vpx/vp8/encoder/encodeframe.c

1815 lines
56 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "encodemv.h"
#include "vp8/common/common.h"
2010-05-18 17:58:33 +02:00
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
2010-05-18 17:58:33 +02:00
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
2010-05-18 17:58:33 +02:00
#include "rdopt.h"
#include "pickinter.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/reconintra.h"
2010-05-18 17:58:33 +02:00
#include <stdio.h>
#include <math.h>
2010-05-18 17:58:33 +02:00
#include <limits.h>
#include "vp8/common/subpixel.h"
2010-05-18 17:58:33 +02:00
#include "vpx_ports/vpx_timer.h"
//#if CONFIG_SEGFEATURES
2011-10-05 12:26:00 +02:00
//#define DBG_PRNT_SEGMAP 1
2010-05-18 17:58:33 +02:00
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD(x) &cpi->common.rtcd.x
#define IF_RTCD(x) (x)
#else
#define RTCD(x) NULL
#define IF_RTCD(x) NULL
#endif
#ifdef ENC_DEBUG
int enc_debug=0;
int mb_row_debug, mb_col_debug;
#endif
2010-05-18 17:58:33 +02:00
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
MACROBLOCK *x,
MB_ROW_COMP *mbr_ei,
int mb_row,
int count);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset);
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x );
2010-05-18 17:58:33 +02:00
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
unsigned int inter_y_modes[MB_MODE_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int inter_uv_modes[VP8_UV_MODES] = {0, 0, 0, 0};
unsigned int inter_b_modes[B_MODE_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int y_modes[VP8_YMODES] = {0, 0, 0, 0, 0, 0};
unsigned int i8x8_modes[VP8_I8X8_MODES]={0 };
unsigned int uv_modes[VP8_UV_MODES] = {0, 0, 0, 0};
unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES]=
{
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};
unsigned int b_modes[B_MODE_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2010-05-18 17:58:33 +02:00
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp8_activity_masking().
*/
#define VP8_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const unsigned char VP8_VAR_OFFS[16]=
{
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
};
#if CONFIG_T8X8
//INTRA mode transform size
//When all three criteria are off the default is 4x4
//#define INTRA_VARIANCE_ENTROPY_CRITERIA
#define INTRA_WTD_SSE_ENTROPY_CRITERIA
//#define INTRA_TEST_8X8_ONLY
//
//INTER mode transform size
//When all three criteria are off the default is 4x4
//#define INTER_VARIANCE_ENTROPY_CRITERIA
#define INTER_WTD_SSE_ENTROPY_CRITERIA
//#define INTER_TEST_8X8_ONLY
double variance_Block(short *b1, int pitch, int dimension)
{
short ip[8][8]={{0}};
short *b = b1;
int i, j = 0;
double mean = 0.0, variance = 0.0;
for (i = 0; i < dimension; i++)
{
for (j = 0; j < dimension; j++)
{
ip[i][j] = b[j];
mean += ip[i][j];
}
b += pitch;
}
mean /= (dimension*dimension);
for (i = 0; i < dimension; i++)
{
for (j = 0; j < dimension; j++)
{
variance += (ip[i][j]-mean)*(ip[i][j]-mean);
}
}
variance /= (dimension*dimension);
return variance;
}
double mean_Block(short *b, int pitch, int dimension)
{
short ip[8][8]={{0}};
int i, j = 0;
double mean = 0;
for (i = 0; i < dimension; i++)
{
for (j = 0; j < dimension; j++)
{
ip[i][j] = b[j];
mean += ip[i][j];
}
b += pitch;
}
mean /= (dimension*dimension);
return mean;
}
int SSE_Block(short *b, int pitch, int dimension)
{
int i, j, sse_block = 0;
for (i = 0; i < dimension; i++)
{
for (j = 0; j < dimension; j++)
{
sse_block += b[j]*b[j];
}
b += pitch;
}
return sse_block;
}
double Compute_Variance_Entropy(MACROBLOCK *x)
{
double variance_8[4] = {0.0, 0.0, 0.0, 0.0}, sum_var = 0.0, all_entropy = 0.0;
variance_8[0] = variance_Block(x->block[0].src_diff, 16, 8);
variance_8[1] = variance_Block(x->block[2].src_diff, 16, 8);
variance_8[2] = variance_Block(x->block[8].src_diff, 16, 8);
variance_8[3] = variance_Block(x->block[10].src_diff, 16, 8);
sum_var = variance_8[0] + variance_8[1] + variance_8[2] + variance_8[3];
if(sum_var)
{
int i;
for(i = 0; i <4; i++)
{
if(variance_8[i])
{
variance_8[i] /= sum_var;
all_entropy -= variance_8[i]*log(variance_8[i]);
}
}
}
return (all_entropy /log(2));
}
double Compute_Wtd_SSE_SubEntropy(MACROBLOCK *x)
{
double variance_8[4] = {0.0, 0.0, 0.0, 0.0};
double entropy_8[4] = {0.0, 0.0, 0.0, 0.0};
double sse_1, sse_2, sse_3, sse_4, sse_0;
int i;
for (i=0;i<3;i+=2)
{
sse_0 = SSE_Block(x->block[i].src_diff, 16, 8);
if(sse_0)
{
sse_1 = SSE_Block(x->block[i].src_diff, 16, 4)/sse_0;
sse_2 = SSE_Block(x->block[i+1].src_diff, 16, 4)/sse_0;
sse_3 = SSE_Block(x->block[i+4].src_diff, 16, 4)/sse_0;
sse_4 = SSE_Block(x->block[i+5].src_diff, 16, 4)/sse_0;
variance_8[i]= variance_Block(x->block[i].src_diff, 16, 8);
if(sse_1 && sse_2 && sse_3 && sse_4)
