vpx/test/fdct8x8_test.cc

790 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
using libvpx_test::ACMRandom;
namespace {
const int kNumCoeffs = 64;
const double kPi = 3.141592653589793238462643383279502884;
const int kSignBiasMaxDiff255 = 1500;
const int kSignBiasMaxDiff15 = 10000;
typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
int tx_type);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
int tx_type);
typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct8x8Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht8x8Param;
typedef std::tr1::tuple<IdctFunc, IdctFunc, int, vpx_bit_depth_t> Idct8x8Param;
void reference_8x8_dct_1d(const double in[8], double out[8], int stride) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 8; k++) {
out[k] = 0.0;
for (int n = 0; n < 8; n++)
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0);
if (k == 0)
out[k] = out[k] * kInvSqrt2;
}
}
void reference_8x8_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns
for (int i = 0; i < 8; ++i) {
double temp_in[8], temp_out[8];
for (int j = 0; j < 8; ++j)
temp_in[j] = input[j*8 + i];
reference_8x8_dct_1d(temp_in, temp_out, 1);
for (int j = 0; j < 8; ++j)
output[j * 8 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 8; ++i) {
double temp_in[8], temp_out[8];
for (int j = 0; j < 8; ++j)
temp_in[j] = output[j + i*8];
reference_8x8_dct_1d(temp_in, temp_out, 1);
// Scale by some magic number
for (int j = 0; j < 8; ++j)
output[j + i * 8] = temp_out[j] * 2;
}
}
void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
vpx_fdct8x8_c(in, out, stride);
}
void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
vp9_fht8x8_c(in, out, stride, tx_type);
}
#if CONFIG_VP9_HIGHBITDEPTH
void idct8x8_10(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_64_add_c(in, out, stride, 10);
}
void idct8x8_12(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_64_add_c(in, out, stride, 12);
}
void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
vp9_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 10);
}
void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
vp9_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 12);
}
void idct8x8_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_10_add_c(in, out, stride, 10);
}
void idct8x8_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_10_add_c(in, out, stride, 12);
}
#if HAVE_SSE2
void idct8x8_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_10_add_sse2(in, out, stride, 10);
}
void idct8x8_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_10_add_sse2(in, out, stride, 12);
}
void idct8x8_64_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_64_add_sse2(in, out, stride, 10);
}
void idct8x8_64_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct8x8_64_add_sse2(in, out, stride, 12);
}
#endif // HAVE_SSE2
#endif // CONFIG_VP9_HIGHBITDEPTH
class FwdTrans8x8TestBase {
public:
virtual ~FwdTrans8x8TestBase() {}
protected:
virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunSignBiasCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_output_block[64]);
int count_sign_block[64][2];
const int count_test_block = 100000;
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) -
((rnd.Rand16() >> (16 - bit_depth_)) & mask_);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = kSignBiasMaxDiff255;
EXPECT_LT(diff, max_diff << (bit_depth_ - 8))
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-255, 255] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_ / 16, mask_ / 16].
for (int j = 0; j < 64; ++j)
test_input_block[j] = ((rnd.Rand16() & mask_) >> 4) -
((rnd.Rand16() & mask_) >> 4);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = kSignBiasMaxDiff15;
EXPECT_LT(diff, max_diff << (bit_depth_ - 8))
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-15, 15] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
}
void RunRoundTripErrorCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]);
DECLARE_ALIGNED(16, uint8_t, dst[64]);
DECLARE_ALIGNED(16, uint8_t, src[64]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[64]);
DECLARE_ALIGNED(16, uint16_t, src16[64]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < 64; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < 64; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const int diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual"
<< " roundtrip error > 1";
EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8))/5, total_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip "
<< "error > 1/5 per block";
}
void RunExtremalCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
int total_coeff_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]);
DECLARE_ALIGNED(16, tran_low_t, ref_temp_block[64]);
DECLARE_ALIGNED(16, uint8_t, dst[64]);
DECLARE_ALIGNED(16, uint8_t, src[64]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[64]);
DECLARE_ALIGNED(16, uint16_t, src16[64]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < 64; ++j) {
if (bit_depth_ == VPX_BITS_8) {
if (i == 0) {
src[j] = 255;
dst[j] = 0;
} else if (i == 1) {
src[j] = 0;
dst[j] = 255;
} else {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = rnd.Rand8() % 2 ? 255 : 0;
}
test_input_block[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
if (i == 0) {
src16[j] = mask_;
dst16[j] = 0;
} else if (i == 1) {
src16[j] = 0;
dst16[j] = mask_;
} else {
src16[j] = rnd.Rand8() % 2 ? mask_ : 0;
dst16[j] = rnd.Rand8() % 2 ? mask_ : 0;
}
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
ASM_REGISTER_STATE_CHECK(
fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, tx_type_));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < 64; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const int diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
const int coeff_diff = test_temp_block[j] - ref_temp_block[j];
total_coeff_error += abs(coeff_diff);
}
EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has"
<< "an individual roundtrip error > 1";
EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8))/5, total_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average"
<< " roundtrip error > 1/5 per block";
EXPECT_EQ(0, total_coeff_error)
<< "Error: Extremal 8x8 FDCT/FHT has"
<< "overflow issues in the intermediate steps > 1";
}
}
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = src[j] > 0 ? 0 : 255;
in[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand8() % 2 ? mask_ : 0;
dst16[j] = src16[j] > 0 ? 0 : mask_;
in[j] = src16[j] - dst16[j];
#endif
}
}
reference_8x8_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const uint32_t diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const uint32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
