vpx/vp9/encoder/vp9_encodeframe.c

2092 lines
73 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "./vpx_config.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "./vp9_rtcd.h"
2010-05-18 17:58:33 +02:00
#include <stdio.h>
#include <math.h>
2010-05-18 17:58:33 +02:00
#include <limits.h>
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_mvref_common.h"
#define DBG_PRNT_SEGMAP 0
// #define ENC_DEBUG
#ifdef ENC_DEBUG
int enc_debug = 0;
#endif
void vp9_select_interp_filter_type(VP9_COMP *cpi);
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled, int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
unsigned int inter_y_modes[MB_MODE_COUNT];
unsigned int inter_uv_modes[VP9_UV_MODES];
unsigned int inter_b_modes[B_MODE_COUNT];
unsigned int y_modes[VP9_YMODES];
unsigned int i8x8_modes[VP9_I8X8_MODES];
unsigned int uv_modes[VP9_UV_MODES];
unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
unsigned int b_modes[B_MODE_COUNT];
2010-05-18 17:58:33 +02:00
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp9_activity_masking().
*/
#define VP9_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const uint8_t VP9_VAR_OFFS[16] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
};
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
act <<= 4;
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12)
act = act < 5 << 12 ? act : 5 << 12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(VP9_COMP *cpi,
MACROBLOCK *x, int use_dc_pred) {
return vp9_encode_intra(cpi, x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(cpi, x);
}
if (mb_activity < VP9_ACTIVITY_AVG_MIN)
mb_activity = VP9_ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
#endif
if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP9_ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate an activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON *const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
#if ALT_ACT_MEASURE
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
// measure activity
mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->plane[0].src.buf += 16;
}
// adjust to the next row of mbs
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
#if ALT_ACT_MEASURE
// extend the recon for intra prediction
vp9_extend_mb_row(new_yv12, xd->plane[0].dst.buf + 16,
xd->plane[1].dst.buf + 8, xd->plane[2].dst.buf + 8);
#endif
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
#endif
}
// Macroblock activity masking
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
2010-05-18 17:58:33 +02:00
static void update_state(VP9_COMP *cpi,
PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE_TYPE bsize,
int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int mb_mode = mi->mbmi.mode;
int mb_mode_index = ctx->best_mode_index;
const int mis = cpi->common.mode_info_stride;
const int bh = 1 << mi_height_log2(bsize), bw = 1 << mi_width_log2(bsize);
#if CONFIG_DEBUG
assert(mb_mode < MB_MODE_COUNT);
assert(mb_mode_index < MAX_MODES);
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
#endif
assert(mi->mbmi.sb_type == bsize);
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < bh; y++) {
for (x_idx = 0; x_idx < bw; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)) + bw > x_idx &&
(xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)) + bh > y) {
MODE_INFO *mi_addr = xd->mode_info_context + x_idx + y * mis;
vpx_memcpy(mi_addr, mi, sizeof(MODE_INFO));
}
}
}
if (bsize < BLOCK_SIZE_SB32X32) {
if (bsize < BLOCK_SIZE_MB16X16)
ctx->txfm_rd_diff[ALLOW_16X16] = ctx->txfm_rd_diff[ALLOW_8X8];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16];
}
if (mb_mode == SPLITMV) {
vpx_memcpy(x->partition_info, &ctx->partition_info,
sizeof(PARTITION_INFO));
mbmi->mv[0].as_int =
x->partition_info->bmi[3].mv.as_int;
mbmi->mv[1].as_int =
x->partition_info->bmi[3].second_mv.as_int;
}
x->skip = ctx->skip;
if (!output_enabled)
return;
{
int segment_id = mbmi->segment_id, ref_pred_flag;
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < NB_TXFM_MODES; i++) {
cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i];
}
}
// Did the chosen reference frame match its predicted value.