entropy_8[i]= (-sse_1*log(sse_1)
-sse_2*log(sse_2)
-sse_3*log(sse_3)
-sse_4*log(sse_4))/log(2);
}
}
for (i=8;i<11;i+=2)
{
if(sse_0)
{
sse_0 = SSE_Block(x->block[i].src_diff, 16, 8);
sse_1 = SSE_Block(x->block[i].src_diff, 16, 4)/sse_0;
sse_2 = SSE_Block(x->block[i+1].src_diff, 16, 4)/sse_0;
sse_3 = SSE_Block(x->block[i+4].src_diff, 16, 4)/sse_0;
sse_4 = SSE_Block(x->block[i+5].src_diff, 16, 4)/sse_0;
variance_8[i-7]= variance_Block(x->block[i].src_diff, 16, 8);
if(sse_1 && sse_2 && sse_3 && sse_4)
entropy_8[i-7]= (-sse_1*log(sse_1)
-sse_2*log(sse_2)
-sse_3*log(sse_3)
-sse_4*log(sse_4))/log(2);
}
}
if(variance_8[0]+variance_8[1]+variance_8[2]+variance_8[3])
return (entropy_8[0]*variance_8[0]+
entropy_8[1]*variance_8[1]+
entropy_8[2]*variance_8[2]+
entropy_8[3]*variance_8[3])/
(variance_8[0]+
variance_8[1]+
variance_8[2]+
variance_8[3]);
else
return 0;
}
int vp8_8x8_selection_intra(MACROBLOCK *x)
{
#ifdef INTRA_VARIANCE_ENTROPY_CRITERIA
return (Compute_Variance_Entropy(x) > 1.2);
#elif defined(INTRA_WTD_SSE_ENTROPY_CRITERIA)
return (Compute_Wtd_SSE_SubEntropy(x) > 1.2);
#elif defined(INTRA_TEST_8X8_ONLY)
return 1;
#else
return 0; //when all criteria are off use the default 4x4 only
#endif
}
int vp8_8x8_selection_inter(MACROBLOCK *x)
{
#ifdef INTER_VARIANCE_ENTROPY_CRITERIA
return (Compute_Variance_Entropy(x) > 1.5);
#elif defined(INTER_WTD_SSE_ENTROPY_CRITERIA)
return (Compute_Wtd_SSE_SubEntropy(x) > 1.5);
#elif defined(INTER_TEST_8X8_ONLY)
return 1;
#else
return 0; //when all criteria are off use the default 4x4 only
#endif
}
#endif
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
{
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)(x->src.y_buffer,
x->src.y_stride, VP8_VAR_OFFS, 0, &sse);
act = act<<4;
/* If the region is flat, lower the activity some more. */
if (act < 8<<12)
act = act < 5<<12 ? act : 5<<12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure( VP8_COMP *cpi,
MACROBLOCK *x, int use_dc_pred )
{
return vp8_encode_intra(cpi,x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col)
{
unsigned int mb_activity;
if ( ALT_ACT_MEASURE )
{
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure( cpi, x, use_dc_pred );
}
else
{
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure( cpi, x );
}
if ( mb_activity < VP8_ACTIVITY_AVG_MIN )
mb_activity = VP8_ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity( VP8_COMP *cpi, int64_t activity_sum )
{
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i,j;
unsigned int * sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy( sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs );
// Ripple each value down to its correct position
for ( i = 1; i < cpi->common.MBs; i ++ )
{
for ( j = i; j > 0; j -- )
{
if ( sortlist[j] < sortlist[j-1] )
{
// Swap values
tmp = sortlist[j-1];
sortlist[j-1] = sortlist[j];
sortlist[j] = tmp;
}
else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = ( 1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs);
#endif
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if ( ALT_ACT_MEASURE )
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate and activity index for each mb
static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x )
{
VP8_COMMON *const cm = & cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg );
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
if ( b >= a )
*(x->activity_ptr) = (int)((b + (a>>1))/a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b>>1))/b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map( VP8_COMP *cpi )
{
MACROBLOCK *const x = & cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP8_COMMON *const cm = & cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
#if ALT_ACT_MEASURE
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
//Copy current mb to a buffer
RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
// measure activity
mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col );
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->src.y_buffer += 16;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
#if ALT_ACT_MEASURE
//extend the recon for intra prediction
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
#endif
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index( cpi, x );
#endif
}
// Macroblock activity masking
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
{
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
x->errorperbit += (x->errorperbit==0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2*cpi->activity_avg);
b = (2*act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult*b + (a>>1))/a);
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
x->errorperbit += (x->errorperbit==0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
