vpx/vp9/common/vp9_blockd.h

973 lines
29 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
2010-05-18 17:58:33 +02:00
#include "./vpx_config.h"
2010-05-18 17:58:33 +02:00
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_convolve.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_treecoder.h"
2010-05-18 17:58:33 +02:00
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_enums.h"
2010-05-18 17:58:33 +02:00
// #define MODE_STATS
#define MAX_MB_SEGMENTS 8
#define MB_SEG_TREE_PROBS (MAX_MB_SEGMENTS-1)
#define PREDICTION_PROBS 3
#define DEFAULT_PRED_PROB_0 120
#define DEFAULT_PRED_PROB_1 80
#define DEFAULT_PRED_PROB_2 40
#define MBSKIP_CONTEXTS 3
2010-05-18 17:58:33 +02:00
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 4
/* Segment Feature Masks */
2010-05-18 17:58:33 +02:00
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_MV_REFS 9
#define MAX_MV_REF_CANDIDATES 2
2010-05-18 17:58:33 +02:00
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
2010-05-18 17:58:33 +02:00
typedef char PARTITION_CONTEXT;
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
ENTROPY_CONTEXT b) {
return (a != 0) + (b != 0);
}
2010-05-18 17:58:33 +02:00
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1
2010-05-18 17:58:33 +02:00
} FRAME_TYPE;
typedef enum {
EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR,
SWITCHABLE /* should be the last one */
} INTERPOLATIONFILTERTYPE;
typedef enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi)
D135_PRED, // Directional 135 deg = 180 - 45
D117_PRED, // Directional 117 deg = 180 - 63
D153_PRED, // Directional 153 deg = 180 - 27
D27_PRED, // Directional 27 deg = round(arctan(1/2) * 180/pi)
D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi)
TM_PRED, // True-motion
I4X4_PRED, // Each 4x4 subblock has its own mode
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
SPLITMV,
MB_MODE_COUNT
2010-05-18 17:58:33 +02:00
} MB_PREDICTION_MODE;
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= SPLITMV;
}
// Segment level features.
typedef enum {
SEG_LVL_ALT_Q = 0, // Use alternate Quantizer ....
SEG_LVL_ALT_LF = 1, // Use alternate loop filter value...
SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame
SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode
SEG_LVL_MAX = 4 // Number of MB level features supported
} SEG_LVL_FEATURES;
2010-05-18 17:58:33 +02:00
// Segment level features.
typedef enum {
TX_4X4 = 0, // 4x4 dct transform
TX_8X8 = 1, // 8x8 dct transform
TX_16X16 = 2, // 16x16 dct transform
TX_SIZE_MAX_MB = 3, // Number of different transforms available
TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform
TX_SIZE_MAX_SB, // Number of transforms available to SBs
} TX_SIZE;
typedef enum {
DCT_DCT = 0, // DCT in both horizontal and vertical
ADST_DCT = 1, // ADST in vertical, DCT in horizontal
DCT_ADST = 2, // DCT in vertical, ADST in horizontal
ADST_ADST = 3 // ADST in both directions
} TX_TYPE;
#define VP9_YMODES (I4X4_PRED + 1)
#define VP9_UV_MODES (TM_PRED + 1)
#define VP9_I32X32_MODES (TM_PRED + 1)
2010-05-18 17:58:33 +02:00
#define VP9_MVREFS (1 + SPLITMV - NEARESTMV)
2010-05-18 17:58:33 +02:00
#define WHT_UPSCALE_FACTOR 2
typedef enum {
B_DC_PRED, /* average of above and left pixels */
B_V_PRED, /* vertical prediction */
B_H_PRED, /* horizontal prediction */
B_D45_PRED,
B_D135_PRED,
B_D117_PRED,
B_D153_PRED,
B_D27_PRED,
B_D63_PRED,
B_TM_PRED,
2010-05-18 17:58:33 +02:00
LEFT4X4,
ABOVE4X4,
ZERO4X4,
NEW4X4,
2010-05-18 17:58:33 +02:00
B_MODE_COUNT
2010-05-18 17:58:33 +02:00
} B_PREDICTION_MODE;
#define VP9_BINTRAMODES (LEFT4X4)
#define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4)
2010-05-18 17:58:33 +02:00
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
2010-05-18 17:58:33 +02:00
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
union b_mode_info {
struct {
B_PREDICTION_MODE first;
} as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
};
2010-05-18 17:58:33 +02:00
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
2010-05-18 17:58:33 +02:00
} MV_REFERENCE_FRAME;
static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
#if CONFIG_AB4X4
case BLOCK_SIZE_SB4X8:
#endif
case BLOCK_SIZE_AB4X4: return 0;
#if CONFIG_AB4X4
case BLOCK_SIZE_SB8X4:
#endif
case BLOCK_SIZE_SB8X8:
case BLOCK_SIZE_SB8X16: return 1;
case BLOCK_SIZE_SB16X8:
case BLOCK_SIZE_MB16X16:
case BLOCK_SIZE_SB16X32: return 2;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB32X32:
case BLOCK_SIZE_SB32X64: return 3;
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB64X64: return 4;
default: assert(0);
}
}
static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
#if CONFIG_AB4X4
case BLOCK_SIZE_SB8X4:
#endif
case BLOCK_SIZE_AB4X4: return 0;
#if CONFIG_AB4X4
case BLOCK_SIZE_SB4X8:
#endif
case BLOCK_SIZE_SB8X8:
case BLOCK_SIZE_SB16X8: return 1;
case BLOCK_SIZE_SB8X16:
case BLOCK_SIZE_MB16X16:
case BLOCK_SIZE_SB32X16: return 2;
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_SB32X32:
case BLOCK_SIZE_SB64X32: return 3;
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB64X64: return 4;
default: assert(0);
}
}
static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) {
int a = b_width_log2(sb_type) - 1;
#if CONFIG_AB4X4
// align 4x4 block to mode_info
if (a < 0)
a = 0;
#endif
assert(a >= 0);
return a;
}
static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) {
int a = b_height_log2(sb_type) - 1;
#if CONFIG_AB4X4
if (a < 0)
a = 0;
#endif
assert(a >= 0);
return a;
}
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
TX_SIZE txfm_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv, best_second_mv;
int mb_mode_context[MAX_REF_FRAMES];
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
unsigned char need_to_clamp_mvs;
unsigned char need_to_clamp_secondmv;
unsigned char segment_id; // Segment id for current frame
// Flags used for prediction status of various bistream signals
unsigned char seg_id_predicted;
unsigned char ref_predicted;
// Indicates if the mb is part of the image (1) vs border (0)
// This can be useful in determining whether the MB provides
// a valid predictor
unsigned char mb_in_image;
INTERPOLATIONFILTERTYPE interp_filter;
BLOCK_SIZE_TYPE sb_type;
2010-05-18 17:58:33 +02:00
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
union b_mode_info bmi[16];
2010-05-18 17:58:33 +02:00
} MODE_INFO;
struct scale_factors {
int x_num;
int x_den;
int x_offset_q4;
int x_step_q4;
int y_num;
int y_den;
int y_offset_q4;
int y_step_q4;
int (*scale_value_x)(int val, const struct scale_factors *scale);
int (*scale_value_y)(int val, const struct scale_factors *scale);
void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col);
int_mv32 (*scale_motion_vector_q3_to_q4)(const int_mv *src_mv,
const struct scale_factors *scale);
int32_t (*scale_motion_vector_component_q4)(int mv_q4,
int num,
int den,
int offset_q4);
convolve_fn_t predict[2][2][2]; // horiz, vert, avg
};
enum { MAX_MB_PLANE = 3 };
struct buf_2d {
uint8_t *buf;
int stride;
};
struct macroblockd_plane {
DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]);
DECLARE_ALIGNED(16, uint16_t, eobs[256]);
DECLARE_ALIGNED(16, int16_t, diff[64 * 64]);
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
int16_t *dequant;
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
};
#define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n))
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
struct scale_factors scale_factor[2];
struct scale_factors scale_factor_uv[2];
2010-05-18 17:58:33 +02:00
MODE_INFO *prev_mode_info_context;
MODE_INFO *mode_info_context;
int mode_info_stride;
2010-05-18 17:58:33 +02:00
FRAME_TYPE frame_type;
2010-05-18 17:58:33 +02:00
int up_available;
int left_available;
[WIP] Add column-based tiling. This patch adds column-based tiling. The idea is to make each tile independently decodable (after reading the common frame header) and also independendly encodable (minus within-frame cost adjustments in the RD loop) to speed-up hardware & software en/decoders if they used multi-threading. Column-based tiling has the added advantage (over other tiling methods) that it minimizes realtime use-case latency, since all threads can start encoding data as soon as the first SB-row worth of data is available to the encoder. There is some test code that does random tile ordering in the decoder, to confirm that each tile is indeed independently decodable from other tiles in the same frame. At tile edges, all contexts assume default values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode), and motion vector search and ordering do not cross tiles in the same frame. t log Tile independence is not maintained between frames ATM, i.e. tile 0 of frame 1 is free to use motion vectors that point into any tile of frame 0. We support 1 (i.e. no tiling), 2 or 4 column-tiles. The loopfilter crosses tile boundaries. I discussed this briefly with Aki and he says that's OK. An in-loop loopfilter would need to do some sync between tile threads, but that shouldn't be a big issue. Resuls: with tiling disabled, we go up slightly because of improved edge use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf, ~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5% on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is concentrated in the low-bitrate end of clips, and most of it is because of the loss of edges at tile boundaries and the resulting loss of intra predictors. TODO: - more tiles (perhaps allow row-based tiling also, and max. 8 tiles)? - maybe optionally (for EC purposes), motion vectors themselves should not cross tile edges, or we should emulate such borders as if they were off-frame, to limit error propagation to within one tile only. This doesn't have to be the default behaviour but could be an optional bitstream flag. Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-01 18:35:28 +01:00
int right_available;
2010-05-18 17:58:33 +02:00
// partition contexts
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT *left_seg_context;
/* 0 (disable) 1 (enable) segmentation */
unsigned char segmentation_enabled;
2010-05-18 17:58:33 +02:00
/* 0 (do not update) 1 (update) the macroblock segmentation map. */
unsigned char update_mb_segmentation_map;
2010-05-18 17:58:33 +02:00
#if CONFIG_IMPLICIT_SEGMENTATION
unsigned char allow_implicit_segment_update;
#endif
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char update_mb_segmentation_data;
2010-05-18 17:58:33 +02:00
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char mb_segment_abs_delta;
2010-05-18 17:58:33 +02:00
/* Per frame flags that define which MB level features (such as quantizer or loop filter level) */
/* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
// Probability Tree used to code Segment number
vp9_prob mb_segment_tree_probs[MB_SEG_TREE_PROBS];
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
// Segment features
signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX];
unsigned int segment_feature_mask[MAX_MB_SEGMENTS];
2010-05-18 17:58:33 +02:00
/* mode_based Loop filter adjustment */
unsigned char mode_ref_lf_delta_enabled;
unsigned char mode_ref_lf_delta_update;
/* Delta values have the range +/- MAX_LOOP_FILTER */
/* 0 = Intra, Last, GF, ARF */
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = Intra, Last, GF, ARF */
signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
unsigned int frames_since_golden;
unsigned int frames_till_alt_ref_frame;
int lossless;
/* Inverse transform function pointers. */
void (*inv_txm4x4_1)(int16_t *input, int16_t *output, int pitch);
void (*inv_txm4x4)(int16_t *input, int16_t *output, int pitch);
void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob);
void (*itxm_add_y_block)(int16_t *q, uint8_t *dst, int stride,
struct macroblockd *xd);
void (*itxm_add_uv_block)(int16_t *q, uint8_t *dst, int stride,
uint16_t *eobs);
struct subpix_fn_table subpix;
int allow_high_precision_mv;
2010-05-18 17:58:33 +02:00
int corrupted;
int sb_index; // index of 32x32 block inside the 64x64 block
int mb_index; // index of 16x16 block inside the 32x32 block
int b_index; // index of 8x8 block inside the 16x16 block
#if CONFIG_AB4X4
int ab_index; // index of 4x4 block inside the 8x8 block
#endif
int q_index;
2010-05-18 17:58:33 +02:00
} MACROBLOCKD;
static int *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE_TYPE subsize) {
switch (subsize) {
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB32X32:
return &xd->sb_index;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_MB16X16:
return &xd->mb_index;
case BLOCK_SIZE_SB16X8:
case BLOCK_SIZE_SB8X16:
case BLOCK_SIZE_SB8X8:
return &xd->b_index;
#if CONFIG_AB4X4
case BLOCK_SIZE_SB8X4:
case BLOCK_SIZE_SB4X8:
case BLOCK_SIZE_AB4X4:
return &xd->ab_index;
#endif
default:
assert(0);
return NULL;
}
}
static INLINE void update_partition_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type,
BLOCK_SIZE_TYPE sb_size) {
int bsl = mi_width_log2(sb_size), bs = 1 << bsl;
int bwl = mi_width_log2(sb_type);
int bhl = mi_height_log2(sb_type);
int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl;
int i;
#if !CONFIG_AB4X4
// skip 8x8 block partition
if (bsl == 0)
return;
#endif
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
if ((bwl == bsl) && (bhl == bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xf << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xf << boffset);
} else if ((bwl == bsl) && (bhl < bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xe << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xf << boffset);
} else if ((bwl < bsl) && (bhl == bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xf << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xe << boffset);
} else if ((bwl < bsl) && (bhl < bsl)) {
for (i = 0; i < bs; i++)
xd->left_seg_context[i] = ~(0xe << boffset);
for (i = 0; i < bs; i++)
xd->above_seg_context[i] = ~(0xe << boffset);
} else {
assert(0);
}
}
static INLINE int partition_plane_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type) {
int bsl = mi_width_log2(sb_type), bs = 1 << bsl;
int above = 0, left = 0, i;
int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl;
assert(mi_width_log2(sb_type) == mi_height_log2(sb_type));
assert(bsl >= 0);
assert(boffset >= 0);
for (i = 0; i < bs; i++)
above |= (xd->above_seg_context[i] & (1 << boffset));
for (i = 0; i < bs; i++)
left |= (xd->left_seg_context[i] & (1 << boffset));
above = (above > 0);
left = (left > 0);
#if CONFIG_AB4X4
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
#else
return (left * 2 + above) + (bsl - 1) * PARTITION_PLOFFSET;
#endif
}
static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize,
PARTITION_TYPE partition) {
BLOCK_SIZE_TYPE subsize;
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
break;
case PARTITION_HORZ:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB64X32;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_SB32X16;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB16X8;
#if CONFIG_AB4X4
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_SB8X4;
#endif
else
assert(0);
break;
case PARTITION_VERT:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB32X64;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_SB16X32;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB8X16;
#if CONFIG_AB4X4
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_SB4X8;
#endif
else
assert(0);
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB32X32;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_MB16X16;
else if (bsize == BLOCK_SIZE_MB16X16)
subsize = BLOCK_SIZE_SB8X8;
#if CONFIG_AB4X4
else if (bsize == BLOCK_SIZE_SB8X8)
subsize = BLOCK_SIZE_AB4X4;
#endif
else
assert(0);
break;
default:
assert(0);
}
return subsize;
}
#define ACTIVE_HT 110 // quantization stepsize threshold
#define ACTIVE_HT8 300
#define ACTIVE_HT16 300
// convert MB_PREDICTION_MODE to B_PREDICTION_MODE
static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) {
switch (mode) {
case DC_PRED: return B_DC_PRED;
case V_PRED: return B_V_PRED;
case H_PRED: return B_H_PRED;
case TM_PRED: return B_TM_PRED;
case D45_PRED: return B_D45_PRED;
case D135_PRED: return B_D135_PRED;
case D117_PRED: return B_D117_PRED;
case D153_PRED: return B_D153_PRED;
case D27_PRED: return B_D27_PRED;
case D63_PRED: return B_D63_PRED;
default:
assert(0);
return B_MODE_COUNT; // Dummy value
}
}
// transform mapping
static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) {
switch (bmode) {
case B_TM_PRED :
case B_D135_PRED :
return ADST_ADST;
case B_V_PRED :
case B_D117_PRED :
case B_D63_PRED:
return ADST_DCT;
case B_H_PRED :
case B_D153_PRED :
case B_D27_PRED :
return DCT_ADST;
default:
return DCT_DCT;
}
}
#define USE_ADST_FOR_I16X16_8X8 1
#define USE_ADST_FOR_I16X16_4X4 1
#define USE_ADST_FOR_I8X8_4X4 1
#define USE_ADST_PERIPHERY_ONLY 1
#define USE_ADST_FOR_SB 1
#define USE_ADST_FOR_REMOTE_EDGE 0
static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = b_width_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (xd->lossless)
return DCT_DCT;
if (xd->mode_info_context->mbmi.mode == I4X4_PRED &&
xd->q_index < ACTIVE_HT) {
tx_type = txfm_map(
xd->mode_info_context->bmi[ib].as_mode.first);
} else if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
xd->q_index < ACTIVE_HT) {
#if USE_ADST_FOR_I16X16_4X4
#if USE_ADST_PERIPHERY_ONLY
const int hmax = 1 << wb;
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (ib >= (1 << (wb + hb))) // no chroma adst
return tx_type;
if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
xd->q_index < ACTIVE_HT8) {
#if USE_ADST_FOR_I16X16_8X8
#if USE_ADST_PERIPHERY_ONLY
const int hmax = 1 << wb;
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) {
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (ib >= (1 << (wb + hb)))
return tx_type;
if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
xd->q_index < ACTIVE_HT16) {
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_PERIPHERY_ONLY
if (sb_type > BLOCK_SIZE_MB16X16) {
const int hmax = 1 << wb;
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
}
#endif
}
return tx_type;
}
void vp9_setup_block_dptrs(MACROBLOCKD *xd,
int subsampling_x, int subsampling_y);
2010-05-18 17:58:33 +02:00
static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const TX_SIZE size = mbmi->txfm_size;
switch (mbmi->sb_type) {
case BLOCK_SIZE_SB64X64:
return size;
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB32X64:
case BLOCK_SIZE_SB32X32:
if (size == TX_32X32)
return TX_16X16;
else
return size;
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_MB16X16:
if (size == TX_16X16)
return TX_8X8;
else
return size;
default:
return TX_4X4;
}
return size;
}
struct plane_block_idx {
int plane;
int block;
};
// TODO(jkoleszar): returning a struct so it can be used in a const context,
// expect to refactor this further later.
static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
int b_idx) {
const int v_offset = y_blocks * 5 / 4;
struct plane_block_idx res;
if (b_idx < y_blocks) {
res.plane = 0;
res.block = b_idx;
} else if (b_idx < v_offset) {
res.plane = 1;
res.block = b_idx - y_blocks;
} else {
assert(b_idx < y_blocks * 3 / 2);
res.plane = 2;
res.block = b_idx - v_offset;
}
return res;
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = plane ? get_uv_tx_size(xd)
: xd->mode_info_context->mbmi.txfm_size;
const int block_size_b = bw + bh;
const int txfrm_size_b = tx_size * 2;
// subsampled size of the block
const int ss_sum = xd->plane[plane].subsampling_x +
xd->plane[plane].subsampling_y;
const int ss_block_size = block_size_b - ss_sum;
const int step = 1 << txfrm_size_b;
int i;
assert(txfrm_size_b <= block_size_b);
assert(txfrm_size_b <= ss_block_size);
for (i = 0; i < (1 << ss_block_size); i += step) {
visit(plane, i, bsize, txfrm_size_b, arg);
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
// calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for
// sizes smaller than 16x16 yet.
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *arg);
static INLINE void foreach_predicted_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_predicted_block_visitor visit, void *arg) {
int i, x, y;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// block sizes in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// subsampled size of the block
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bh = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
// size of the predictor to use.
int pred_w, pred_h;
if (mode == SPLITMV) {
pred_w = 0;
pred_h = 0;
} else {
pred_w = bw;
pred_h = bh;
}
assert(pred_w <= bw);
assert(pred_h <= bh);
// visit each subblock in raster order
i = 0;
for (y = 0; y < 1 << bh; y += 1 << pred_h) {
for (x = 0; x < 1 << bw; x += 1 << pred_w) {
visit(plane, i, bsize, pred_w, pred_h, arg);
i += 1 << pred_w;
}
i -= 1 << bw;
i += 1 << (bw + pred_h);
}
}
static INLINE void foreach_predicted_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_predicted_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
}
}
static INLINE void foreach_predicted_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_predicted_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
}
}
static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
int plane, int block, int stride) {
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1));
return y * stride + x;
}
static int16_t* raster_block_offset_int16(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block, int16_t *base) {
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int stride = 4 << bw;
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
uint8_t *base, int stride) {
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static int txfrm_block_to_raster_block(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_lg2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_lg2;
const int raster_mb = block >> ss_txfrm_size;
const int x = (raster_mb & (tx_cols - 1)) << (txwl);
const int y = raster_mb >> tx_cols_lg2 << (txwl);
return x + (y << bwl);
}
static void txfrm_block_to_raster_xy(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size,
int *x, int *y) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_lg2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_lg2;
const int raster_mb = block >> ss_txfrm_size;
*x = (raster_mb & (tx_cols - 1)) << (txwl);
*y = raster_mb >> tx_cols_lg2 << (txwl);
}
#endif // VP9_COMMON_VP9_BLOCKD_H_