ref_pred_flag = ((xd->mode_info_context->mbmi.ref_frame ==
vp9_get_pred_ref(cm, xd)));
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
if (!xd->segmentation_enabled ||
!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) ||
vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME) > 1) {
// Get the prediction context and status
int pred_context = vp9_get_pred_context(cm, xd, PRED_REF);
// Count prediction success
cpi->ref_pred_count[pred_context][ref_pred_flag]++;
}
}
if (cpi->common.frame_type == KEY_FRAME) {
// Restore the coding modes to that held in the coding context
// if (mb_mode == I4X4_PRED)
// for (i = 0; i < 16; i++)
// {
// xd->block[i].bmi.as_mode =
// xd->mode_info_context->bmi[i].as_mode;
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
// }
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D27_PRED /*D27_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
THR_B_PRED /*I4X4_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++;
#endif
} else {
/*
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) &&
(cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2);
cpi->rd_thresh_mult[mb_mode_index] =
(cpi->rd_thresh_mult[mb_mode_index]
>= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[mb_mode_index] - best_adjustment :
MIN_THRESHMULT;
cpi->rd_threshes[mb_mode_index] =
(cpi->rd_baseline_thresh[mb_mode_index] >> 7)
* cpi->rd_thresh_mult[mb_mode_index];
}
*/
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (mbmi->mode == SPLITMV || mbmi->mode == NEWMV) {
int_mv best_mv, best_second_mv;
MV_REFERENCE_FRAME rf = mbmi->ref_frame;
best_mv.as_int = ctx->best_ref_mv.as_int;
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
if (mbmi->mode == NEWMV) {
best_mv.as_int = mbmi->ref_mvs[rf][0].as_int;
best_second_mv.as_int = mbmi->ref_mvs[mbmi->second_ref_frame][0].as_int;
}
mbmi->best_mv.as_int = best_mv.as_int;
mbmi->best_second_mv.as_int = best_second_mv.as_int;
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
}
if (bsize > BLOCK_SIZE_SB8X8 && mbmi->mode == NEWMV) {
int i, j;
for (j = 0; j < bh; ++j)
for (i = 0; i < bw; ++i)
xd->mode_info_context[mis * j + i].mbmi = *mbmi;
}
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
is_inter_mode(mbmi->mode)) {
++cpi->switchable_interp_count
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
}
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
}
}
static unsigned find_seg_id(uint8_t *buf, BLOCK_SIZE_TYPE bsize,
int start_y, int height, int start_x, int width) {
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
const int end_x = MIN(start_x + bw, width);
const int end_y = MIN(start_y + bh, height);
int x, y;
unsigned seg_id = -1;
buf += width * start_y;
for (y = start_y; y < end_y; y++, buf += width) {
for (x = start_x; x < end_x; x++) {
seg_id = MIN(seg_id, buf[x]);
}
}
return seg_id;
}
void vp9_setup_src_planes(MACROBLOCK *x,
const YV12_BUFFER_CONFIG *src,
int mb_row, int mb_col) {
setup_pred_plane(&x->plane[0].src,
src->y_buffer, src->y_stride,
mb_row, mb_col, NULL,
x->e_mbd.plane[0].subsampling_x,
x->e_mbd.plane[0].subsampling_y);
setup_pred_plane(&x->plane[1].src,
src->u_buffer, src->uv_stride,
mb_row, mb_col, NULL,
x->e_mbd.plane[1].subsampling_x,
x->e_mbd.plane[1].subsampling_y);
setup_pred_plane(&x->plane[2].src,
src->v_buffer, src->uv_stride,
mb_row, mb_col, NULL,
x->e_mbd.plane[2].subsampling_x,
x->e_mbd.plane[2].subsampling_y);
}
static INLINE void set_partition_seg_context(VP9_COMP *cpi,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
xd->above_seg_context = cm->above_seg_context + mi_col;
xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK);
}
static void set_offsets(VP9_COMP *cpi,
int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int dst_fb_idx = cm->new_fb_idx;
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
const int mb_row = mi_row >> 1;
const int mb_col = mi_col >> 1;
const int idx_map = mb_row * cm->mb_cols + mb_col;
int i;
// entropy context structures
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].above_context = cm->above_context[i] +
(mi_col * 2 >> xd->plane[i].subsampling_x);
xd->plane[i].left_context = cm->left_context[i] +
(((mi_row * 2) & 15) >> xd->plane[i].subsampling_y);
}
// partition contexts
set_partition_seg_context(cpi, mi_row, mi_col);
// Activity map pointer
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
x->active_ptr = cpi->active_map + idx_map;
/* pointers to mode info contexts */
x->partition_info = x->pi + idx_str;
xd->mode_info_context = cm->mi + idx_str;
mbmi = &xd->mode_info_context->mbmi;
xd->prev_mode_info_context = cm->prev_mi + idx_str;
// Set up destination pointers
setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
/* Set up limit values for MV components to prevent them from
* extending beyond the UMV borders assuming 16x16 block size */
x->mv_row_min = -((mi_row * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_col_min = -((mi_col * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_row_max = ((cm->mi_rows - mi_row) * MI_SIZE +
(VP9BORDERINPIXELS - MI_SIZE * bh - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mi_cols - mi_col) * MI_SIZE +
(VP9BORDERINPIXELS - MI_SIZE * bw - VP9_INTERP_EXTEND));
// Set up distance of MB to edge of frame in 1/8th pel units
assert(!(mi_col & (bw - 1)) && !(mi_row & (bh - 1)));
set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
/* set up source buffers */
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
/* R/D setup */
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* segment ID */
if (xd->segmentation_enabled) {
uint8_t *map = xd->update_mb_segmentation_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = find_seg_id(map, bsize, mi_row,
cm->mi_rows, mi_col, cm->mi_cols);
assert(mbmi->segment_id <= (MAX_MB_SEGMENTS-1));
vp9_mb_init_quantizer(cpi, x);
if (xd->segmentation_enabled && cpi->seg0_cnt > 0 &&
!vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) &&
vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) &&
vp9_check_segref(xd, 1, INTRA_FRAME) +
vp9_check_segref(xd, 1, LAST_FRAME) +
vp9_check_segref(xd, 1, GOLDEN_FRAME) +
vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
const int y = mb_row & ~3;
const int x = mb_col & ~3;
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
const int tile_progress =
cm->cur_tile_mi_col_start * cm->mb_rows >> 1;
const int mb_cols =
(cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start) >> 1;
cpi->seg0_progress =
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs;
}
} else {
mbmi->segment_id = 0;
}
}
static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
TOKENEXTRA **tp, int *totalrate, int *totaldist,
BLOCK_SIZE_TYPE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
set_offsets(cpi, mi_row, mi_col, bsize);
xd->mode_info_context->mbmi.sb_type = bsize;
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
/* Find best coding mode & reconstruct the MB so it is available
* as a predictor for MBs that follow in the SB */
if (cm->frame_type == KEY_FRAME) {
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx);
} else {
vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist,
bsize, ctx);
}
}
static void update_stats(VP9_COMP *cpi, int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (cm->frame_type == KEY_FRAME) {
#ifdef MODE_STATS
y_modes[mbmi->mode]++;
#endif
} else {
int segment_id, seg_ref_active;
if (mbmi->ref_frame) {
int pred_context = vp9_get_pred_context(cm, xd, PRED_COMP);
if (mbmi->second_ref_frame <= INTRA_FRAME)
cpi->single_pred_count[pred_context]++;
else
cpi->comp_pred_count[pred_context]++;
}
#ifdef MODE_STATS
inter_y_modes[mbmi->mode]++;
if (mbmi->mode == SPLITMV) {
int b;
2010-05-18 17:58:33 +02:00
for (b = 0; b < x->partition_info->count; b++) {
inter_b_modes[x->partition_info->bmi[b].mode]++;
}
}
#endif
// If we have just a single reference frame coded for a segment then
// exclude from the reference frame counts used to work out
// probabilities. NOTE: At the moment we dont support custom trees
// for the reference frame coding for each segment but this is a
// possible future action.
