vpx/vp8/common/reconintra.c

584 lines
14 KiB
C
Raw Normal View History

2010-05-18 11:58:33 -04:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 11:58:33 -04:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 11:58:33 -04:00
*/
#include "vpx_ports/config.h"
#include "recon.h"
#include "reconintra.h"
#include "vpx_mem/vpx_mem.h"
/* For skip_recon_mb(), add vp8_build_intra_predictors_mby_s(MACROBLOCKD *x) and
* vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x).
*/
2010-05-18 11:58:33 -04:00
void vp8_recon_intra_mbuv(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
int i;
for (i = 16; i < 24; i += 2)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
}
}
void vp8_build_intra_predictors_mby_internal(MACROBLOCKD *x, unsigned char *ypred_ptr, int y_stride, int mode)
2010-05-18 11:58:33 -04:00
{
unsigned char *yabove_row = x->dst.y_buffer - x->dst.y_stride;
unsigned char yleft_col[16];
unsigned char ytop_left = yabove_row[-1];
int r, c, i;
for (i = 0; i < 16; i++)
{
yleft_col[i] = x->dst.y_buffer [i* x->dst.y_stride -1];
}
/* for Y */
switch (mode)
2010-05-18 11:58:33 -04:00
{
case DC_PRED:
{
int expected_dc;
int i;
int shift;
int average = 0;
if (x->up_available || x->left_available)
{
if (x->up_available)
{
for (i = 0; i < 16; i++)
{
average += yabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 16; i++)
{
average += yleft_col[i];
}
}
shift = 3 + x->up_available + x->left_available;
expected_dc = (average + (1 << (shift - 1))) >> shift;
}
else
{
expected_dc = 128;
}
for (r = 0; r < 16; r++)
{
vpx_memset(ypred_ptr, expected_dc, 16);
ypred_ptr += y_stride; /*16;*/
2010-05-18 11:58:33 -04:00
}
}
break;
case V_PRED:
{
for (r = 0; r < 16; r++)
{
((int *)ypred_ptr)[0] = ((int *)yabove_row)[0];
((int *)ypred_ptr)[1] = ((int *)yabove_row)[1];
((int *)ypred_ptr)[2] = ((int *)yabove_row)[2];
((int *)ypred_ptr)[3] = ((int *)yabove_row)[3];
ypred_ptr += y_stride;
2010-05-18 11:58:33 -04:00
}
}
break;
case H_PRED:
{
for (r = 0; r < 16; r++)
{
vpx_memset(ypred_ptr, yleft_col[r], 16);
ypred_ptr += y_stride;
2010-05-18 11:58:33 -04:00
}
}
break;
case TM_PRED:
{
for (r = 0; r < 16; r++)
{
for (c = 0; c < 16; c++)
{
int pred = yleft_col[r] + yabove_row[ c] - ytop_left;
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
ypred_ptr[c] = pred;
}
ypred_ptr += y_stride;
2010-05-18 11:58:33 -04:00
}
}
break;
#if CONIFG_I8X8
case I8X8_PRED:
#endif
2010-05-18 11:58:33 -04:00
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
void vp8_build_intra_predictors_mby(MACROBLOCKD *x)
2010-05-18 11:58:33 -04:00
{
vp8_build_intra_predictors_mby_internal(x, x->predictor, 16,
x->mode_info_context->mbmi.mode);
}
2010-05-18 11:58:33 -04:00
void vp8_build_intra_predictors_mby_s(MACROBLOCKD *x)
{
vp8_build_intra_predictors_mby_internal(x, x->dst.y_buffer, x->dst.y_stride,
x->mode_info_context->mbmi.mode);
}
2010-05-18 11:58:33 -04:00
#if CONFIG_COMP_INTRA_PRED
void vp8_build_comp_intra_predictors_mby(MACROBLOCKD *x)
{
unsigned char predictor[2][256];
int i;
2010-05-18 11:58:33 -04:00
vp8_build_intra_predictors_mby_internal(x, predictor[0], 16,
x->mode_info_context->mbmi.mode);
vp8_build_intra_predictors_mby_internal(x, predictor[1], 16,
x->mode_info_context->mbmi.second_mode);
2010-05-18 11:58:33 -04:00
for (i = 0; i < 256; i++)
2010-05-18 11:58:33 -04:00
{
x->predictor[i] = (predictor[0][i] + predictor[1][i] + 1) >> 1;
