vpx/test/sad_test.cc

254 lines
8.0 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <limits.h>
#include <stdio.h>
extern "C" {
#include "./vpx_config.h"
#include "./vp8_rtcd.h"
#include "vp8/common/blockd.h"
#include "vpx_mem/vpx_mem.h"
}
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
typedef unsigned int (*sad_m_by_n_fn_t)(const unsigned char *source_ptr,
int source_stride,
const unsigned char *reference_ptr,
int reference_stride,
unsigned int max_sad);
using libvpx_test::ACMRandom;
namespace {
class SADTest : public PARAMS(int, int, sad_m_by_n_fn_t) {
public:
static void SetUpTestCase() {
source_data_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBufferSize));
reference_data_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBufferSize));
}
static void TearDownTestCase() {
vpx_free(source_data_);
source_data_ = NULL;
vpx_free(reference_data_);
reference_data_ = NULL;
}
protected:
static const int kDataAlignment = 16;
static const int kDataBufferSize = 16 * 32;
virtual void SetUp() {
sad_fn_ = GET_PARAM(2);
height_ = GET_PARAM(1);
width_ = GET_PARAM(0);
source_stride_ = width_ * 2;
reference_stride_ = width_ * 2;
rnd_.Reset(ACMRandom::DeterministicSeed());
}
sad_m_by_n_fn_t sad_fn_;
virtual unsigned int SAD(unsigned int max_sad) {
unsigned int ret;
REGISTER_STATE_CHECK(ret = sad_fn_(source_data_, source_stride_,
reference_data_, reference_stride_,
max_sad));
return ret;
}
// Sum of Absolute Differences. Given two blocks, calculate the absolute
// difference between two pixels in the same relative location; accumulate.
unsigned int ReferenceSAD(unsigned int max_sad) {
unsigned int sad = 0;
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
sad += abs(source_data_[h * source_stride_ + w]
- reference_data_[h * reference_stride_ + w]);
}
if (sad > max_sad) {
break;
}
}
return sad;
}
void FillConstant(uint8_t *data, int stride, uint8_t fill_constant) {
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
data[h * stride + w] = fill_constant;
}
}
}
void FillRandom(uint8_t *data, int stride) {
for (int h = 0; h < height_; ++h) {
for (int w = 0; w < width_; ++w) {
data[h * stride + w] = rnd_.Rand8();
}
}
}
void CheckSad(unsigned int max_sad) {
unsigned int reference_sad, exp_sad;
reference_sad = ReferenceSAD(max_sad);
exp_sad = SAD(max_sad);
if (reference_sad <= max_sad) {
ASSERT_EQ(exp_sad, reference_sad);
} else {
// Alternative implementations are not required to check max_sad
ASSERT_GE(exp_sad, reference_sad);
}
}
// Handle blocks up to 16x16 with stride up to 32
int height_, width_;
static uint8_t* source_data_;
int source_stride_;
static uint8_t* reference_data_;
int reference_stride_;
ACMRandom rnd_;
};
uint8_t* SADTest::source_data_ = NULL;
uint8_t* SADTest::reference_data_ = NULL;
TEST_P(SADTest, MaxRef) {
FillConstant(source_data_, source_stride_, 0);
FillConstant(reference_data_, reference_stride_, 255);
CheckSad(UINT_MAX);
}
TEST_P(SADTest, MaxSrc) {
FillConstant(source_data_, source_stride_, 255);
FillConstant(reference_data_, reference_stride_, 0);
CheckSad(UINT_MAX);
}
TEST_P(SADTest, ShortRef) {
int tmp_stride = reference_stride_;
reference_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSad(UINT_MAX);
reference_stride_ = tmp_stride;
}
TEST_P(SADTest, UnalignedRef) {
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
int tmp_stride = reference_stride_;
reference_stride_ -= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSad(UINT_MAX);
reference_stride_ = tmp_stride;
}
TEST_P(SADTest, ShortSrc) {
int tmp_stride = source_stride_;
source_stride_ >>= 1;
FillRandom(source_data_, source_stride_);
FillRandom(reference_data_, reference_stride_);
CheckSad(UINT_MAX);
source_stride_ = tmp_stride;
}
TEST_P(SADTest, MaxSAD) {
// Verify that, when max_sad is set, the implementation does not return a
// value lower than the reference.