segment_id = mbmi->segment_id;
seg_ref_active = vp9_segfeature_active(xd, segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active ||
((vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME)) > 1)) {
cpi->count_mb_ref_frame_usage[mbmi->ref_frame]++;
}
// Count of last ref frame 0,0 usage
if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME))
cpi->inter_zz_count++;
}
}
2010-05-18 17:58:33 +02:00
static void set_block_index(MACROBLOCKD *xd, int idx,
BLOCK_SIZE_TYPE bsize) {
if (bsize >= BLOCK_SIZE_SB32X32) {
xd->sb_index = idx;
} else if (bsize >= BLOCK_SIZE_MB16X16) {
xd->mb_index = idx;
} else {
xd->b_index = idx;
}
}
static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x,
BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
switch (bsize) {
case BLOCK_SIZE_SB64X64:
return &x->sb64_context;
case BLOCK_SIZE_SB64X32:
return &x->sb64x32_context[xd->sb_index];
case BLOCK_SIZE_SB32X64:
return &x->sb32x64_context[xd->sb_index];
case BLOCK_SIZE_SB32X32:
return &x->sb32_context[xd->sb_index];
case BLOCK_SIZE_SB32X16:
return &x->sb32x16_context[xd->sb_index][xd->mb_index];
case BLOCK_SIZE_SB16X32:
return &x->sb16x32_context[xd->sb_index][xd->mb_index];
case BLOCK_SIZE_MB16X16:
return &x->mb_context[xd->sb_index][xd->mb_index];
case BLOCK_SIZE_SB16X8:
return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_SIZE_SB8X16:
return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_SIZE_SB8X8:
return &x->sb8_context[xd->sb_index][xd->mb_index][xd->b_index];
default:
assert(0);
return NULL;
}
}
static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp,
int mi_row, int mi_col, int output_enabled,
BLOCK_SIZE_TYPE bsize, int sub_index) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
2010-05-18 17:58:33 +02:00
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
2010-05-18 17:58:33 +02:00
if (sub_index != -1)
set_block_index(xd, sub_index, bsize);
set_offsets(cpi, mi_row, mi_col, bsize);
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
2010-05-18 17:58:33 +02:00
if (output_enabled) {
update_stats(cpi, mi_row, mi_col);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp,
int mi_row, int mi_col, int output_enabled,
BLOCK_SIZE_TYPE level,
BLOCK_SIZE_TYPE c1, BLOCK_SIZE_TYPE c2[4],
BLOCK_SIZE_TYPE c3[4][4]
) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = mi_width_log2(level), bs = 1 << (bsl - 1);
const int bwl = mi_width_log2(c1), bhl = mi_height_log2(c1);
int UNINITIALIZED_IS_SAFE(pl);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (level > BLOCK_SIZE_SB8X8) {
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, level);
}
if (bsl == bwl && bsl == bhl) {
if (output_enabled && level > BLOCK_SIZE_SB8X8)
cpi->partition_count[pl][PARTITION_NONE]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1);
} else if (bsl == bhl && bsl > bwl) {
if (output_enabled)
cpi->partition_count[pl][PARTITION_VERT]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
} else if (bsl == bwl && bsl > bhl) {
if (output_enabled)
cpi->partition_count[pl][PARTITION_HORZ]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
} else {
BLOCK_SIZE_TYPE subsize;
int i;
assert(bwl < bsl && bhl < bsl);
if (level == BLOCK_SIZE_SB64X64) {
subsize = BLOCK_SIZE_SB32X32;
} else if (level == BLOCK_SIZE_SB32X32) {
subsize = BLOCK_SIZE_MB16X16;
} else {
assert(level == BLOCK_SIZE_MB16X16);
subsize = BLOCK_SIZE_SB8X8;
}
if (output_enabled)
cpi->partition_count[pl][PARTITION_SPLIT]++;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
set_block_index(xd, i, subsize);
encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
output_enabled, subsize,
c2 ? c2[i] : c1, c3 ? c3[i] : NULL, NULL);
}
}
if (level > BLOCK_SIZE_SB8X8 &&
(level == BLOCK_SIZE_MB16X16 || bsl == bwl || bsl == bhl)) {
set_partition_seg_context(cpi, mi_row, mi_col);
update_partition_context(xd, c1, level);
}
}
2010-05-18 17:58:33 +02:00
static void encode_sb_row(VP9_COMP *cpi,
int mi_row,
TOKENEXTRA **tp,
int *totalrate) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int mi_col, pl;
// Initialize the left context for the new SB row
vpx_memset(&cm->left_context, 0, sizeof(cm->left_context));
vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context));
// Code each SB in the row
for (mi_col = cm->cur_tile_mi_col_start;
mi_col < cm->cur_tile_mi_col_end; mi_col += 8) {
int i, p;
BLOCK_SIZE_TYPE mb_partitioning[4][4];