2010-05-18 11:58:33 -04:00
}
}
#endif
2010-05-18 11:58:33 -04:00
void vp8_build_intra_predictors_mbuv_internal(MACROBLOCKD *x,
unsigned char *upred_ptr,
unsigned char *vpred_ptr,
int uv_stride,
int mode)
2010-05-18 11:58:33 -04:00
{
unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride;
unsigned char uleft_col[16];
unsigned char utop_left = uabove_row[-1];
unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride;
unsigned char vleft_col[20];
unsigned char vtop_left = vabove_row[-1];
int i, j;
for (i = 0; i < 8; i++)
{
uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1];
vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1];
}
switch (mode)
2010-05-18 11:58:33 -04:00
{
case DC_PRED:
{
int expected_udc;
int expected_vdc;
int i;
int shift;
int Uaverage = 0;
int Vaverage = 0;
if (x->up_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uabove_row[i];
Vaverage += vabove_row[i];
}
}
if (x->left_available)
{
for (i = 0; i < 8; i++)
{
Uaverage += uleft_col[i];
Vaverage += vleft_col[i];
}
}
if (!x->up_available && !x->left_available)
{
expected_udc = 128;
expected_vdc = 128;
}
else
{
shift = 2 + x->up_available + x->left_available;
expected_udc = (Uaverage + (1 << (shift - 1))) >> shift;
expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift;
}
/*vpx_memset(upred_ptr,expected_udc,64);*/
/*vpx_memset(vpred_ptr,expected_vdc,64);*/
2010-05-18 11:58:33 -04:00
for (i = 0; i < 8; i++)
{
vpx_memset(upred_ptr, expected_udc, 8);
vpx_memset(vpred_ptr, expected_vdc, 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
2010-05-18 11:58:33 -04:00
}
}
break;
case V_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memcpy(upred_ptr, uabove_row, 8);
vpx_memcpy(vpred_ptr, vabove_row, 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
2010-05-18 11:58:33 -04:00
}
}
break;
case H_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
vpx_memset(upred_ptr, uleft_col[i], 8);
vpx_memset(vpred_ptr, vleft_col[i], 8);
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
2010-05-18 11:58:33 -04:00
}
}
break;
case TM_PRED:
{
int i;
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
int predu = uleft_col[i] + uabove_row[j] - utop_left;
int predv = vleft_col[i] + vabove_row[j] - vtop_left;
if (predu < 0)
predu = 0;
if (predu > 255)
predu = 255;
if (predv < 0)
predv = 0;
if (predv > 255)
predv = 255;
upred_ptr[j] = predu;
vpred_ptr[j] = predv;
}
upred_ptr += uv_stride; /*8;*/
vpred_ptr += uv_stride; /*8;*/
2010-05-18 11:58:33 -04:00
}
}
break;
case B_PRED:
case NEARESTMV:
case NEARMV:
case ZEROMV:
case NEWMV:
case SPLITMV:
case MB_MODE_COUNT:
break;
}
}
void vp8_build_intra_predictors_mbuv(MACROBLOCKD *x)
{
vp8_build_intra_predictors_mbuv_internal(x,
&x->predictor[256],
&x->predictor[320],
8,
x->mode_info_context->mbmi.uv_mode);
}
void vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x)
{
vp8_build_intra_predictors_mbuv_internal(x,
x->dst.u_buffer,
x->dst.v_buffer,
x->dst.uv_stride,
x->mode_info_context->mbmi.uv_mode);
}
#if CONFIG_COMP_INTRA_PRED
void vp8_build_comp_intra_predictors_mbuv(MACROBLOCKD *x)
{
unsigned char predictor[2][2][64];
int i;
vp8_build_intra_predictors_mbuv_internal(x, predictor[0][0], predictor[1][0], 8,
x->mode_info_context->mbmi.uv_mode);
vp8_build_intra_predictors_mbuv_internal(x, predictor[0][1], predictor[1][1], 8,
x->mode_info_context->mbmi.second_uv_mode);
for (i = 0; i < 64; i++)
