vpx/vp8/encoder/encodeframe.c

1425 lines
44 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "encodemv.h"
#include "vp8/common/common.h"
2010-05-18 17:58:33 +02:00
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
2010-05-18 17:58:33 +02:00
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
2010-05-18 17:58:33 +02:00
#include "rdopt.h"
#include "pickinter.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/reconintra.h"
2010-05-18 17:58:33 +02:00
#include <stdio.h>
#include <limits.h>
#include "vp8/common/subpixel.h"
2010-05-18 17:58:33 +02:00
#include "vpx_ports/vpx_timer.h"
2010-05-18 17:58:33 +02:00
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD(x) &cpi->common.rtcd.x
#define IF_RTCD(x) (x)
#else
#define RTCD(x) NULL
#define IF_RTCD(x) NULL
#endif
#if CONFIG_SEGMENTATION
#define SEEK_SEGID 12
#define SEEK_SAMEID 4
#define SEEK_DIFFID 7
#endif
2010-05-18 17:58:33 +02:00
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
MACROBLOCK *x,
MB_ROW_COMP *mbr_ei,
int mb_row,
int count);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset);
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
#ifdef MODE_STATS
unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int inter_uv_modes[4] = {0, 0, 0, 0};
unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int y_modes[5] = {0, 0, 0, 0, 0};
unsigned int uv_modes[4] = {0, 0, 0, 0};
unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp8_activity_masking().
*/
#define VP8_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const unsigned char VP8_VAR_OFFS[16]=
{
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
};
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
{
unsigned int act;
unsigned int sse;
int sum;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer,
x->src.y_stride, VP8_VAR_OFFS, 0, &sse, &sum);
/* This requires a full 32 bits of precision. */
act = (sse<<8) - sum*sum;
/* Drop 4 to give us some headroom to work with. */
act = (act + 8) >> 4;
/* If the region is flat, lower the activity some more. */
if (act < 8<<12)
act = act < 5<<12 ? act : 5<<12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
{
unsigned int mb_activity = VP8_ACTIVITY_AVG_MIN;
x->e_mbd.mode_info_context->mbmi.mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
mb_activity = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff);
return mb_activity;
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
{
unsigned int mb_activity;
if ( 1 )
{
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure( cpi, x );
}
else
{
// Or use and alternative.
mb_activity = alt_activity_measure( cpi, x );
}
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
static void calc_av_activity( VP8_COMP *cpi, INT64 activity_sum )
{
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs);
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
}
#define OUTPUT_NORM_ACT_STATS 0
// Calculate a normalized activity value for each mb
static void calc_norm_activity( VP8_COMP *cpi, MACROBLOCK *x )
{
VP8_COMMON *const cm = & cpi->common;
int mb_row, mb_col;
unsigned int act;
unsigned int a;
unsigned int b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n");
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
x->mb_norm_activity_ptr = cpi->mb_norm_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 2*cpi->activity_avg;
b = 2*act + cpi->activity_avg;
if ( b >= a )
*(x->mb_norm_activity_ptr) = (int)((b + (a>>1))/a);
else
*(x->mb_norm_activity_ptr) = -(int)((a + (b>>1))/b);
if ( *(x->mb_norm_activity_ptr) == 0 )
{
*(x->mb_norm_activity_ptr) = 1;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_norm_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
x->mb_norm_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map( VP8_COMP *cpi )
{
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
int mb_row, mb_col;
unsigned int mb_activity;
INT64 activity_sum = 0;
// Initialise source buffer pointer
x->src = *cpi->Source;
// Set pointer to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// measure activity
mb_activity = mb_activity_measure( cpi, x );
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->src.y_buffer += 16;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
// Calculate a normalized activity number of each mb
calc_norm_activity( cpi, x );
}
// Activity masking based on Tim T's original code
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
{
unsigned int a;
unsigned int b;
unsigned int act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 2*cpi->activity_avg;
b = 2*act + cpi->activity_avg;
//tmp = (unsigned int)(((INT64)tmp*b + (a>>1))/a);
x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a);
// For now now zbin adjustment on mode choice
x->act_zbin_adj = 0;
}
// Stub function to use a normalized activity measure stored at mb level.