BLOCK_SIZE_TYPE sb_partitioning[4];
BLOCK_SIZE_TYPE sb64_partitioning = BLOCK_SIZE_SB32X32;
int sb64_rate = 0, sb64_dist = 0;
int sb64_skip = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT seg_l[64 / MI_SIZE], seg_a[64 / MI_SIZE];
TOKENEXTRA *tp_orig = *tp;
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(a + 16 * p, cm->above_context[p] +
(mi_col * 2 >> xd->plane[p].subsampling_x),
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(l + 16 * p, cm->left_context[p],
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
vpx_memcpy(&seg_a, cm->above_seg_context + mi_col, sizeof(seg_a));
vpx_memcpy(&seg_l, cm->left_seg_context, sizeof(seg_l));
// FIXME(rbultje): this function should probably be rewritten to be
// recursive at some point in the future.
for (i = 0; i < 4; i++) {
const int x_idx = (i & 1) << 2;
const int y_idx = (i & 2) << 1;
int sb32_rate = 0, sb32_dist = 0;
int splitmodes_used = 0;
int sb32_skip = 0;
int j;
ENTROPY_CONTEXT l2[8 * MAX_MB_PLANE], a2[8 * MAX_MB_PLANE];
PARTITION_CONTEXT sl32[32 / MI_SIZE], sa32[32 / MI_SIZE];
sb_partitioning[i] = BLOCK_SIZE_MB16X16;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
xd->sb_index = i;
/* Function should not modify L & A contexts; save and restore on exit */
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(l2 + 8 * p,
cm->left_context[p] +
(y_idx * 2 >> xd->plane[p].subsampling_y),
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(a2 + 8 * p,
cm->above_context[p] +
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
vpx_memcpy(&sa32, cm->above_seg_context + mi_col + x_idx, sizeof(sa32));
vpx_memcpy(&sl32, cm->left_seg_context + y_idx, sizeof(sl32));
/* Encode MBs in raster order within the SB */
for (j = 0; j < 4; j++) {
const int x_idx_m = x_idx + ((j & 1) << 1);
const int y_idx_m = y_idx + ((j >> 1) << 1);
int r, d;
int r2, d2, mb16_rate = 0, mb16_dist = 0, k;
ENTROPY_CONTEXT l3[4 * MAX_MB_PLANE], a3[4 * MAX_MB_PLANE];
PARTITION_CONTEXT sl16[16 / MI_SIZE], sa16[16 / MI_SIZE];
mb_partitioning[i][j] = BLOCK_SIZE_SB8X8;
if (mi_row + y_idx_m >= cm->mi_rows ||
mi_col + x_idx_m >= cm->mi_cols) {
// MB lies outside frame, move on
continue;
}
// Index of the MB in the SB 0..3
xd->mb_index = j;
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(l3 + 4 * p,
cm->left_context[p] +
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
vpx_memcpy(a3 + 4 * p,
cm->above_context[p] +
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
}
vpx_memcpy(&sa16, cm->above_seg_context + mi_col + x_idx_m,
sizeof(sa16));
vpx_memcpy(&sl16, cm->left_seg_context + y_idx_m, sizeof(sl16));
for (k = 0; k < 4; k++) {
xd->b_index = k;
// try 8x8 coding
pick_sb_modes(cpi, mi_row + y_idx_m + (k >> 1),
mi_col + x_idx_m + (k & 1),
tp, &r, &d, BLOCK_SIZE_SB8X8,
&x->sb8_context[xd->sb_index][xd->mb_index]
[xd->b_index]);
mb16_rate += r;
mb16_dist += d;
update_state(cpi, &x->sb8_context[xd->sb_index][xd->mb_index]
[xd->b_index],
BLOCK_SIZE_SB8X8, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx_m + (k >> 1),
mi_col + x_idx_m + (k & 1),
BLOCK_SIZE_SB8X8);
}
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
mb16_rate += x->partition_cost[pl][PARTITION_SPLIT];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
l3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
a3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
}
vpx_memcpy(cm->above_seg_context + mi_col + x_idx_m,
sa16, sizeof(sa16));
vpx_memcpy(cm->left_seg_context + y_idx_m, sl16, sizeof(sl16));
// try 8x16 coding
r2 = 0;
d2 = 0;
xd->b_index = 0;
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
tp, &r, &d, BLOCK_SIZE_SB8X16,
&x->sb8x16_context[xd->sb_index][xd->mb_index]
[xd->b_index]);
r2 += r;
d2 += d;
update_state(cpi, &x->sb8x16_context[xd->sb_index][xd->mb_index]
[xd->b_index],
BLOCK_SIZE_SB8X16, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx_m, mi_col + x_idx_m,
BLOCK_SIZE_SB8X16);
xd->b_index = 1;
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m + 1,
tp, &r, &d, BLOCK_SIZE_SB8X16,
&x->sb8x16_context[xd->sb_index][xd->mb_index]
[xd->b_index]);
r2 += r;
d2 += d;
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
r2 += x->partition_cost[pl][PARTITION_VERT];
if (RDCOST(x->rdmult, x->rddiv, r2, d2) <
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
mb16_rate = r2;
mb16_dist = d2;
mb_partitioning[i][j] = BLOCK_SIZE_SB8X16;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
l3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
a3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
}
// try 16x8 coding
r2 = 0;
d2 = 0;
xd->b_index = 0;
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
tp, &r, &d, BLOCK_SIZE_SB16X8,
&x->sb16x8_context[xd->sb_index][xd->mb_index]
[xd->b_index]);
r2 += r;
d2 += d;
update_state(cpi, &x->sb16x8_context[xd->sb_index][xd->mb_index]
[xd->b_index],
BLOCK_SIZE_SB16X8, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx_m, mi_col + x_idx_m,
BLOCK_SIZE_SB16X8);
xd->b_index = 1;
pick_sb_modes(cpi, mi_row + y_idx_m + 1, mi_col + x_idx_m,
tp, &r, &d, BLOCK_SIZE_SB16X8,
&x->sb16x8_context[xd->sb_index][xd->mb_index]
[xd->b_index]);
r2 += r;
d2 += d;
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
r2 += x->partition_cost[pl][PARTITION_HORZ];
if (RDCOST(x->rdmult, x->rddiv, r2, d2) <
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
mb16_rate = r2;
mb16_dist = d2;
mb_partitioning[i][j] = BLOCK_SIZE_SB16X8;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
l3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
a3 + 4 * p,
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
}
// try as 16x16
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
tp, &r, &d, BLOCK_SIZE_MB16X16,
&x->mb_context[xd->sb_index][xd->mb_index]);
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
r += x->partition_cost[pl][PARTITION_NONE];
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
mb16_rate = r;
mb16_dist = d;
mb_partitioning[i][j] = BLOCK_SIZE_MB16X16;
}
sb32_rate += mb16_rate;
sb32_dist += mb16_dist;
// Dummy encode, do not do the tokenization
encode_sb(cpi, tp, mi_row + y_idx_m, mi_col + x_idx_m, 0,
BLOCK_SIZE_MB16X16, mb_partitioning[i][j], NULL, NULL);
}
/* Restore L & A coding context to those in place on entry */
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 2 >> xd->plane[p].subsampling_y),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
// restore partition information context
vpx_memcpy(cm->above_seg_context + mi_col + x_idx, sa32, sizeof(sa32));
vpx_memcpy(cm->left_seg_context + y_idx, sl32, sizeof(sl32));
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
sb32_rate += x->partition_cost[pl][PARTITION_SPLIT];
if (cpi->sf.splitmode_breakout) {
sb32_skip = splitmodes_used;
sb64_skip += splitmodes_used;
}
// check 32x16
if (mi_col + x_idx + 4 <= cm->mi_cols) {
int r, d;
xd->mb_index = 0;
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB32X16,
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
if (mi_row + y_idx + 2 < cm->mi_rows) {
int r2, d2;
update_state(cpi, &x->sb32x16_context[xd->sb_index][xd->mb_index],
BLOCK_SIZE_SB32X16, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx, mi_col + x_idx,
BLOCK_SIZE_SB32X16);
xd->mb_index = 1;
pick_sb_modes(cpi, mi_row + y_idx + 2,
mi_col + x_idx, tp, &r2, &d2, BLOCK_SIZE_SB32X16,
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_HORZ];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB32X16;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 2 >> xd->plane[p].subsampling_y),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
}
// check 16x32
if (mi_row + y_idx + 4 <= cm->mi_rows) {
int r, d;
xd->mb_index = 0;
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB16X32,
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
if (mi_col + x_idx + 2 < cm->mi_cols) {
int r2, d2;
update_state(cpi, &x->sb16x32_context[xd->sb_index][xd->mb_index],
BLOCK_SIZE_SB16X32, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx, mi_col + x_idx,
BLOCK_SIZE_SB16X32);
xd->mb_index = 1;
pick_sb_modes(cpi, mi_row + y_idx,
mi_col + x_idx + 2,
tp, &r2, &d2, BLOCK_SIZE_SB16X32,
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_VERT];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB16X32;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 2 >> xd->plane[p].subsampling_y),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
}
if (!sb32_skip &&
mi_col + x_idx + 4 <= cm->mi_cols &&
mi_row + y_idx + 4 <= cm->mi_rows) {
int r, d;
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB32X32,
&x->sb32_context[xd->sb_index]);
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_NONE];
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB32X32;
}
}
// If we used 16x16 instead of 32x32 then skip 64x64 (if enabled).