2010-05-18 17:58:33 +02:00
static
void encode_mb_row(VP8_COMP *cpi,
VP8_COMMON *cm,
int mb_row,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *totalrate)
{
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int map_index = (mb_row * cpi->common.mb_cols);
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
#if CONFIG_MULTITHREAD
const int nsync = cpi->mt_sync_range;
const int rightmost_col = cm->mb_cols - 1;
volatile const int *last_row_current_mb_col;
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
else
last_row_current_mb_col = &rightmost_col;
#endif
2010-05-18 17:58:33 +02:00
// reset above block coeffs
xd->above_context = cm->above_context;
2010-05-18 17:58:33 +02:00
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
cpi->tplist[mb_row].start = *tp;
//printf("Main mb_row = %d\n", mb_row);
// Distance of Mb to the top & bottom edges, specified in 1/8th pel
// units as they are always compared to values that are in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
// Set up limit values for vertical motion vector components
// to prevent them extending beyond the UMV borders
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ (VP8BORDERINPIXELS - 16);
// Set the mb activity pointer to the start of the row.
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
2010-05-18 17:58:33 +02:00
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
#ifdef ENC_DEBUG
enc_debug = (cpi->common.current_video_frame ==1 && mb_row==4 && mb_col==0);
mb_col_debug=mb_col;
mb_row_debug=mb_row;
#endif
// Distance of Mb to the left & right edges, specified in
// 1/8th pel units as they are always compared to values
// that are in 1/8th pel units
2010-05-18 17:58:33 +02:00
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
// Set up limit values for horizontal motion vector components
// to prevent them extending beyond the UMV borders
2010-05-18 17:58:33 +02:00
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
+ (VP8BORDERINPIXELS - 16);
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
//Copy current mb to a buffer
RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
{
if ((mb_col & (nsync - 1)) == 0)
{
while (mb_col > (*last_row_current_mb_col - nsync)
&& (*last_row_current_mb_col) != (cm->mb_cols - 1))
{
x86_pause_hint();
thread_sleep(0);
}
}
}
#endif
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp8_activity_masking(cpi, x);
2010-05-18 17:58:33 +02:00
// Is segmentation enabled
if (xd->segmentation_enabled)
{
// Code to set segment id in xd->mbmi.segment_id
if (cpi->segmentation_map[map_index+mb_col] <= 3)
xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col];
2010-05-18 17:58:33 +02:00
else
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 17:58:33 +02:00
vp8cx_mb_init_quantizer(cpi, x);
}
else
// Set to Segment 0 by default
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 17:58:33 +02:00
x->active_ptr = cpi->active_map + map_index + mb_col;
2010-05-18 17:58:33 +02:00
if (cm->frame_type == KEY_FRAME)
{
*totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp);
//Note the encoder may have changed the segment_id
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
y_modes[xd->mode_info_context->mbmi.mode] ++;
2010-05-18 17:58:33 +02:00
#endif
}
else
{
*totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset);
//Note the encoder may have changed the segment_id
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
inter_y_modes[xd->mode_info_context->mbmi.mode] ++;
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.mode == SPLITMV)
2010-05-18 17:58:33 +02:00
{
int b;
for (b = 0; b < x->partition_info->count; b++)
2010-05-18 17:58:33 +02:00
{
inter_b_modes[x->partition_info->bmi[b].mode] ++;
2010-05-18 17:58:33 +02:00
}
}
#endif
// Count of last ref frame 0,0 usage
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 17:58:33 +02:00
cpi->inter_zz_count ++;
// Actions required if segmentation enabled
if ( xd->segmentation_enabled )
2010-05-18 17:58:33 +02:00
{
// Special case code for cyclic refresh
// If cyclic update enabled then copy xd->mbmi.segment_id;
// (which may have been updated based on mode during
// vp8cx_encode_inter_macroblock()) back into the global
// segmentation map
if (cpi->cyclic_refresh_mode_enabled)
2010-05-18 17:58:33 +02:00
{
cpi->segmentation_map[map_index+mb_col] =
xd->mode_info_context->mbmi.segment_id;
// If the block has been refreshed mark it as clean (the
// magnitude of the -ve influences how long it will be
// before we consider another refresh):
// Else if it was coded (last frame 0,0) and has not
// already been refreshed then mark it as a candidate
// for cleanup next time (marked 0)
// else mark it as dirty (1).