void vp8_norm_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
{
int norm_act;
norm_act = *(x->mb_norm_activity_ptr);
if (norm_act > 0)
x->rdmult = norm_act * (x->rdmult);
else
x->rdmult = -(x->rdmult / norm_act);
// For now now zbin adjustment on mode choice
x->act_zbin_adj = 0;
}
2010-05-18 17:58:33 +02:00
static
void encode_mb_row(VP8_COMP *cpi,
VP8_COMMON *cm,
int mb_row,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *segment_counts,
int *totalrate)
{
int i;
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int map_index = (mb_row * cpi->common.mb_cols);
#if CONFIG_SEGMENTATION
int left_id, above_id;
int sum;
#endif
#if CONFIG_MULTITHREAD
const int nsync = cpi->mt_sync_range;
const int rightmost_col = cm->mb_cols - 1;
volatile const int *last_row_current_mb_col;
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
else
last_row_current_mb_col = &rightmost_col;
#endif
2010-05-18 17:58:33 +02:00
// reset above block coeffs
xd->above_context = cm->above_context;
2010-05-18 17:58:33 +02:00
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
cpi->tplist[mb_row].start = *tp;
//printf("Main mb_row = %d\n", mb_row);
// Distance of Mb to the top & bottom edges, specified in 1/8th pel
// units as they are always compared to values that are in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
// Set up limit values for vertical motion vector components
// to prevent them extending beyond the UMV borders
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
+ (VP8BORDERINPIXELS - 16);
// Set the mb activity pointer to the start of the row.
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
x->mb_norm_activity_ptr = &cpi->mb_norm_activity_map[map_index];
2010-05-18 17:58:33 +02:00
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
// Distance of Mb to the left & right edges, specified in
// 1/8th pel units as they are always compared to values
// that are in 1/8th pel units
2010-05-18 17:58:33 +02:00
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
// Set up limit values for horizontal motion vector components
// to prevent them extending beyond the UMV borders
2010-05-18 17:58:33 +02:00
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
+ (VP8BORDERINPIXELS - 16);
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
{
if ((mb_col & (nsync - 1)) == 0)
{
while (mb_col > (*last_row_current_mb_col - nsync)
&& (*last_row_current_mb_col) != (cm->mb_cols - 1))
{
x86_pause_hint();
thread_sleep(0);
}
}
}
#endif
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp8_activity_masking(cpi, x);
2010-05-18 17:58:33 +02:00
// Is segmentation enabled
// MB level adjutment to quantizer
if (xd->segmentation_enabled)
{
// Code to set segment id in xd->mbmi.segment_id for current MB (with range checking)
if (cpi->segmentation_map[map_index+mb_col] <= 3)
xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col];
2010-05-18 17:58:33 +02:00
else
xd->mode_info_context->mbmi.segment_id = 0;
2010-05-18 17:58:33 +02:00
vp8cx_mb_init_quantizer(cpi, x);
2010-05-18 17:58:33 +02:00
}
else
xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default
2010-05-18 17:58:33 +02:00
x->active_ptr = cpi->active_map + map_index + mb_col;
2010-05-18 17:58:33 +02:00
if (cm->frame_type == KEY_FRAME)
{
*totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp);
#ifdef MODE_STATS
y_modes[xd->mbmi.mode] ++;
#endif
}
else
{
*totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset);
#ifdef MODE_STATS
inter_y_modes[xd->mbmi.mode] ++;
if (xd->mbmi.mode == SPLITMV)
{
int b;
for (b = 0; b < xd->mbmi.partition_count; b++)
{
inter_b_modes[x->partition->bmi[b].mode] ++;
2010-05-18 17:58:33 +02:00
}
}
#endif
// Count of last ref frame 0,0 useage
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 17:58:33 +02:00
cpi->inter_zz_count ++;
// Special case code for cyclic refresh
// If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode
// during vp8cx_encode_inter_macroblock()) back into the global sgmentation map
if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)
{
cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id;
2010-05-18 17:58:33 +02:00
// If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh):
// Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0)
// else mark it as dirty (1).
if (xd->mode_info_context->mbmi.segment_id)
cpi->cyclic_refresh_map[map_index+mb_col] = -1;
else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
2010-05-18 17:58:33 +02:00
{
if (cpi->cyclic_refresh_map[map_index+mb_col] == 1)
cpi->cyclic_refresh_map[map_index+mb_col] = 0;
2010-05-18 17:58:33 +02:00
}
else
cpi->cyclic_refresh_map[map_index+mb_col] = 1;
2010-05-18 17:58:33 +02:00
}
}
cpi->tplist[mb_row].stop = *tp;
// Increment pointer into gf useage flags structure.
