vpx/vp9/encoder/vp9_bitstream.c

1262 lines
44 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
2010-05-18 17:58:33 +02:00
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem_ops.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
static struct vp9_token intra_mode_encodings[INTRA_MODES];
static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
static struct vp9_token partition_encodings[PARTITION_TYPES];
static struct vp9_token inter_mode_encodings[INTER_MODES];
void vp9_entropy_mode_init() {
vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
}
static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
const vp9_prob *probs) {
vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
const vp9_prob *probs) {
assert(is_inter_mode(mode));
vp9_write_token(w, vp9_inter_mode_tree, probs,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const vp9_tree_index *tree,
vp9_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n, vp9_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
vp9_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
}
static void write_selected_tx_size(const VP9_COMMON *cm,
const MACROBLOCKD *xd,
TX_SIZE tx_size, BLOCK_SIZE bsize,
vp9_writer *w) {
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
&cm->fc.tx_probs);
vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
}
}
static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MODE_INFO *mi, vp9_writer *w) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->mbmi.skip;
vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
return skip;
}
}
static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
int k;
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
}
static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
int j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
prob_diff_update(vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[j],
cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
}
static void pack_mb_tokens(vp9_writer *w,
TOKENEXTRA **tp, const TOKENEXTRA *const stop,
vpx_bit_depth_t bit_depth) {
TOKENEXTRA *p = *tp;
2010-05-18 17:58:33 +02:00
while (p < stop && p->token != EOSB_TOKEN) {
const int t = p->token;
const struct vp9_token *const a = &vp9_coef_encodings[t];
int i = 0;
int v = a->value;
int n = a->len;
#if CONFIG_VP9_HIGHBITDEPTH
const vp9_extra_bit *b;
if (bit_depth == VPX_BITS_12)
b = &vp9_extra_bits_high12[t];
else if (bit_depth == VPX_BITS_10)
b = &vp9_extra_bits_high10[t];
else
b = &vp9_extra_bits[t];
#else
const vp9_extra_bit *const b = &vp9_extra_bits[t];
(void) bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
2010-05-18 17:58:33 +02:00
// TODO(jbb): expanding this can lead to big gains. It allows
// much better branch prediction and would enable us to avoid numerous
// lookups and compares.
// If we have a token that's in the constrained set, the coefficient tree
// is split into two treed writes. The first treed write takes care of the
// unconstrained nodes. The second treed write takes care of the
// constrained nodes.
if (t >= TWO_TOKEN && t < EOB_TOKEN) {
int len = UNCONSTRAINED_NODES - p->skip_eob_node;
int bits = v >> (n - len);
vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
vp9_write_tree(w, vp9_coef_con_tree,
vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
v, n - len, 0);
} else {
vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
}
2010-05-18 17:58:33 +02:00
if (b->base_val) {
const int e = p->extra, l = b->len;
2010-05-18 17:58:33 +02:00
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
2010-05-18 17:58:33 +02:00
do {
const int bb = (v >> --n) & 1;
vp9_write(w, bb, pb[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
2010-05-18 17:58:33 +02:00
vp9_write_bit(w, e & 1);
2010-05-18 17:58:33 +02:00
}
++p;
}
*tp = p + (p->token == EOSB_TOKEN);
2010-05-18 17:58:33 +02:00
}
static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
int segment_id) {
if (seg->enabled && seg->update_map)
vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
2010-05-18 17:58:33 +02:00
}
// This function encodes the reference frame
static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
vp9_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
} else {
assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
vp9_get_pred_prob_comp_ref_p(cm, xd));
} else {
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
}
}
}
}
2010-05-18 17:58:33 +02:00
static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
const nmv_context *nmvc = &cm->fc.nmvc;
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct segmentation *const seg = &cm->seg;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
vp9_write(w, pred_flag, pred_prob);
if (!pred_flag)
write_segment_id(w, seg, segment_id);
} else {
write_segment_id(w, seg, segment_id);
}
}
skip = write_skip(cm, xd, segment_id, mi, w);
2010-05-18 17:58:33 +02:00
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!(is_inter &&
(skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
}
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
} else {
const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
write_ref_frames(cm, xd, w);
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
write_inter_mode(w, mode, inter_probs);
++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
}
}
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
vp9_write_token(w, vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter]);
++cpi->interp_filter_selected[0][mbmi->interp_filter];
} else {
assert(mbmi->interp_filter == cm->interp_filter);
}