if (xd->mode_info_context->mbmi.segment_id)
cpi->cyclic_refresh_map[map_index+mb_col] = -1;
else if ((xd->mode_info_context->mbmi.mode == ZEROMV) &&
(xd->mode_info_context->mbmi.ref_frame ==
LAST_FRAME))
{
if (cpi->cyclic_refresh_map[map_index+mb_col] == 1)
cpi->cyclic_refresh_map[map_index+mb_col] = 0;
}
else
cpi->cyclic_refresh_map[map_index+mb_col] = 1;
2010-05-18 17:58:33 +02:00
}
}
}
cpi->tplist[mb_row].stop = *tp;
// Increment pointer into gf usage flags structure.
x->gf_active_ptr++;
// Increment the activity mask pointers.
x->mb_activity_ptr++;
2010-05-18 17:58:33 +02:00
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
// skip to next mb
xd->mode_info_context++;
#if CONFIG_NEWNEAR
xd->prev_mode_info_context++;
assert((xd->prev_mode_info_context - cpi->common.prev_mip)
==(xd->mode_info_context - cpi->common.mip));
#endif
x->partition_info++;
2010-05-18 17:58:33 +02:00
xd->above_context++;
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded != 0)
{
cpi->mt_current_mb_col[mb_row] = mb_col;
}
#endif
2010-05-18 17:58:33 +02:00
}
//extend the recon for intra prediction
vp8_extend_mb_row(
&cm->yv12_fb[dst_fb_idx],
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
// this is to account for the border
#if CONFIG_NEWNEAR
xd->prev_mode_info_context++;
#endif
2010-05-18 17:58:33 +02:00
xd->mode_info_context++;
x->partition_info++;
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1))
{
sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */
}
#endif
//#if CONFIG_SEGFEATURES
// debug output
2011-10-05 12:26:00 +02:00
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n" );
fclose(statsfile);
}
#endif
}
void init_encode_frame_mb_context(VP8_COMP *cpi)
{
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
// GF active flags data structure
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
// Activity map pointer
x->mb_activity_ptr = cpi->mb_activity_map;
x->vector_range = 32;
x->act_zbin_adj = 0;
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
#if CONFIG_NEWNEAR
xd->prev_mode_info_context = cm->prev_mi;
#endif
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp8_init_mbmode_probs(cm);
// Copy data over into macro block data sturctures.
x->src = * cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
// set up frame for intra coded blocks
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
xd->left_context = &cm->left_context;
vp8_zero(cpi->count_mb_ref_frame_usage)
vp8_zero(cpi->ymode_count)
vp8_zero(cpi->uv_mode_count)
x->mvc = cm->fc.mvc;
vpx_memset(cm->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
xd->ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded);
// Special case treatment when GF and ARF are not sensible options for reference
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
{
xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(255);
xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_zero(128);
xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_one(128);
}
else
{
xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(cpi->prob_last_coded);
xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_zero(cpi->prob_gf_coded);
xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_one(cpi->prob_gf_coded);
}
xd->fullpixel_mask = 0xffffffff;
if(cm->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
static void encode_frame_internal(VP8_COMP *cpi)
2010-05-18 17:58:33 +02:00
{
int mb_row;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
int totalrate;
//#if CONFIG_SEGFEATURES
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n" );
fclose(statsfile);
}
#endif
totalrate = 0;
if (cpi->compressor_speed == 2)
{
if (cpi->oxcf.cpu_used < 0)
cpi->Speed = -(cpi->oxcf.cpu_used);
else
vp8_auto_select_speed(cpi);
}
// Functions setup for all frame types so we can use MC in AltRef
if (cm->mcomp_filter_type == SIXTAP)
2010-05-18 17:58:33 +02:00
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap16x16);
#if CONFIG_DUALPRED
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap_avg16x16);
#endif /* CONFIG_DUALPRED */
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear16x16);
#if CONFIG_DUALPRED
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear_avg16x16);
#endif /* CONFIG_DUALPRED */
2010-05-18 17:58:33 +02:00
}
// Reset frame count of inter 0,0 motion vector usage.