if (cpi->sf.mb16_breakout && sb_partitioning[i] != BLOCK_SIZE_SB32X32) {
++sb64_skip;
}
sb64_rate += sb32_rate;
sb64_dist += sb32_dist;
/* Encode SB using best computed mode(s) */
// FIXME(rbultje): there really shouldn't be any need to encode_mb/sb
// for each level that we go up, we can just keep tokens and recon
// pixels of the lower level; also, inverting SB/MB order (big->small
// instead of small->big) means we can use as threshold for small, which
// may enable breakouts if RD is not good enough (i.e. faster)
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
BLOCK_SIZE_SB32X32, sb_partitioning[i], mb_partitioning[i],
NULL);
}
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 2 >> xd->plane[p].subsampling_x),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
memcpy(cm->above_seg_context + mi_col, &seg_a, sizeof(seg_a));
memcpy(cm->left_seg_context, &seg_l, sizeof(seg_l));
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
sb64_rate += x->partition_cost[pl][PARTITION_SPLIT];
// check 64x32
if (mi_col + 8 <= cm->mi_cols && !(cm->mb_rows & 1)) {
int r, d;
xd->sb_index = 0;
pick_sb_modes(cpi, mi_row, mi_col,
tp, &r, &d, BLOCK_SIZE_SB64X32,
&x->sb64x32_context[xd->sb_index]);
if (mi_row + 4 != cm->mi_rows) {
int r2, d2;
update_state(cpi, &x->sb64x32_context[xd->sb_index],
BLOCK_SIZE_SB64X32, 0);
encode_superblock(cpi, tp,
0, mi_row, mi_col, BLOCK_SIZE_SB64X32);
xd->sb_index = 1;
pick_sb_modes(cpi, mi_row + 4, mi_col,
tp, &r2, &d2, BLOCK_SIZE_SB64X32,
&x->sb64x32_context[xd->sb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_HORZ];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb64_partitioning = BLOCK_SIZE_SB64X32;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 2 >> xd->plane[p].subsampling_x),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
}
// check 32x64
if (mi_row + 8 <= cm->mi_rows && !(cm->mb_cols & 1)) {
int r, d;
xd->sb_index = 0;
pick_sb_modes(cpi, mi_row, mi_col,
tp, &r, &d, BLOCK_SIZE_SB32X64,
&x->sb32x64_context[xd->sb_index]);
if (mi_col + 4 != cm->mi_cols) {
int r2, d2;
update_state(cpi, &x->sb32x64_context[xd->sb_index],
BLOCK_SIZE_SB32X64, 0);
encode_superblock(cpi, tp,
0, mi_row, mi_col, BLOCK_SIZE_SB32X64);
xd->sb_index = 1;
pick_sb_modes(cpi, mi_row, mi_col + 4,
tp, &r2, &d2, BLOCK_SIZE_SB32X64,
&x->sb32x64_context[xd->sb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_VERT];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb64_partitioning = BLOCK_SIZE_SB32X64;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 2 >> xd->plane[p].subsampling_x),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
}
if (!sb64_skip &&
mi_col + 8 <= cm->mi_cols &&
mi_row + 8 <= cm->mi_rows) {
int r, d;
pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d,
BLOCK_SIZE_SB64X64, &x->sb64_context);
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_NONE];
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb64_partitioning = BLOCK_SIZE_SB64X64;
}
}
assert(tp_orig == *tp);
encode_sb(cpi, tp, mi_row, mi_col, 1, BLOCK_SIZE_SB64X64,
sb64_partitioning, sb_partitioning, mb_partitioning);
assert(tp_orig < *tp);
}
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
// TODO(jkoleszar): are these initializations required?
setup_pre_planes(xd, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], NULL,
0, 0, NULL, NULL);
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
vp9_build_block_offsets(x);
vp9_setup_block_dptrs(&x->e_mbd);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->count_mb_ref_frame_usage)
vp9_zero(cpi->bmode_count)
vp9_zero(cpi->ymode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cpi->sub_mv_ref_count)
vp9_zero(cpi->common.fc.mv_ref_ct)
vp9_zero(cpi->sb_ymode_count)
vp9_zero(cpi->partition_count);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 2 *
MAX_MB_PLANE * mi_cols_aligned_to_sb(cm));
vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mi_cols_aligned_to_sb(cm));
}
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4;
cpi->mb.optimize = 0;
cpi->common.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
cpi->common.txfm_mode = ONLY_4X4;
} else {
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4;
}
}
static void encode_frame_internal(VP9_COMP *cpi) {
int mi_row;
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int totalrate;
2010-05-18 17:58:33 +02:00
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// Compute a modified set of reference frame probabilities to use when
// prediction fails. These are based on the current general estimates for
// this frame which may be updated with each iteration of the recode loop.