FillConstant(source_data_, source_stride_, 255);
FillConstant(reference_data_, reference_stride_, 0);
CheckSad(128);
}
using std::tr1::make_tuple;
const sad_m_by_n_fn_t sad_16x16_c = vp8_sad16x16_c;
const sad_m_by_n_fn_t sad_8x16_c = vp8_sad8x16_c;
const sad_m_by_n_fn_t sad_16x8_c = vp8_sad16x8_c;
const sad_m_by_n_fn_t sad_8x8_c = vp8_sad8x8_c;
const sad_m_by_n_fn_t sad_4x4_c = vp8_sad4x4_c;
INSTANTIATE_TEST_CASE_P(C, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_c),
make_tuple(8, 16, sad_8x16_c),
make_tuple(16, 8, sad_16x8_c),
make_tuple(8, 8, sad_8x8_c),
make_tuple(4, 4, sad_4x4_c)));
// ARM tests
#if HAVE_MEDIA
const sad_m_by_n_fn_t sad_16x16_armv6 = vp8_sad16x16_armv6;
INSTANTIATE_TEST_CASE_P(MEDIA, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_armv6)));
#endif
#if HAVE_NEON
const sad_m_by_n_fn_t sad_16x16_neon = vp8_sad16x16_neon;
const sad_m_by_n_fn_t sad_8x16_neon = vp8_sad8x16_neon;
const sad_m_by_n_fn_t sad_16x8_neon = vp8_sad16x8_neon;
const sad_m_by_n_fn_t sad_8x8_neon = vp8_sad8x8_neon;
const sad_m_by_n_fn_t sad_4x4_neon = vp8_sad4x4_neon;
INSTANTIATE_TEST_CASE_P(NEON, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_neon),
make_tuple(8, 16, sad_8x16_neon),
make_tuple(16, 8, sad_16x8_neon),
make_tuple(8, 8, sad_8x8_neon),
make_tuple(4, 4, sad_4x4_neon)));
#endif
// X86 tests
#if HAVE_MMX
const sad_m_by_n_fn_t sad_16x16_mmx = vp8_sad16x16_mmx;
const sad_m_by_n_fn_t sad_8x16_mmx = vp8_sad8x16_mmx;
const sad_m_by_n_fn_t sad_16x8_mmx = vp8_sad16x8_mmx;
const sad_m_by_n_fn_t sad_8x8_mmx = vp8_sad8x8_mmx;
const sad_m_by_n_fn_t sad_4x4_mmx = vp8_sad4x4_mmx;
INSTANTIATE_TEST_CASE_P(MMX, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_mmx),
make_tuple(8, 16, sad_8x16_mmx),
make_tuple(16, 8, sad_16x8_mmx),
make_tuple(8, 8, sad_8x8_mmx),
make_tuple(4, 4, sad_4x4_mmx)));
#endif
#if HAVE_SSE2
const sad_m_by_n_fn_t sad_16x16_wmt = vp8_sad16x16_wmt;
const sad_m_by_n_fn_t sad_8x16_wmt = vp8_sad8x16_wmt;
const sad_m_by_n_fn_t sad_16x8_wmt = vp8_sad16x8_wmt;
const sad_m_by_n_fn_t sad_8x8_wmt = vp8_sad8x8_wmt;
const sad_m_by_n_fn_t sad_4x4_wmt = vp8_sad4x4_wmt;
INSTANTIATE_TEST_CASE_P(SSE2, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_wmt),
make_tuple(8, 16, sad_8x16_wmt),
make_tuple(16, 8, sad_16x8_wmt),
make_tuple(8, 8, sad_8x8_wmt),
make_tuple(4, 4, sad_4x4_wmt)));
#endif
#if HAVE_SSSE3
const sad_m_by_n_fn_t sad_16x16_sse3 = vp8_sad16x16_sse3;
INSTANTIATE_TEST_CASE_P(SSE3, SADTest, ::testing::Values(
make_tuple(16, 16, sad_16x16_sse3)));
#endif
} // namespace