2010-05-18 17:58:33 +02:00
cpi->inter_zz_count = 0;
cpi->prediction_error = 0;
cpi->intra_error = 0;
cpi->skip_true_count = 0;
cpi->skip_false_count = 0;
#if 0
// Experimental code
cpi->frame_distortion = 0;
2010-05-18 17:58:33 +02:00
cpi->last_mb_distortion = 0;
#endif
xd->mode_info_context = cm->mi;
#if CONFIG_NEWNEAR
xd->prev_mode_info_context = cm->prev_mi;
#endif
2010-05-18 17:58:33 +02:00
vp8_zero(cpi->MVcount);
vp8_zero(cpi->coef_counts);
vp8cx_frame_init_quantizer(cpi);
vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
2010-05-18 17:58:33 +02:00
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
#if CONFIG_DUALPRED
cpi->rd_single_diff = cpi->rd_dual_diff = cpi->rd_hybrid_diff = 0;
cpi->single_pred_count[0] = cpi->single_pred_count[1] = cpi->single_pred_count[2] = 0;
cpi->dual_pred_count[0] = cpi->dual_pred_count[1] = cpi->dual_pred_count[2] = 0;
#endif /* CONFIG_DUALPRED */
2010-05-18 17:58:33 +02:00
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
{
int i;
2010-05-18 17:58:33 +02:00
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count);
for (i = 0; i < cm->mb_rows; i++)
cpi->mt_current_mb_col[i] = -1;
2010-05-18 17:58:33 +02:00
for (i = 0; i < cpi->encoding_thread_count; i++)
{
sem_post(&cpi->h_event_start_encoding[i]);
}
2010-05-18 17:58:33 +02:00
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1))
{
2010-05-18 17:58:33 +02:00
vp8_zero(cm->left_context)
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate);
2010-05-18 17:58:33 +02:00
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
xd->mode_info_context += xd->mode_info_stride
* cpi->encoding_thread_count;
#if CONFIG_NEWNEAR
xd->prev_mode_info_context += xd->mode_info_stride
* cpi->encoding_thread_count;
#endif
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
2010-05-18 17:58:33 +02:00
}
sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */
2010-05-18 17:58:33 +02:00
cpi->tok_count = 0;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start;
}
for (i = 0; i < cpi->encoding_thread_count; i++)
{
totalrate += cpi->mb_row_ei[i].totalrate;
}
}
else
2010-05-18 17:58:33 +02:00
#endif
{
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
vp8_zero(cm->left_context)
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
cpi->tok_count = tp - cpi->tok;
2010-05-18 17:58:33 +02:00
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit
cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES
// Make a note of the percentage MBs coded Intra.
if (cm->frame_type == KEY_FRAME)
{
cpi->this_frame_percent_intra = 100;
}
else
{
int tot_modes;
tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME]
+ cpi->count_mb_ref_frame_usage[LAST_FRAME]
+ cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]
+ cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
if (tot_modes)
cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
}
#if 0
{
int cnt = 0;
int flag[2] = {0, 0};
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt])
{
flag[0] = 1;
vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount);
break;
}
}
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt])
{
flag[1] = 1;
vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount);
break;
}
}
if (flag[0] || flag[1])
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
2010-05-18 17:58:33 +02:00
}
#endif
// Adjust the projected reference frame usage probability numbers to reflect
2010-05-18 17:58:33 +02:00
// what we have just seen. This may be usefull when we make multiple itterations
// of the recode loop rather than continuing to use values from the previous frame.
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame)
{
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if ((rf_intra + rf_inter) > 0)
{
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
if (cpi->prob_intra_coded < 1)
cpi->prob_intra_coded = 1;
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
{
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (cpi->prob_last_coded < 1)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (cpi->prob_gf_coded < 1)
cpi->prob_gf_coded = 1;
}
}
//#if CONFIG_SEGFEATURES
else
{
// Trap case where cpi->count_mb_ref_frame_usage[] blank.
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
2010-05-18 17:58:33 +02:00
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void vp8_encode_frame(VP8_COMP *cpi)
{
#if CONFIG_DUALPRED
if (cpi->sf.RD)
{
int frame_type, pred_type;
int redo = 0;
/*
* This code does a single RD pass over the whole frame assuming
* either dual, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames. If the difference is above a certain
* threshold, it will actually re-encode the current frame using
* that different coding mode.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->common.refresh_golden_frame)
frame_type = 3;
else if (cpi->common.refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
frame_type = 1;
else
frame_type = 2;
if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = DUAL_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][1] &&
cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
cpi->common.dual_pred_mode = pred_type;
encode_frame_internal(cpi);
cpi->rd_single_diff /= cpi->common.MBs;
cpi->rd_prediction_type_threshes[frame_type][0] += cpi->rd_single_diff;
cpi->rd_prediction_type_threshes[frame_type][0] >>= 1;
cpi->rd_dual_diff /= cpi->common.MBs;
cpi->rd_prediction_type_threshes[frame_type][1] += cpi->rd_dual_diff;
cpi->rd_prediction_type_threshes[frame_type][1] >>= 1;
cpi->rd_hybrid_diff /= cpi->common.MBs;
cpi->rd_prediction_type_threshes[frame_type][2] += cpi->rd_hybrid_diff;
cpi->rd_prediction_type_threshes[frame_type][2] >>= 1;
/* FIXME make "100" (the threshold at which to re-encode the
* current frame) a commandline option. */
if (cpi->common.dual_pred_mode == SINGLE_PREDICTION_ONLY &&
(cpi->rd_dual_diff >= 100 || cpi->rd_hybrid_diff >= 100))
{
redo = 1;
cpi->common.dual_pred_mode = cpi->rd_dual_diff > cpi->rd_hybrid_diff ?
DUAL_PREDICTION_ONLY : HYBRID_PREDICTION;
}
else if (cpi->common.dual_pred_mode == DUAL_PREDICTION_ONLY &&
(cpi->rd_single_diff >= 100 || cpi->rd_hybrid_diff >= 100))
{
redo = 1;
cpi->common.dual_pred_mode = cpi->rd_single_diff > cpi->rd_hybrid_diff ?
SINGLE_PREDICTION_ONLY : HYBRID_PREDICTION;
}
else if (cpi->common.dual_pred_mode == HYBRID_PREDICTION &&
(cpi->rd_single_diff >= 100 || cpi->rd_dual_diff >= 100))
{
if (cpi->dual_pred_count == 0)
{
cpi->common.dual_pred_mode = SINGLE_PREDICTION_ONLY;
}
else if (cpi->single_pred_count == 0)
{
cpi->common.dual_pred_mode = DUAL_PREDICTION_ONLY;
}
else
{
redo = 1;
cpi->common.dual_pred_mode = cpi->rd_single_diff > cpi->rd_dual_diff ?
SINGLE_PREDICTION_ONLY : DUAL_PREDICTION_ONLY;
}
}
if (redo)
{
encode_frame_internal(cpi);
}
if (cpi->common.dual_pred_mode == HYBRID_PREDICTION)
{
if (cpi->dual_pred_count == 0)
{
cpi->common.dual_pred_mode = SINGLE_PREDICTION_ONLY;
}
else if (cpi->single_pred_count == 0)
{
cpi->common.dual_pred_mode = DUAL_PREDICTION_ONLY;
}
}
}
else
#endif /* CONFIG_DUALPRED */
{
encode_frame_internal(cpi);
}
}
2010-05-18 17:58:33 +02:00
void vp8_setup_block_ptrs(MACROBLOCK *x)
{
int r, c;
int i;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; i++)
{
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp8_build_block_offsets(MACROBLOCK *x)
{
int block = 0;
int br, bc;
vp8_build_block_doffsets(&x->e_mbd);
// y blocks
x->thismb_ptr = &x->thismb[0];
2010-05-18 17:58:33 +02:00
for (br = 0; br < 4; br++)
{
for (bc = 0; bc < 4; bc++)
{
BLOCK *this_block = &x->block[block];
//this_block->base_src = &x->src.y_buffer;
//this_block->src_stride = x->src.y_stride;
//this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->thismb_ptr;
this_block->src_stride = 16;
this_block->src = 4 * br * 16 + 4 * bc;
2010-05-18 17:58:33 +02:00
++block;
}
}
// u blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// v blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x)
{
const MACROBLOCKD *xd = & x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
2010-05-18 17:58:33 +02:00
if (m == B_PRED)
{
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do
{
++ bct[xd->block[b].bmi.as_mode];
2010-05-18 17:58:33 +02:00
}
while (++b < 16);
}
if(m==I8X8_PRED)
{
i8x8_modes[xd->block[0].bmi.as_mode]++;
i8x8_modes[xd->block[2].bmi.as_mode]++;
i8x8_modes[xd->block[8].bmi.as_mode]++;
i8x8_modes[xd->block[10].bmi.as_mode]++;
}
2010-05-18 17:58:33 +02:00
#endif
++cpi->ymode_count[m];
++cpi->uv_mode_count[uvm];
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x )
{
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
if ( act > cpi->activity_avg )
x->act_zbin_adj = (int)(((int64_t)b + (a>>1))/a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b>>1))/b);
#endif
}
2010-05-18 17:58:33 +02:00
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t)
{
int rate;
2010-05-18 17:58:33 +02:00
if (cpi->sf.RD && cpi->compressor_speed != 2)
vp8_rd_pick_intra_mode(cpi, x, &rate);
2010-05-18 17:58:33 +02:00
else
vp8_pick_intra_mode(cpi, x, &rate);
2010-05-18 17:58:33 +02:00
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
adjust_act_zbin( cpi, x );
vp8_update_zbin_extra(cpi, x);
}
2010-05-18 17:58:33 +02:00
if(x->e_mbd.mode_info_context->mbmi.mode == I8X8_PRED)
{
vp8_encode_intra8x8mby(IF_RTCD(&cpi->rtcd), x);
vp8_encode_intra8x8mbuv(IF_RTCD(&cpi->rtcd), x);
}
else if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED)
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
else
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
if(x->e_mbd.mode_info_context->mbmi.mode != I8X8_PRED)
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, &x->e_mbd, t);
#if CONFIG_T8X8
if ( get_seg_tx_type(&x->e_mbd,
x->e_mbd.mode_info_context->mbmi.segment_id)
== TX_8X8 )
{
cpi->t8x8_count++;
}
else
cpi->t4x4_count++;
#endif
2010-05-18 17:58:33 +02:00
return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif
extern void vp8_fix_contexts(MACROBLOCKD *x);
2010-05-18 17:58:33 +02:00
int vp8cx_encode_inter_macroblock
(
VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int recon_yoffset, int recon_uvoffset
)
{
MACROBLOCKD *const xd = &x->e_mbd;
int intra_error = 0;
int rate;
int distortion;
unsigned char *segment_id = &xd->mode_info_context->mbmi.segment_id;
2010-05-18 17:58:33 +02:00
x->skip = 0;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[*segment_id];
2010-05-18 17:58:33 +02:00
else
x->encode_breakout = cpi->oxcf.encode_breakout;
if (cpi->sf.RD)
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
int single, dual, hybrid;
/* Are we using the fast quantizer for the mode selection? */
if(cpi->sf.use_fastquant_for_pick)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
fastquantb);
cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
fastquantb_pair);
/* the fast quantizer does not use zbin_extra, so
* do not recalculate */
cpi->zbin_mode_boost_enabled = 0;
}
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error, &single, &dual, &hybrid);
#if CONFIG_DUALPRED
cpi->rd_single_diff += single;
cpi->rd_dual_diff += dual;
cpi->rd_hybrid_diff += hybrid;
if (x->e_mbd.mode_info_context->mbmi.ref_frame &&
x->e_mbd.mode_info_context->mbmi.mode != SPLITMV)
{
MB_MODE_INFO *t = &x->e_mbd.mode_info_context[-cpi->common.mode_info_stride].mbmi;
MB_MODE_INFO *l = &x->e_mbd.mode_info_context[-1].mbmi;
int cnt = (t->second_ref_frame != INTRA_FRAME) + (l->second_ref_frame != INTRA_FRAME);
if (x->e_mbd.mode_info_context->mbmi.second_ref_frame == INTRA_FRAME)
cpi->single_pred_count[cnt]++;
else
cpi->dual_pred_count[cnt]++;
}
#endif /* CONFIG_DUALPRED */
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
quantb);
cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
quantb_pair);
}
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
2010-05-18 17:58:33 +02:00
}
else
vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
2010-05-18 17:58:33 +02:00
cpi->prediction_error += distortion;
2010-05-18 17:58:33 +02:00
cpi->intra_error += intra_error;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
// Adjust the zbin based on this MB rate.