vp9_compute_mod_refprobs(cm);
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
2010-05-18 17:58:33 +02:00
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
2010-05-18 17:58:33 +02:00
vp9_zero(cpi->switchable_interp_count);
vp9_zero(cpi->best_switchable_interp_count);
2010-05-18 17:58:33 +02:00
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->NMVcount);
vp9_zero(cpi->coef_counts_4x4);
vp9_zero(cpi->coef_counts_8x8);
vp9_zero(cpi->coef_counts_16x16);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
vp9_zero(cpi->coef_counts_32x32);
vp9_zero(cm->fc.eob_branch_counts);
2010-05-18 17:58:33 +02:00
cpi->mb.e_mbd.lossless = (cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0);
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
2010-05-18 17:58:33 +02:00
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
2010-05-18 17:58:33 +02:00
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
2010-05-18 17:58:33 +02:00
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
// Take tiles into account and give start/end MB
int tile_col, tile_row;
TOKENEXTRA *tp = cpi->tok;
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mi_row = cm->cur_tile_mi_row_start;
mi_row < cm->cur_tile_mi_row_end;
mi_row += 8) {
encode_sb_row(cpi, mi_row, &tp, &totalrate);
}
cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <=
get_token_alloc(cm->mb_rows, cm->mb_cols));
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
}
}
2010-05-18 17:58:33 +02:00
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
2010-05-18 17:58:33 +02:00
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
2010-05-18 17:58:33 +02:00
#endif
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
vp9_check_segref(xd, 1, LAST_FRAME))
return 1;
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
vp9_check_segref(xd, 1, GOLDEN_FRAME))
return 1;
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
vp9_check_segref(xd, 1, ALTREF_FRAME))
return 1;
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) +
!!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi[y * mis + x].mbmi.mb_skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
TX_SIZE txfm_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++)
mi[y * mis + x].mbmi.txfm_size = txfm_size;
}
}
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi,
int mis, TX_SIZE txfm_max,
int bw, int bh, int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (mbmi->txfm_size > txfm_max) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
xd->mode_info_context = mi;
assert(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) ||
get_skip_flag(mi, mis, ymbs, xmbs));
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
}
}
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
TX_SIZE txfm_max,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int bwl, bhl;
const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bwl = mi_width_log2(mi->mbmi.sb_type);
bhl = mi_height_log2(mi->mbmi.sb_type);
if (bwl == bsl && bhl == bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, 1 << bsl,
mi_row, mi_col, bsize);
} else if (bwl == bsl && bhl < bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, bs,
mi_row, mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi + bs * mis, mis, txfm_max, 1 << bsl, bs,
mi_row + bs, mi_col, bsize);
} else if (bwl < bsl && bhl == bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, bs, 1 << bsl,
mi_row, mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi + bs, mis, txfm_max, bs, 1 << bsl,
mi_row, mi_col + bs, bsize);
} else {
BLOCK_SIZE_TYPE subsize;
int n;
assert(bwl < bsl && bhl < bsl);
if (bsize == BLOCK_SIZE_SB64X64) {
subsize = BLOCK_SIZE_SB32X32;
} else if (bsize == BLOCK_SIZE_SB32X32) {
subsize = BLOCK_SIZE_MB16X16;
} else {
assert(bsize == BLOCK_SIZE_MB16X16);
subsize = BLOCK_SIZE_SB8X8;
}
for (n = 0; n < 4; n++) {
const int y_idx = n >> 1, x_idx = n & 0x01;
reset_skip_txfm_size_sb(cpi, mi + y_idx * bs * mis + x_idx * bs,
txfm_max, mi_row + y_idx * bs,
mi_col + x_idx * bs, subsize);
}
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON *const cm = &cpi->common;
int mi_row, mi_col;
const int mis = cm->mode_info_stride;
MODE_INFO *mi, *mi_ptr = cm->mi;
for (mi_row = 0; mi_row < cm->mi_rows;
mi_row += 8, mi_ptr += 8 * mis) {
mi = mi_ptr;
for (mi_col = 0; mi_col < cm->mi_cols;
mi_col += 8, mi += 8) {
reset_skip_txfm_size_sb(cpi, mi, txfm_max,
mi_row, mi_col, BLOCK_SIZE_SB64X64);
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
if (cpi->sf.RD) {
int i, frame_type, pred_type;
TXFM_MODE txfm_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
frame_type = 3;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
frame_type = 1;
else
frame_type = 2;
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][2] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
cpi->mb.e_mbd.lossless = 0;
if (cpi->oxcf.lossless) {
txfm_type = ONLY_4X4;
cpi->mb.e_mbd.lossless = 1;
} else
#if 0
/* FIXME (rbultje): this code is disabled until we support cost updates
* while a frame is being encoded; the problem is that each time we
* "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
* for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
* further behind and not being chosen for subsequent frames either. This
* is essentially a local minimum problem that we can probably fix by
* estimating real costs more closely within a frame, perhaps by re-
* calculating costs on-the-fly as frame encoding progresses. */
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = TX_MODE_SELECT;
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
) {
txfm_type = ONLY_4X4;
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = ALLOW_16X16;
} else
txfm_type = ALLOW_8X8;
#else
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
#endif
cpi->common.txfm_mode = txfm_type;
if (txfm_type != TX_MODE_SELECT) {
cpi->common.prob_tx[0] = 128;
cpi->common.prob_tx[1] = 128;
}
cpi->common.comp_pred_mode = pred_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < NB_TXFM_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZE_MAX_SB - 1), 0);
diff = (int)(pd / cpi->common.MBs);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
single_count_zero += cpi->single_pred_count[i];
comp_count_zero += cpi->comp_pred_count[i];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
}
}
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4];
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8];
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cpi->common.txfm_mode = ALLOW_8X8;
reset_skip_txfm_size(cpi, TX_8X8);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cpi->common.txfm_mode = ONLY_4X4;
reset_skip_txfm_size(cpi, TX_4X4);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_16X16;
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
reset_skip_txfm_size(cpi, TX_16X16);
}
}
// Update interpolation filter strategy for next frame.