x->gf_active_ptr++;
// Increment the activity mask pointers.
x->mb_activity_ptr++;
x->mb_norm_activity_ptr++;
2010-05-18 17:58:33 +02:00
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
xd->mode_info_context->mbmi.segment_id = 0;
else
xd->mode_info_context->mbmi.segment_id = 1;
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
vpx_memcpy(&xd->mode_info_context->bmi[i], &xd->block[i].bmi, sizeof(xd->block[i].bmi));
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
#if CONFIG_SEGMENTATION
//cpi->segmentation_map[mb_row * cm->mb_cols + mb_col] = xd->mbmi.segment_id;
if (cm->frame_type == KEY_FRAME)
{
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
}
else
{
sum = 0;
if (mb_col != 0)
sum += (xd->mode_info_context-1)->mbmi.segment_flag;
if (mb_row != 0)
sum += (xd->mode_info_context-cm->mb_cols)->mbmi.segment_flag;
if (xd->mode_info_context->mbmi.segment_id == cpi->segmentation_map[(mb_row*cm->mb_cols) + mb_col])
xd->mode_info_context->mbmi.segment_flag = 0;
else
xd->mode_info_context->mbmi.segment_flag = 1;
if (xd->mode_info_context->mbmi.segment_flag == 0)
{
segment_counts[SEEK_SAMEID + sum]++;
segment_counts[10]++;
}
else
{
segment_counts[SEEK_DIFFID + sum]++;
segment_counts[11]++;
//calculate individual segment ids
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
}
}
segment_counts[SEEK_SEGID + xd->mode_info_context->mbmi.segment_id] ++;
#else
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
#endif
2010-05-18 17:58:33 +02:00
// skip to next mb
xd->mode_info_context++;
x->partition_info++;
2010-05-18 17:58:33 +02:00
xd->above_context++;
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded != 0)
{
cpi->mt_current_mb_col[mb_row] = mb_col;
}
#endif
2010-05-18 17:58:33 +02:00
}
//extend the recon for intra prediction
vp8_extend_mb_row(
&cm->yv12_fb[dst_fb_idx],
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
// this is to account for the border
xd->mode_info_context++;
x->partition_info++;
#if CONFIG_MULTITHREAD
if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1))
{
sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */
}
#endif
2010-05-18 17:58:33 +02:00
}
void vp8_encode_frame(VP8_COMP *cpi)
{
int mb_row;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
#if CONFIG_SEGMENTATION
int segment_counts[MAX_MB_SEGMENTS + SEEK_SEGID];
int prob[3];
int new_cost, original_cost;
#else
2010-05-18 17:58:33 +02:00
int segment_counts[MAX_MB_SEGMENTS];
#endif
2010-05-18 17:58:33 +02:00
int totalrate;
// Functions setup for all frame types so we can use MC in AltRef
if (cm->mcomp_filter_type == SIXTAP)
2010-05-18 17:58:33 +02:00
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, sixtap16x16);
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cpi->common.rtcd.subpix, bilinear16x16);
2010-05-18 17:58:33 +02:00
}
x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Point to base of GF active flags data structure
2010-05-18 17:58:33 +02:00
x->vector_range = 32;
// Count of MBs using the alternate Q if any
cpi->alt_qcount = 0;
// Reset frame count of inter 0,0 motion vector useage.