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
write_inter_mode(w, b_mode, inter_probs);
++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
if (b_mode == NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref)
vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
nmvc, allow_hp);
}
}
}
} else {
if (mode == NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref)
vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
allow_hp);
}
}
}
2010-05-18 17:58:33 +02:00
}
static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
MODE_INFO *mi_8x8, vp9_writer *w) {
const struct segmentation *const seg = &cm->seg;
const MODE_INFO *const mi = mi_8x8;
const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride].src_mi;
const MODE_INFO *const left_mi =
xd->left_available ? mi_8x8[-1].src_mi : NULL;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (seg->update_map)
write_segment_id(w, seg, mbmi->segment_id);
write_skip(cm, xd, mbmi->segment_id, mi, w);
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(mi, above_mi, left_mi, block));
}
}
}
write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
}
static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
int mi_row, int mi_col) {
const VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO *m;
xd->mi = cm->mi + (mi_row * cm->mi_stride + mi_col);
m = xd->mi;
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
cm->mi_rows, cm->mi_cols);
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cm, xd, xd->mi, w);
} else {
pack_inter_mode_mvs(cpi, m, w);
}
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
}
static void write_partition(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
int hbs, int mi_row, int mi_col,
PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const vp9_prob *const probs = get_partition_probs(cm, ctx);
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
vp9_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
vp9_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
assert(p == PARTITION_SPLIT);
}
}
static void write_modes_sb(VP9_COMP *cpi,
const TileInfo *const tile, vp9_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const MODE_INFO *m = NULL;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
m = cm->mi[mi_row * cm->mi_stride + mi_col].src_mi;
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
subsize);
break;
default:
assert(0);
}
}
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
static void write_modes(VP9_COMP *cpi,
const TileInfo *const tile, vp9_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp9_zero(cpi->mb.e_mbd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
BLOCK_64X64);
}
2010-05-18 17:58:33 +02:00
}
static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
vp9_coeff_stats *coef_branch_ct,
vp9_coeff_probs_model *coef_probs) {
vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vp9_tree_probs_from_distribution(vp9_coef_tree,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
coef_probs[i][j][k][l][m] = get_binary_prob(
coef_branch_ct[i][j][k][l][m][0],
coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
TX_SIZE tx_size,
vp9_coeff_stats *frame_branch_ct,
vp9_coeff_probs_model *new_coef_probs) {
vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
const vp9_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = {0, 0};
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
const vp9_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
return;
}
case ONE_LOOP:
case ONE_LOOP_REDUCED: {
const int prev_coef_contexts_to_update =
cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
const int coef_band_to_update =
cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
COEF_BANDS >> 1 : COEF_BANDS;
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (l >= prev_coef_contexts_to_update ||
k >= coef_band_to_update) {
u = 0;
} else {
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
}
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
vp9_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
vp9_write(bc, 0, upd);
}
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
2010-05-18 17:58:33 +02:00
}
}
}
}
if (updates == 0) {
vp9_write_bit(bc, 0); // no updates
}
return;
}
default:
assert(0);
}
}
2010-05-18 17:58:33 +02:00
static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
frame_coef_probs[tx_size]);
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
frame_coef_probs[tx_size]);
2010-05-18 17:58:33 +02:00
}
static void encode_loopfilter(struct loopfilter *lf,
struct vp9_write_bit_buffer *wb) {
int i;
// Encode the loop filter level and type
vp9_wb_write_literal(wb, lf->filter_level, 6);
vp9_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
vp9_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
vp9_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
}
}
}
}
}
static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
vp9_wb_write_bit(wb, 1);
vp9_wb_write_literal(wb, abs(delta_q), 4);
vp9_wb_write_bit(wb, delta_q < 0);
} else {
vp9_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
}
static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
struct vp9_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
vp9_wb_write_bit(wb, seg->enabled);
if (!seg->enabled)
return;
// Segmentation map
vp9_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cm, xd);
// Write out probabilities used to decode unpredicted macro-block segments
for (i = 0; i < SEG_TREE_PROBS; i++) {
const int prob = seg->tree_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
// Write out the chosen coding method.
vp9_wb_write_bit(wb, seg->temporal_update);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = seg->pred_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
}
}
// Segmentation data
vp9_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
vp9_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = vp9_segfeature_active(seg, i, j);
vp9_wb_write_bit(wb, active);
if (active) {
const int data = vp9_get_segdata(seg, i, j);
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
vp9_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
// Mode
vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
if (cm->tx_mode >= ALLOW_32X32)
vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
// Probabilities
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
unsigned int ct_8x8p[TX_SIZES - 3][2];
unsigned int ct_16x16p[TX_SIZES - 2][2];
unsigned int ct_32x32p[TX_SIZES - 1][2];
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
for (j = 0; j < TX_SIZES - 3; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
for (j = 0; j < TX_SIZES - 2; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
ct_16x16p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
for (j = 0; j < TX_SIZES - 1; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
ct_32x32p[j]);
}
}
}
static void write_interp_filter(INTERP_FILTER filter,
struct vp9_write_bit_buffer *wb) {
const int filter_to_literal[] = { 1, 0, 2, 3 };
vp9_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
}
static void fix_interp_filter(VP9_COMMON *cm) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += cm->counts.switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->interp_filter = i;
break;
}
}
}
}
}
static void write_tile_info(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
int min_log2_tile_cols, max_log2_tile_cols, ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
ones = cm->log2_tile_cols - min_log2_tile_cols;
while (ones--)
vp9_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tile_cols)
vp9_wb_write_bit(wb, 0);
// rows
vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0)
vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
}
static int get_refresh_mask(VP9_COMP *cpi) {
if (vp9_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
VP9_COMMON *const cm = &cpi->common;
vp9_writer residual_bc;
int tile_row, tile_col;
TOKENEXTRA *tok[4][1 << 6], *tok_end;
size_t total_size = 0;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
TileInfo tile[4][1 << 6];
TOKENEXTRA *pre_tok = cpi->tok;
int tile_tok = 0;
vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
mi_cols_aligned_to_sb(cm->mi_cols));
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
vp9_tile_init(&tile[tile_row][tile_col], cm, tile_row, tile_col);
tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = tok[tile_row][tile_col];
tile_tok = allocated_tokens(tile[tile_row][tile_col]);
}
}
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const TileInfo * const ptile = &tile[tile_row][tile_col];
tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, ptile, &residual_bc, &tok[tile_row][tile_col], tok_end);
assert(tok[tile_row][tile_col] == tok_end);
vp9_stop_encode(&residual_bc);
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
// size of this tile
mem_put_be32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
}
return total_size;
}
static void write_display_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
const int scaling_active = cm->width != cm->display_width ||
cm->height != cm->display_height;
vp9_wb_write_bit(wb, scaling_active);
if (scaling_active) {
vp9_wb_write_literal(wb, cm->display_width - 1, 16);
vp9_wb_write_literal(wb, cm->display_height - 1, 16);
}
}
static void write_frame_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
write_display_size(cm, wb);
}
static void write_frame_size_with_refs(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
// Set "found" to 0 for temporal svc and for spatial svc key frame
if (cpi->use_svc &&
((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state == ENCODING &&
cpi->svc.layer_context[0].frames_from_key_frame <
cpi->svc.number_temporal_layers + 1))) {
found = 0;
}
vp9_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
}
write_display_size(cm, wb);
}
static void write_sync_code(struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct vp9_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0:
vp9_wb_write_literal(wb, 0, 2);
break;
case PROFILE_1:
vp9_wb_write_literal(wb, 2, 2);
break;
case PROFILE_2:
vp9_wb_write_literal(wb, 1, 2);
break;
case PROFILE_3:
vp9_wb_write_literal(wb, 6, 3);
break;
default:
assert(0);
}
}
static void write_bitdepth_colorspace_sampling(
VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > VPX_BITS_8);
vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
}
vp9_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != SRGB) {
vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
vp9_wb_write_bit(wb, cm->subsampling_x);
vp9_wb_write_bit(wb, cm->subsampling_y);
vp9_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
vp9_wb_write_bit(wb, 0); // unused
}
}
static void write_uncompressed_header(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
2010-05-18 17:58:33 +02:00
vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
vp9_wb_write_bit(wb, 0); // show_existing_frame
vp9_wb_write_bit(wb, cm->frame_type);
vp9_wb_write_bit(wb, cm->show_frame);
vp9_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
} else {
// In spatial svc if it's not error_resilient_mode then we need to code all
// visible frames as invisible. But we need to keep the show_frame flag so
// that the publisher could know whether it is supposed to be visible.