adjust_act_zbin( cpi, x );
}
2010-05-18 17:58:33 +02:00
#if 0
// Experimental RD code
cpi->frame_distortion += distortion;
cpi->last_mb_distortion = distortion;
#endif
// MB level adjutment to quantizer setup
if (xd->segmentation_enabled)
2010-05-18 17:58:33 +02:00
{
// If cyclic update enabled
if (cpi->cyclic_refresh_mode_enabled)
{
// Clear segment_id back to 0 if not coded (last frame 0,0)
if ( (*segment_id == 1) &&
( (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) ||
(xd->mode_info_context->mbmi.mode != ZEROMV) ) )
2010-05-18 17:58:33 +02:00
{
*segment_id = 0;
/* segment_id changed, so update */
vp8cx_mb_init_quantizer(cpi, x);
2010-05-18 17:58:33 +02:00
}
}
//#if CONFIG_SEGFEATURES
else
{
2011-10-05 12:26:00 +02:00
//segfeature_test_function(cpi, xd);
#if DBG_PRNT_SEGMAP
// Debug output
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "%2d%2d%2d ",
*segment_id,
xd->mode_info_context->mbmi.ref_frame,
xd->mode_info_context->mbmi.mode );
fclose(statsfile);
}
#endif
}
}
2010-05-18 17:58:33 +02:00
{
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to supress noise
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
if (cpi->zbin_mode_boost_enabled)
{
if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME )
{
if (xd->mode_info_context->mbmi.mode == ZEROMV)
{
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (xd->mode_info_context->mbmi.mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 17:58:33 +02:00
}
/* The fast quantizer doesn't use zbin_extra, only do so with
* the regular quantizer. */
if (cpi->sf.improved_quant)
vp8_update_zbin_extra(cpi, x);
2010-05-18 17:58:33 +02:00
}
//#if CONFIG_SEGFEATURES
// If we have just a single reference frame coded for a segment then
// exclude from the reference frame counts used to work out
// probabilities. NOTE: At the moment we dont support custom trees
// for the reference frame coding for each segment but this is a
// possible future action.
if ( !segfeature_active( xd, *segment_id, SEG_LVL_REF_FRAME ) ||
( ( check_segref( xd, *segment_id, INTRA_FRAME ) +
check_segref( xd, *segment_id, LAST_FRAME ) +
check_segref( xd, *segment_id, GOLDEN_FRAME ) +
check_segref( xd, *segment_id, ALTREF_FRAME ) ) > 1 ) )
{
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++;
}
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 17:58:33 +02:00
{
if (xd->mode_info_context->mbmi.mode == B_PRED)
2010-05-18 17:58:33 +02:00
{
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
2010-05-18 17:58:33 +02:00
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
}
else if(xd->mode_info_context->mbmi.mode == I8X8_PRED)
{
vp8_encode_intra8x8mby(IF_RTCD(&cpi->rtcd), x);
vp8_encode_intra8x8mbuv(IF_RTCD(&cpi->rtcd), x);
}
2010-05-18 17:58:33 +02:00
else
{
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
2010-05-18 17:58:33 +02:00
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
sum_intra_stats(cpi, x);
}
else
{
int ref_fb_idx;
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
2010-05-18 17:58:33 +02:00
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
#if CONFIG_DUALPRED
if (xd->mode_info_context->mbmi.second_ref_frame) {
int second_ref_fb_idx;
cpi->mbs_dual_count++;
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = cpi->common.gld_fb_idx;
else
second_ref_fb_idx = cpi->common.alt_fb_idx;
xd->second_pre.y_buffer = cpi->common.yv12_fb[second_ref_fb_idx].y_buffer +
recon_yoffset;
xd->second_pre.u_buffer = cpi->common.yv12_fb[second_ref_fb_idx].u_buffer +
recon_uvoffset;
xd->second_pre.v_buffer = cpi->common.yv12_fb[second_ref_fb_idx].v_buffer +
recon_uvoffset;
}
#endif /* CONFIG_DUALPRED */
if (!x->skip)
2010-05-18 17:58:33 +02:00
{
vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x);
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
}
else
{
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
2010-05-18 17:58:33 +02:00
}
#if CONFIG_T8X8
if ( get_seg_tx_type( xd, *segment_id ) == TX_8X8 )
{
cpi->t8x8_count++;
}
else
cpi->t4x4_count++;
#endif
2010-05-18 17:58:33 +02:00
if (!x->skip)
{
#ifdef ENC_DEBUG
if (enc_debug)
{
int i;
printf("Segment=%d [%d, %d]: %d %d:\n", x->e_mbd.mode_info_context->mbmi.segment_id, mb_col_debug, mb_row_debug, xd->mb_to_left_edge, xd->mb_to_top_edge);
for (i =0; i<400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("\n");
printf("eobs = ");
for (i=0;i<25;i++)
printf("%d:%d ", i, xd->block[i].eob);
printf("\n");
fflush(stdout);
}
#endif
2010-05-18 17:58:33 +02:00
vp8_tokenize_mb(cpi, xd, t);
#ifdef ENC_DEBUG
if (enc_debug) {
printf("Tokenized\n");
fflush(stdout);
}
#endif
}
2010-05-18 17:58:33 +02:00
else
{
if (cpi->common.mb_no_coeff_skip)
{
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
2010-05-18 17:58:33 +02:00
cpi->skip_true_count ++;
vp8_fix_contexts(xd);
2010-05-18 17:58:33 +02:00
}
else
{
vp8_stuff_mb(cpi, xd, t);
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
cpi->skip_false_count ++;
}
}
return rate;
}