cpi->inter_zz_count = 0;
vpx_memset(segment_counts, 0, sizeof(segment_counts));
cpi->prediction_error = 0;
cpi->intra_error = 0;
cpi->skip_true_count = 0;
cpi->skip_false_count = 0;
x->act_zbin_adj = 0;
2010-05-18 17:58:33 +02:00
#if 0
// Experimental code
cpi->frame_distortion = 0;
2010-05-18 17:58:33 +02:00
cpi->last_mb_distortion = 0;
#endif
totalrate = 0;
x->partition_info = x->pi;
2010-05-18 17:58:33 +02:00
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
vp8_zero(cpi->MVcount);
// vp8_zero( Contexts)
vp8_zero(cpi->coef_counts);
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp8_init_mbmode_probs(cm);
vp8cx_frame_init_quantizer(cpi);
if (cpi->compressor_speed == 2)
{
if (cpi->oxcf.cpu_used < 0)
cpi->Speed = -(cpi->oxcf.cpu_used);
else
vp8_auto_select_speed(cpi);
}
experiment extending the quantizer range Prior to this change, VP8 min quantizer is 4, which caps the highest quality around 51DB. This experimental change extends the min quantizer to 1, removes the cap and allows the highest quality to be around ~73DB, consistent with the fdct/idct round trip error. To test this change, at configure time use options: --enable-experimental --enable-extend_qrange The following is a brief log of changes in each of the patch sets patch set 1: In this commit, the quantization/dequantization constants are kept unchanged, instead scaling factor 4 is rolled into fdct/idct. Fixed Q0 encoding tests on mobile: Before: 9560.567kbps Overall PSNR:50.255DB VPXSSIM:98.288 Now: 18035.774kbps Overall PSNR:73.022DB VPXSSIM:99.991 patch set 2: regenerated dc/ac quantizer lookup tables based on the scaling factor rolled in the fdct/idct. Also slightly extended the range towards the high quantizer end. patch set 3: slightly tweaked the quantizer tables and generated bits_per_mb table based on Paul's suggestions. patch set 4: fix a typo in idct, re-calculated tables relating active max Q to active min Q patch set 5: added rdmult lookup table based on Q patch set 6: fix rdmult scale: dct coefficient has scaled up by 4 patch set 7: make transform coefficients to be within 16bits patch set 8: normalize 2nd order quantizers patch set 9: fix mis-spellings patch set 10: change the configure script and macros to allow experimental code to be enabled at configure time with --enable-extend_qrange patch set 11: rebase for merge Change-Id: Ib50641ddd44aba2a52ed890222c309faa31cc59c
2010-12-02 00:50:14 +01:00
vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
2010-05-18 17:58:33 +02:00
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
// Copy data over into macro block data sturctures.
x->src = * cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
2010-05-18 17:58:33 +02:00
// set up frame new frame for intra coded blocks
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
2010-05-18 17:58:33 +02:00
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
2010-05-18 17:58:33 +02:00
xd->left_context = &cm->left_context;
2010-05-18 17:58:33 +02:00
vp8_zero(cpi->count_mb_ref_frame_usage)
vp8_zero(cpi->ymode_count)
vp8_zero(cpi->uv_mode_count)
x->mvc = cm->fc.mvc;
vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
2010-05-18 17:58:33 +02:00
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
if(1)
{
// Build a frame level activity map
build_activity_map(cpi);
}
// Reset various MB pointers.
x->src = *cpi->Source;
x->mb_activity_ptr = cpi->mb_activity_map;
x->mb_norm_activity_ptr = cpi->mb_norm_activity_map;
}
2010-05-18 17:58:33 +02:00
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
{
int i;
2010-05-18 17:58:33 +02:00
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count);
for (i = 0; i < cm->mb_rows; i++)
cpi->mt_current_mb_col[i] = -1;
2010-05-18 17:58:33 +02:00
for (i = 0; i < cpi->encoding_thread_count; i++)
{
sem_post(&cpi->h_event_start_encoding[i]);
}
2010-05-18 17:58:33 +02:00
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1))
{
2010-05-18 17:58:33 +02:00
vp8_zero(cm->left_context)
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count;
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
2010-05-18 17:58:33 +02:00
}
sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */
2010-05-18 17:58:33 +02:00
cpi->tok_count = 0;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start;
}
if (xd->segmentation_enabled)
{
int i, j;
if (xd->segmentation_enabled)
{
for (i = 0; i < cpi->encoding_thread_count; i++)
{
for (j = 0; j < 4; j++)
segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