// So we will code the show_frame flag as it is. Then code the intra_only
// bit here. This will make the bitstream incompatible. In the player we
// will change to show_frame flag to 0, then add an one byte frame with
// show_existing_frame flag which tells the decoder which frame we want to
// show.
if (!cm->show_frame)
vp9_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode)
vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
if (cm->intra_only) {
write_sync_code(wb);
// Note for profile 0, 420 8bpp is assumed.
if (cm->profile > PROFILE_0) {
write_bitdepth_colorspace_sampling(cm, wb);
}
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm);
write_interp_filter(cm->interp_filter, wb);
}
}
2010-05-18 17:58:33 +02:00
if (!cm->error_resilient_mode) {
vp9_wb_write_bit(wb, cm->refresh_frame_context);
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
}
vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(&cm->lf, wb);
encode_quantization(cm, wb);
encode_segmentation(cm, &cpi->mb.e_mbd, wb);
write_tile_info(cm, wb);
}
static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
FRAME_CONTEXT *const fc = &cm->fc;
vp9_writer header_bc;
vp9_start_encode(&header_bc, data);
if (xd->lossless)
cm->tx_mode = ONLY_4X4;
else
encode_txfm_probs(cm, &header_bc);
update_coef_probs(cpi, &header_bc);
update_skip_probs(cm, &header_bc);
if (!frame_is_intra_only(cm)) {
int i;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
cm->counts.inter_mode[i], INTER_MODES, &header_bc);
vp9_zero(cm->counts.inter_mode);
if (cm->interp_filter == SWITCHABLE)
update_switchable_interp_probs(cm, &header_bc);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
cm->counts.intra_inter[i]);
if (cm->allow_comp_inter_inter) {
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
vp9_write_bit(&header_bc, use_hybrid_pred);
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
cm->counts.comp_inter[i]);
}
}
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
cm->counts.single_ref[i][0]);
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
cm->counts.single_ref[i][1]);
}
}
if (cm->reference_mode != SINGLE_REFERENCE)
for (i = 0; i < REF_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
cm->counts.comp_ref[i]);
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
cm->counts.y_mode[i], INTRA_MODES, &header_bc);
for (i = 0; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
cm->counts.partition[i], PARTITION_TYPES, &header_bc);
vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
}
2010-05-18 17:58:33 +02:00
vp9_stop_encode(&header_bc);
assert(header_bc.pos <= 0xffff);
2010-05-18 17:58:33 +02:00
return header_bc.pos;
}
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
size_t first_part_size, uncompressed_hdr_size;
struct vp9_write_bit_buffer wb = {data, 0};
struct vp9_write_bit_buffer saved_wb;
write_uncompressed_header(cpi, &wb);
saved_wb = wb;
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
data += uncompressed_hdr_size;
vp9_clear_system_state();
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
// TODO(jbb): Figure out what to do if first_part_size > 16 bits.
vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
data += encode_tiles(cpi, data);
*size = data - dest;
2010-05-18 17:58:33 +02:00
}