{
x->predictor[256 + i] = (predictor[0][0][i] + predictor[0][1][i] + 1) >> 1;
x->predictor[256 + 64 + i] = (predictor[1][0][i] + predictor[1][1][i] + 1) >> 1;
}
}
#endif
void vp8_intra8x8_predict(BLOCKD *x,
int mode,
unsigned char *predictor)
{
unsigned char *yabove_row = *(x->base_dst) + x->dst - x->dst_stride;
unsigned char yleft_col[8];
unsigned char ytop_left = yabove_row[-1];
int r, c, i;
for (i = 0; i < 8; i++)
{
yleft_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride];
}
switch (mode)
{
case DC_PRED:
{
int expected_dc = 0;
for (i = 0; i < 8; i++)
{
expected_dc += yabove_row[i];
expected_dc += yleft_col[i];
}
expected_dc = (expected_dc + 8) >> 4;
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = expected_dc;
}
predictor += 16;
}
}
break;
case V_PRED:
{
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = yabove_row[c];
}
predictor += 16;
}
}
break;
case H_PRED:
{
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
predictor[c] = yleft_col[r];
}
predictor += 16;
}
}
break;
case TM_PRED:
{
/* prediction similar to true_motion prediction */
for (r = 0; r < 8; r++)
{
for (c = 0; c < 8; c++)
{
int pred = yabove_row[c] - ytop_left + yleft_col[r];
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
predictor[c] = pred;
}
predictor += 16;
}
}
break;
}
}
#if CONFIG_COMP_INTRA_PRED
void vp8_comp_intra8x8_predict(BLOCKD *x,
int mode, int second_mode,
unsigned char *out_predictor)
{
unsigned char predictor[2][8*16];
int i, j;
vp8_intra8x8_predict(x, mode, predictor[0]);
vp8_intra8x8_predict(x, second_mode, predictor[1]);
for (i = 0; i < 8*16; i += 16)
{
for (j = i; j < i + 8; j++)
{
out_predictor[j] = (predictor[0][j] + predictor[1][j] + 1) >> 1;
}
}
}
#endif
void vp8_intra_uv4x4_predict(BLOCKD *x,
int mode,
unsigned char *predictor)
{
unsigned char *above_row = *(x->base_dst) + x->dst - x->dst_stride;
unsigned char left_col[4];
unsigned char top_left = above_row[-1];
int r, c, i;
for (i = 0; i < 4; i++)
{
left_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride];
}
switch (mode)
{
case DC_PRED:
{
int expected_dc = 0;
for (i = 0; i < 4; i++)
{
expected_dc += above_row[i];
expected_dc += left_col[i];
}
expected_dc = (expected_dc + 4) >> 3;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = expected_dc;
}
predictor += 8;
}
}
break;
case V_PRED:
{
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = above_row[c];
}
predictor += 8;
}
}
break;
case H_PRED:
{
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
predictor[c] = left_col[r];
}
predictor += 8;
}
}
break;
case TM_PRED:
{
/* prediction similar to true_motion prediction */
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
int pred = above_row[c] - top_left + left_col[r];
if (pred < 0)
pred = 0;
if (pred > 255)
pred = 255;
predictor[c] = pred;
}
predictor += 8;
}
}
break;
}
}
#if CONFIG_COMP_INTRA_PRED
void vp8_comp_intra_uv4x4_predict(BLOCKD *x,
int mode, int mode2,
unsigned char *out_predictor)
{
unsigned char predictor[2][8*4];
int i, j;
vp8_intra_uv4x4_predict(x, mode, predictor[0]);
vp8_intra_uv4x4_predict(x, mode2, predictor[1]);
for (i = 0; i < 4*8; i += 8)
{
for (j = i; j < i + 4; j++)
{
out_predictor[j] = (predictor[0][j] + predictor[1][j] + 1) >> 1;
}
}
}
#endif
/* TODO: try different ways of use Y-UV mode correlation
Current code assumes that a uv 4x4 block use same mode
as corresponding Y 8x8 area
*/