}
}
}
for (i = 0; i < cpi->encoding_thread_count; i++)
{
totalrate += cpi->mb_row_ei[i].totalrate;
}
}
else
2010-05-18 17:58:33 +02:00
#endif
{
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
vp8_zero(cm->left_context)
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
cpi->tok_count = tp - cpi->tok;
2010-05-18 17:58:33 +02:00
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// Work out the segment probabilites if segmentation is enabled
if (xd->segmentation_enabled)
{
int tot_count;
int i,j;
int count1,count2,count3,count4;
2010-05-18 17:58:33 +02:00
// Set to defaults
vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs));
#if CONFIG_SEGMENTATION
tot_count = segment_counts[12] + segment_counts[13] + segment_counts[14] + segment_counts[15];
count1 = segment_counts[12] + segment_counts[13];
count2 = segment_counts[14] + segment_counts[15];
if (tot_count)
prob[0] = (count1 * 255) / tot_count;
if (count1 > 0)
prob[1] = (segment_counts[12] * 255) /count1;
if (count2 > 0)
prob[2] = (segment_counts[14] * 255) /count2;
if (cm->frame_type != KEY_FRAME)
{
tot_count = segment_counts[4] + segment_counts[7];
if (tot_count)
xd->mb_segment_tree_probs[3] = (segment_counts[4] * 255)/tot_count;
tot_count = segment_counts[5] + segment_counts[8];
if (tot_count)
xd->mb_segment_tree_probs[4] = (segment_counts[5] * 255)/tot_count;
tot_count = segment_counts[6] + segment_counts[9];
if (tot_count)
xd->mb_segment_tree_probs[5] = (segment_counts[6] * 255)/tot_count;
}
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
count3 = segment_counts[0] + segment_counts[1];
count4 = segment_counts[2] + segment_counts[3];
2010-05-18 17:58:33 +02:00
if (tot_count)
xd->mb_segment_tree_probs[0] = (count3 * 255) / tot_count;
if (count3 > 0)
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) /count3;
if (count4 > 0)
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) /count4;
for (i = 0; i < MB_FEATURE_TREE_PROBS+3; i++)
{
if (xd->mb_segment_tree_probs[i] == 0)
xd->mb_segment_tree_probs[i] = 1;
}
original_cost = count1 * vp8_cost_zero(prob[0]) + count2 * vp8_cost_one(prob[0]);
if (count1 > 0)
original_cost += segment_counts[12] * vp8_cost_zero(prob[1]) + segment_counts[13] * vp8_cost_one(prob[1]);
if (count2 > 0)
original_cost += segment_counts[14] * vp8_cost_zero(prob[2]) + segment_counts[15] * vp8_cost_one(prob[2]) ;
new_cost = 0;
if (cm->frame_type != KEY_FRAME)
{
new_cost = segment_counts[4] * vp8_cost_zero(xd->mb_segment_tree_probs[3]) + segment_counts[7] * vp8_cost_one(xd->mb_segment_tree_probs[3]);
new_cost += segment_counts[5] * vp8_cost_zero(xd->mb_segment_tree_probs[4]) + segment_counts[8] * vp8_cost_one(xd->mb_segment_tree_probs[4]);
new_cost += segment_counts[6] * vp8_cost_zero(xd->mb_segment_tree_probs[5]) + segment_counts[9] * vp8_cost_one (xd->mb_segment_tree_probs[5]);
}
if (tot_count > 0)
new_cost += count3 * vp8_cost_zero(xd->mb_segment_tree_probs[0]) + count4 * vp8_cost_one(xd->mb_segment_tree_probs[0]);
if (count3 > 0)
new_cost += segment_counts[0] * vp8_cost_zero(xd->mb_segment_tree_probs[1]) + segment_counts[1] * vp8_cost_one(xd->mb_segment_tree_probs[1]);
if (count4 > 0)
new_cost += segment_counts[2] * vp8_cost_zero(xd->mb_segment_tree_probs[2]) + segment_counts[3] * vp8_cost_one(xd->mb_segment_tree_probs[2]) ;
if (new_cost < original_cost)
xd->temporal_update = 1;
else
{
xd->temporal_update = 0;
xd->mb_segment_tree_probs[0] = prob[0];
xd->mb_segment_tree_probs[1] = prob[1];
xd->mb_segment_tree_probs[2] = prob[2];
}
#else
2010-05-18 17:58:33 +02:00
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
count1 = segment_counts[0] + segment_counts[1];
count2 = segment_counts[2] + segment_counts[3];
2010-05-18 17:58:33 +02:00
if (tot_count)
xd->mb_segment_tree_probs[0] = (count1 * 255) / tot_count;
2010-05-18 17:58:33 +02:00
if (count1 > 0)
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) /count1;
2010-05-18 17:58:33 +02:00
if (count2 > 0)
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) /count2;
2010-05-18 17:58:33 +02:00
#endif
// Zero probabilities not allowed
#if CONFIG_SEGMENTATION
for (i = 0; i < MB_FEATURE_TREE_PROBS+3; i++)
#else
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
#endif
2010-05-18 17:58:33 +02:00
{
if (xd->mb_segment_tree_probs[i] == 0)
xd->mb_segment_tree_probs[i] = 1;
}
}
// 256 rate units to the bit
cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES
// Make a note of the percentage MBs coded Intra.
if (cm->frame_type == KEY_FRAME)
{
cpi->this_frame_percent_intra = 100;
}
else
{
int tot_modes;
tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME]
+ cpi->count_mb_ref_frame_usage[LAST_FRAME]
+ cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]
+ cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
if (tot_modes)
cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
}
#if 0
{
int cnt = 0;
int flag[2] = {0, 0};
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt])
{
flag[0] = 1;
vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount);
break;
}
}
for (cnt = 0; cnt < MVPcount; cnt++)
{
if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt])
{
flag[1] = 1;
vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount);
break;
}
}
if (flag[0] || flag[1])
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
2010-05-18 17:58:33 +02:00
}
#endif
// Adjust the projected reference frame useage probability numbers to reflect
// what we have just seen. This may be usefull when we make multiple itterations
// of the recode loop rather than continuing to use values from the previous frame.
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame)
{
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if ((rf_intra + rf_inter) > 0)
{
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
if (cpi->prob_intra_coded < 1)
cpi->prob_intra_coded = 1;
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
{
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (cpi->prob_last_coded < 1)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (cpi->prob_gf_coded < 1)
cpi->prob_gf_coded = 1;
}
}
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void vp8_setup_block_ptrs(MACROBLOCK *x)
{
int r, c;
int i;
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; i++)
{
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp8_build_block_offsets(MACROBLOCK *x)
{
int block = 0;
int br, bc;
vp8_build_block_doffsets(&x->e_mbd);
// y blocks
for (br = 0; br < 4; br++)
{
for (bc = 0; bc < 4; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.y_buffer;
this_block->src_stride = x->src.y_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// u blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// v blocks
for (br = 0; br < 2; br++)
{
for (bc = 0; bc < 2; bc++)
{
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x)
{
const MACROBLOCKD *xd = & x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
2010-05-18 17:58:33 +02:00
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
if (m == B_PRED)
{
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do
{
++ bct[xd->block[b].bmi.mode];
}
while (++b < 16);
}
#endif
++cpi->ymode_count[m];
++cpi->uv_mode_count[uvm];
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
void adjust_act_zbin( VP8_COMP *cpi, int rate, MACROBLOCK *x )
{
INT64 act;
INT64 a;
INT64 b;
// Read activity from the map
act = (INT64)(*(x->mb_activity_ptr));
// Calculate a zbin adjustment for this mb
a = act + 4*cpi->activity_avg;
b = 4*act + cpi->activity_avg;
if ( b > a )
//x->act_zbin_adj = (char)((b * 8) / a) - 8;
x->act_zbin_adj = 8;
else
x->act_zbin_adj = 0;
// Tmp force to 0 to disable.
x->act_zbin_adj = 0;
}
2010-05-18 17:58:33 +02:00
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t)
{
int Error4x4, Error16x16;
2010-05-18 17:58:33 +02:00
int rate4x4, rate16x16, rateuv;
int dist4x4, dist16x16, distuv;
int rate = 0;
int rate4x4_tokenonly = 0;
int rate16x16_tokenonly = 0;
int rateuv_tokenonly = 0;
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
2010-05-18 17:58:33 +02:00
if (cpi->sf.RD && cpi->compressor_speed != 2)
2010-05-18 17:58:33 +02:00
{
vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv);
2010-05-18 17:58:33 +02:00
rate += rateuv;
Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16);
2010-05-18 17:58:33 +02:00
Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, Error16x16);
2010-05-18 17:58:33 +02:00
rate += (Error4x4 < Error16x16) ? rate4x4 : rate16x16;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
adjust_act_zbin( cpi, rate, x );
vp8_update_zbin_extra(cpi, x);
}
2010-05-18 17:58:33 +02:00
}
else
{
int rate2, best_distortion;
2010-05-18 17:58:33 +02:00
MB_PREDICTION_MODE mode, best_mode = DC_PRED;
int this_rd;
Error16x16 = INT_MAX;
vp8_pick_intra_mbuv_mode(x);
2010-05-18 17:58:33 +02:00
for (mode = DC_PRED; mode <= TM_PRED; mode ++)
{
int distortion2;
x->e_mbd.mode_info_context->mbmi.mode = mode;
RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby)
(&x->e_mbd);
2010-05-18 17:58:33 +02:00
distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff);
rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
2010-05-18 17:58:33 +02:00
if (Error16x16 > this_rd)
{
Error16x16 = this_rd;
best_mode = mode;
best_distortion = distortion2;
2010-05-18 17:58:33 +02:00
}
}
x->e_mbd.mode_info_context->mbmi.mode = best_mode;
2010-05-18 17:58:33 +02:00
Error4x4 = vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &best_distortion);
}
2010-05-18 17:58:33 +02:00
if (Error4x4 < Error16x16)
{
x->e_mbd.mode_info_context->mbmi.mode = B_PRED;
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
2010-05-18 17:58:33 +02:00
}
else
{
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, &x->e_mbd, t);
2010-05-18 17:58:33 +02:00
return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif
extern void vp8_fix_contexts(MACROBLOCKD *x);
2010-05-18 17:58:33 +02:00
int vp8cx_encode_inter_macroblock
(
VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int recon_yoffset, int recon_uvoffset
)
{
MACROBLOCKD *const xd = &x->e_mbd;
int intra_error = 0;
int rate;
int distortion;
x->skip = 0;
if (xd->segmentation_enabled)
x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
2010-05-18 17:58:33 +02:00
else
x->encode_breakout = cpi->oxcf.encode_breakout;
if (cpi->sf.RD)
{
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
/* Are we using the fast quantizer for the mode selection? */
if(cpi->sf.use_fastquant_for_pick)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
fastquantb);
/* the fast quantizer does not use zbin_extra, so
* do not recalculate */
cpi->zbin_mode_boost_enabled = 0;
}
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb);
}
/* restore cpi->zbin_mode_boost_enabled */
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
2010-05-18 17:58:33 +02:00
}
else
vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
2010-05-18 17:58:33 +02:00
cpi->prediction_error += distortion;
2010-05-18 17:58:33 +02:00
cpi->intra_error += intra_error;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
{
// Adjust the zbin based on this MB rate.
adjust_act_zbin( cpi, rate, x );
}
2010-05-18 17:58:33 +02:00
#if 0
// Experimental RD code
cpi->frame_distortion += distortion;
cpi->last_mb_distortion = distortion;
#endif
// MB level adjutment to quantizer setup
if (xd->segmentation_enabled)
2010-05-18 17:58:33 +02:00
{
// If cyclic update enabled
if (cpi->cyclic_refresh_mode_enabled)
{
// Clear segment_id back to 0 if not coded (last frame 0,0)
if ((xd->mode_info_context->mbmi.segment_id == 1) &&
((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV)))
2010-05-18 17:58:33 +02:00
{
xd->mode_info_context->mbmi.segment_id = 0;
/* segment_id changed, so update */
vp8cx_mb_init_quantizer(cpi, x);
2010-05-18 17:58:33 +02:00
}
}
}
2010-05-18 17:58:33 +02:00
{
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to supress noise
2010-05-18 17:58:33 +02:00
if (cpi->zbin_mode_boost_enabled)
{
if ( xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME )
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
else
{
if (xd->mode_info_context->mbmi.mode == ZEROMV)
{
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (xd->mode_info_context->mbmi.mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
2010-05-18 17:58:33 +02:00
}
else
cpi->zbin_mode_boost = 0;
2010-05-18 17:58:33 +02:00
vp8_update_zbin_extra(cpi, x);
2010-05-18 17:58:33 +02:00
}
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++;
2010-05-18 17:58:33 +02:00
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 17:58:33 +02:00
{
vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x);
if (xd->mode_info_context->mbmi.mode == B_PRED)
2010-05-18 17:58:33 +02:00
{
vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x);
}
else
{
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
sum_intra_stats(cpi, x);
}
else
{
int ref_fb_idx;
2010-05-18 17:58:33 +02:00
vp8_build_uvmvs(xd, cpi->common.full_pixel);
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
2010-05-18 17:58:33 +02:00
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
if (!x->skip)
2010-05-18 17:58:33 +02:00
{
vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x);
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
}
else
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
2010-05-18 17:58:33 +02:00
}
if (!x->skip)
vp8_tokenize_mb(cpi, xd, t);
else
{
if (cpi->common.mb_no_coeff_skip)
{
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
2010-05-18 17:58:33 +02:00
cpi->skip_true_count ++;
vp8_fix_contexts(xd);
2010-05-18 17:58:33 +02:00
}
else
{
vp8_stuff_mb(cpi, xd, t);
xd->mode_info_context->mbmi.mb_skip_coeff = 0;
2010-05-18 17:58:33 +02:00
cpi->skip_false_count ++;
}
}
return rate;
}