if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter))
vp9_select_interp_filter_type(cpi);
} else {
encode_frame_internal(cpi);
}
}
void vp9_build_block_offsets(MACROBLOCK *x) {
2010-05-18 17:58:33 +02:00
}
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
2010-05-18 17:58:33 +02:00
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
2010-05-18 17:58:33 +02:00
if (m == I4X4_PRED) {
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
2010-05-18 17:58:33 +02:00
int b = 0;
2010-05-18 17:58:33 +02:00
do {
++ bct[xd->block[b].bmi.as_mode.first];
} while (++b < 4);
}
2010-05-18 17:58:33 +02:00
#endif
if (xd->mode_info_context->mbmi.sb_type > BLOCK_SIZE_SB8X8) {
++cpi->sb_ymode_count[m];
} else {
++cpi->ymode_count[m];
}
++cpi->y_uv_mode_count[m][uvm];
if (m == I4X4_PRED) {
int b = 0;
do {
int m = xd->mode_info_context->bmi[b].as_mode.first;
++cpi->bmode_count[m];
} while (++b < 4);
}
2010-05-18 17:58:33 +02:00
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
#endif
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled, int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int n;
MODE_INFO *mi = x->e_mbd.mode_info_context;
unsigned int segment_id = mi->mbmi.segment_id;
const int mis = cm->mode_info_stride;
const int bwl = mi_width_log2(bsize);
const int bw = 1 << bwl, bh = 1 << mi_height_log2(bsize);
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
if (xd->mode_info_context->mbmi.mode == ZEROMV) {
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
} else {
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
}
if (xd->mode_info_context->mbmi.mode == I4X4_PRED) {
assert(bsize == BLOCK_SIZE_SB8X8 &&
xd->mode_info_context->mbmi.txfm_size == TX_4X4);
vp9_encode_intra4x4mby(x, bsize);
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
vp9_encode_sbuv(cm, x, bsize);
if (output_enabled)
sum_intra_stats(cpi, x);
} else if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize);
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
if (output_enabled)
sum_intra_stats(cpi, x);
} else {
int ref_fb_idx, second_ref_fb_idx;
assert(cm->frame_type != KEY_FRAME);
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
else
ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
else
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
}
setup_pre_planes(xd,
&cpi->common.yv12_fb[ref_fb_idx],
xd->mode_info_context->mbmi.second_ref_frame > 0
? &cpi->common.yv12_fb[second_ref_fb_idx] : NULL,
mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
}
if (xd->mode_info_context->mbmi.mode == I4X4_PRED) {
assert(bsize == BLOCK_SIZE_SB8X8);
vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize);
} else if (!x->skip) {
vp9_encode_sb(cm, x, bsize);
vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize);
} else {
// FIXME(rbultje): not tile-aware (mi - 1)
int mb_skip_context =
(mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff;
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
if (output_enabled)
cpi->skip_true_count[mb_skip_context]++;
vp9_reset_sb_tokens_context(xd, bsize);
}
// copy skip flag on all mb_mode_info contexts in this SB
// if this was a skip at this txfm size
for (n = 1; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mi_col + x_idx < cm->mi_cols && mi_row + y_idx < cm->mi_rows)
mi[x_idx + y_idx * mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
}
if (output_enabled) {
if (cm->txfm_mode == TX_MODE_SELECT &&
!(mi->mbmi.mb_skip_coeff ||
vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))) {
if (bsize >= BLOCK_SIZE_SB32X32) {
cpi->txfm_count_32x32p[mi->mbmi.txfm_size]++;
} else if (bsize >= BLOCK_SIZE_MB16X16) {
cpi->txfm_count_16x16p[mi->mbmi.txfm_size]++;
} else {
cpi->txfm_count_8x8p[mi->mbmi.txfm_size]++;
}
} else {
int x, y;
TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ? TX_32X32 : cm->txfm_mode;
if (sz == TX_32X32 && bsize < BLOCK_SIZE_SB32X32)
sz = TX_16X16;
if (sz == TX_16X16 && bsize < BLOCK_SIZE_MB16X16)
sz = TX_8X8;
if (sz == TX_8X8 && (xd->mode_info_context->mbmi.mode == SPLITMV ||
xd->mode_info_context->mbmi.mode == I4X4_PRED))
sz = TX_4X4;
for (y = 0; y < bh; y++) {
for (x = 0; x < bw; x++) {
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) {
mi[mis * y + x].mbmi.txfm_size = sz;
}
}
}
}
}
}