EXPECT_GE(1u << 2 * (bit_depth_ - 8), error)
<< "Error: 8x8 IDCT has error " << error
<< " at index " << j;
}
}
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff_r[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j)
in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_;
RunFwdTxfm(in, coeff, pitch_);
reference_8x8_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff_r[j] = static_cast<tran_low_t>(round(out_r[j]));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = coeff[j] - coeff_r[j];
const uint32_t error = diff * diff;
EXPECT_GE(9u << 2 * (bit_depth_ - 8), error)
<< "Error: 8x8 DCT has error " << error
<< " at index " << j;
}
}
}
void CompareInvReference(IdctFunc ref_txfm, int thresh) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 10000;
const int eob = 12;
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif
const int16_t *scan = vp9_default_scan_orders[TX_8X8].scan;
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j) {
if (j < eob) {
// Random values less than the threshold, either positive or negative
coeff[scan[j]] = rnd(thresh) * (1-2*(i%2));
} else {
coeff[scan[j]] = 0;
}
if (bit_depth_ == VPX_BITS_8) {
dst[j] = 0;
ref[j] = 0;
#if CONFIG_VP9_HIGHBITDEPTH
} else {
dst16[j] = 0;
ref16[j] = 0;
#endif
}
}
if (bit_depth_ == VPX_BITS_8) {
ref_txfm(coeff, ref, pitch_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const uint32_t diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
#else
const uint32_t diff = dst[j] - ref[j];
#endif
const uint32_t error = diff * diff;
EXPECT_EQ(0u, error)
<< "Error: 8x8 IDCT has error " << error
<< " at index " << j;
}
}
}
int pitch_;
int tx_type_;
FhtFunc fwd_txfm_ref;
vpx_bit_depth_t bit_depth_;
int mask_;
};
class FwdTrans8x8DCT
: public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Dct8x8Param> {
public:
virtual ~FwdTrans8x8DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 8;
fwd_txfm_ref = fdct8x8_ref;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(FwdTrans8x8DCT, SignBiasCheck) {
RunSignBiasCheck();
}
TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) {
RunRoundTripErrorCheck();
}
TEST_P(FwdTrans8x8DCT, ExtremalCheck) {
RunExtremalCheck();
}
TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) {
RunFwdAccuracyCheck();
}
TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) {
RunInvAccuracyCheck();
}
class FwdTrans8x8HT
: public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Ht8x8Param> {
public:
virtual ~FwdTrans8x8HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 8;
fwd_txfm_ref = fht8x8_ref;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride, tx_type_);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, tx_type_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(FwdTrans8x8HT, SignBiasCheck) {
RunSignBiasCheck();
}
TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) {
RunRoundTripErrorCheck();
}
TEST_P(FwdTrans8x8HT, ExtremalCheck) {
RunExtremalCheck();
}
class InvTrans8x8DCT
: public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Idct8x8Param> {
public:
virtual ~InvTrans8x8DCT() {}
virtual void SetUp() {
ref_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
thresh_ = GET_PARAM(2);
pitch_ = 8;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
void RunFwdTxfm(int16_t *out, tran_low_t *dst, int stride) {}
IdctFunc ref_txfm_;
IdctFunc inv_txfm_;
int thresh_;
};
TEST_P(InvTrans8x8DCT, CompareReference) {
CompareInvReference(ref_txfm_, thresh_);
}
using std::tr1::make_tuple;
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c, 0, VPX_BITS_8),
make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_10, 0, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_12, 0, VPX_BITS_12)));
#else
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c, 0, VPX_BITS_8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 0, VPX_BITS_10),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 1, VPX_BITS_10),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 2, VPX_BITS_10),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 3, VPX_BITS_10),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 0, VPX_BITS_12),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 1, VPX_BITS_12),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 2, VPX_BITS_12),
make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 3, VPX_BITS_12),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
NEON, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_neon, &vpx_idct8x8_64_add_neon, 0,
VPX_BITS_8)));
#endif // HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
NEON, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 0, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 3, VPX_BITS_8)));
#endif // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_sse2, &vpx_idct8x8_64_add_sse2, 0,
VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 0, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 3, VPX_BITS_8)));
#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_sse2, &vpx_idct8x8_64_add_c, 0, VPX_BITS_8),
make_tuple(&vpx_highbd_fdct8x8_c,
&idct8x8_64_add_10_sse2, 12, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct8x8_sse2,
&idct8x8_64_add_10_sse2, 12, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct8x8_c,
&idct8x8_64_add_12_sse2, 12, VPX_BITS_12),
make_tuple(&vpx_highbd_fdct8x8_sse2,
&idct8x8_64_add_12_sse2, 12, VPX_BITS_12)));
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8)));
// Optimizations take effect at a threshold of 6201, so we use a value close to
// that to test both branches.
INSTANTIATE_TEST_CASE_P(
SSE2, InvTrans8x8DCT,
::testing::Values(
make_tuple(&idct8x8_10_add_10_c,
&idct8x8_10_add_10_sse2, 6225, VPX_BITS_10),
make_tuple(&idct8x8_10,
&idct8x8_64_add_10_sse2, 6225, VPX_BITS_10),
make_tuple(&idct8x8_10_add_12_c,
&idct8x8_10_add_12_sse2, 6225, VPX_BITS_12),
make_tuple(&idct8x8_12,
&idct8x8_64_add_12_sse2, 6225, VPX_BITS_12)));
#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSSE3 && CONFIG_USE_X86INC && ARCH_X86_64 && \
!CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSSE3, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_ssse3, &vpx_idct8x8_64_add_ssse3, 0,
VPX_BITS_8)));
#endif
#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
MSA, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vpx_fdct8x8_msa, &vpx_idct8x8_64_add_msa, 0, VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(
MSA, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 0, VPX_BITS_8),
make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 1, VPX_BITS_8),
make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 2, VPX_BITS_8),
make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 3, VPX_BITS_8)));
#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace