vpx/vp8/decoder/decodframe.c

1501 lines
49 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconinter.h"
2010-05-18 17:58:33 +02:00
#include "dequantize.h"
#include "detokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vpx_scale/yv12extend.h"
#include "vp8/common/setupintrarecon.h"
2010-05-18 17:58:33 +02:00
#include "decodemv.h"
#include "vp8/common/extend.h"
#include "vp8/common/modecont.h"
#if CONFIG_ERROR_CONCEALMENT
#include "error_concealment.h"
#endif
2010-05-18 17:58:33 +02:00
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/idct.h"
2010-05-18 17:58:33 +02:00
#include "dequantize.h"
#include "vp8/common/threading.h"
2010-05-18 17:58:33 +02:00
#include "decoderthreading.h"
#include "dboolhuff.h"
//#if CONFIG_SEGFEATURES
2011-10-05 12:26:00 +02:00
#include "vp8/common/seg_common.h"
2010-05-18 17:58:33 +02:00
#include <assert.h>
#include <stdio.h>
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
2010-05-18 17:58:33 +02:00
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int i;
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
2010-05-18 17:58:33 +02:00
/* all the ac values = ; */
2010-05-18 17:58:33 +02:00
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
2010-05-18 17:58:33 +02:00
}
}
}
void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
2010-05-18 17:58:33 +02:00
{
int i;
int QIndex;
VP8_COMMON *const pc = & pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
2010-05-18 17:58:33 +02:00
// Set the Q baseline allowing for any segment level adjustment
//#if CONFIG_SEGFEATURES
2011-10-05 12:26:00 +02:00
if ( segfeature_active( xd, segment_id, SEG_LVL_ALT_Q ) )
2010-05-18 17:58:33 +02:00
{
/* Abs Value */
2010-05-18 17:58:33 +02:00
if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA)
QIndex = get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
2010-05-18 17:58:33 +02:00
/* Delta Value */
2010-05-18 17:58:33 +02:00
else
{
QIndex = pc->base_qindex +
get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
2010-05-18 17:58:33 +02:00
}
}
else
QIndex = pc->base_qindex;
/* Set up the block level dequant pointers */
2010-05-18 17:58:33 +02:00
for (i = 0; i < 16; i++)
{
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
for (i = 16; i < 24; i++)
{
xd->block[i].dequant = pc->UVdequant[QIndex];
}
xd->block[24].dequant = pc->Y2dequant[QIndex];
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
2010-05-18 17:58:33 +02:00
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 17:58:33 +02:00
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby_s)(xd);
2010-05-18 17:58:33 +02:00
}
else
{
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
#if CONFIG_DUALPRED
if (xd->mode_info_context->mbmi.second_ref_frame)
{
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
#endif /* CONFIG_DUALPRED */
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
2010-05-18 17:58:33 +02:00
}
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd)
{
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - (19 << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + (18 << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - (19 << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + (18 << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
/* A version of the above function for chroma block MVs.*/
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd)
{
mv->col = (2*mv->col < (xd->mb_to_left_edge - (19 << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
mv->col = (2*mv->col > xd->mb_to_right_edge + (18 << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
mv->row = (2*mv->row < (xd->mb_to_top_edge - (19 << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
mv->row = (2*mv->row > xd->mb_to_bottom_edge + (18 << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
}
void clamp_mvs(MACROBLOCKD *xd)
2010-05-18 17:58:33 +02:00
{
if (xd->mode_info_context->mbmi.mode == SPLITMV)
{
int i;
for (i=0; i<16; i++)
clamp_mv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd);
