
vp9_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob);
#if CONFIG_SUPERBLOCKS
vp9_copy(pbi->common.fc.pre_sb_ymode_prob, pbi->common.fc.sb_ymode_prob);
#endif
vp9_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob);
vp9_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob);
vp9_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob);
vp9_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob);
vp9_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob);
#if CONFIG_COMP_INTERINTRA_PRED
pbi->common.fc.pre_interintra_prob = pbi->common.fc.interintra_prob;
#endif
pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc;
vp9_zero(pbi->common.fc.coef_counts);
vp9_zero(pbi->common.fc.hybrid_coef_counts);
vp9_zero(pbi->common.fc.coef_counts_8x8);
vp9_zero(pbi->common.fc.hybrid_coef_counts_8x8);
vp9_zero(pbi->common.fc.coef_counts_16x16);
vp9_zero(pbi->common.fc.hybrid_coef_counts_16x16);
vp9_zero(pbi->common.fc.ymode_counts);
#if CONFIG_SUPERBLOCKS
vp9_zero(pbi->common.fc.sb_ymode_counts);
#endif
vp9_zero(pbi->common.fc.uv_mode_counts);
vp9_zero(pbi->common.fc.bmode_counts);
vp9_zero(pbi->common.fc.i8x8_mode_counts);
vp9_zero(pbi->common.fc.sub_mv_ref_counts);
vp9_zero(pbi->common.fc.mbsplit_counts);
vp9_zero(pbi->common.fc.NMVcount);
vp9_zero(pbi->common.fc.mv_ref_ct);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(pbi->common.fc.interintra_counts);
#endif
read_coef_probs(pbi, &header_bc);
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
2010-05-18 11:58:33 -04:00
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
2010-05-18 11:58:33 -04:00
vp9_setup_block_dptrs(xd);
2010-05-18 11:58:33 -04:00
vp9_build_block_doffsets(xd);
2010-05-18 11:58:33 -04:00
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
2010-05-18 11:58:33 -04:00
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc);
2010-05-18 11:58:33 -04:00
vp9_decode_mode_mvs_init(pbi, &header_bc);
2010-05-18 11:58:33 -04:00
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
2010-05-18 11:58:33 -04:00
// Resset the macroblock mode info context to the start of the list
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
/* Decode a row of superblocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row += 2) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
corrupt_tokens |= xd->corrupted;
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
vp9_adapt_coef_probs(pc);
if (pc->frame_type != KEY_FRAME) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_update_mode_context(&pbi->common);
}
2010-05-18 11:58:33 -04:00
/* If this was a kf or Gf note the Q used */
if ((pc->frame_type == KEY_FRAME) ||
pc->refresh_golden_frame || pc->refresh_alt_ref_frame) {
pc->last_kf_gf_q = pc->base_qindex;
}
if (pc->refresh_entropy_probs) {
if (pc->refresh_alt_ref_frame)
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
else
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
2010-05-18 11:58:33 -04:00
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
2010-05-18 11:58:33 -04:00
#endif
// printf("Frame %d Done\n", frame_count++);
2010-05-18 11:58:33 -04:00
/* Find the end of the coded buffer */
while (residual_bc.count > CHAR_BIT
&& residual_bc.count < VP9_BD_VALUE_SIZE) {
residual_bc.count -= CHAR_BIT;
residual_bc.user_buffer--;
}
*p_data_end = residual_bc.user_buffer;
return 0;
2010-05-18 11:58:33 -04:00
}