for (i=16; i<24; i++)
clamp_uvmv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd);
}
else
{
clamp_mv_to_umv_border(&xd->mode_info_context->mbmi.mv.as_mv, xd);
clamp_uvmv_to_umv_border(&xd->block[16].bmi.mv.as_mv, xd);
}
}
extern const int vp8_i8x8_block[4];
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
unsigned int mb_idx)
2010-05-18 17:58:33 +02:00
{
int eobtotal = 0;
int throw_residual = 0;
MB_PREDICTION_MODE mode;
int i;
#if CONFIG_T8X8
int tx_type = get_seg_tx_type( xd,
xd->mode_info_context->mbmi.segment_id);
xd->mode_info_context->mbmi.txfm_size = tx_type;
#endif
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else if (!vp8dx_bool_error(xd->current_bc))
{
#if CONFIG_T8X8
for(i = 0; i < 25; i++)
{
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
if ( tx_type == TX_8X8 )
{
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd);
}
else
#endif
eobtotal = vp8_decode_mb_tokens(pbi, xd);
#ifdef DEC_DEBUG
if (dec_debug) {
printf("\nTokens (%d)\n", eobtotal);
for (i =0; i<400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("\n");
}
#endif
}
/* Perform temporary clamping of the MV to be used for prediction */
if (xd->mode_info_context->mbmi.need_to_clamp_mvs)
{
clamp_mvs(xd);
}
mode = xd->mode_info_context->mbmi.mode;
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&&!vp8dx_bool_error(xd->current_bc)
)
{
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_mb(pbi, xd);
return;
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
2010-05-18 17:58:33 +02:00
{
if(mode != I8X8_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd);
if (mode != B_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby)(xd);
} else {
vp8_intra_prediction_down_copy(xd);
}
}
2010-05-18 17:58:33 +02:00
}
else
{
vp8_build_inter_predictors_mb(xd);
}
/* When we have independent partitions we can apply residual even
* though other partitions within the frame are corrupt.
*/
throw_residual = (!pbi->independent_partitions &&
pbi->frame_corrupt_residual);
throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc));
#if CONFIG_ERROR_CONCEALMENT
if (pbi->ec_active &&
(mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual))
{
/* MB with corrupt residuals or corrupt mode/motion vectors.
* Better to use the predictor as reconstruction.
*/
pbi->frame_corrupt_residual = 1;
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
vp8_conceal_corrupt_mb(xd);
return;
}
#endif
/* dequantization and idct */
if (mode == I8X8_PRED)
{
for (i = 0; i < 4; i++)
{
int ib = vp8_i8x8_block[i];
const int iblock[4]={0,1,4,5};
int j;
int i8x8mode;
BLOCKD *b;
b = &xd->block[ib];
i8x8mode= b->bmi.as_mode;
RECON_INVOKE(RTCD_VTABLE(recon), intra8x8_predict)
(b, i8x8mode, b->predictor);
for(j = 0; j < 4; j++)
{
b = &xd->block[ib+iblock[j]];
if (xd->eobs[ib+iblock[j]] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
}
}
b = &xd->block[16+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
}
else if (mode == B_PRED)
2010-05-18 17:58:33 +02:00
{
for (i = 0; i < 16; i++)
2010-05-18 17:58:33 +02:00
{
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode;
RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict)
(b, b_mode, b->predictor);
2010-05-18 17:58:33 +02:00
if (xd->eobs[i] > 1)
2010-05-18 17:58:33 +02:00
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
2010-05-18 17:58:33 +02:00
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
2010-05-18 17:58:33 +02:00
((int *)b->qcoeff)[0] = 0;
}
}
}
else if (mode == SPLITMV)
2010-05-18 17:58:33 +02:00
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
2010-05-18 17:58:33 +02:00
}
else
{
BLOCKD *b = &xd->block[24];
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
{
DEQUANT_INVOKE(&pbi->dequant, block_2x2)(b);
#ifdef DEC_DEBUG
if (dec_debug)
{
int j;
printf("DQcoeff Haar\n");
for (j=0;j<16;j++) {
printf("%d ", b->dqcoeff[j]);
}
printf("\n");
}
#endif
IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0;//2nd order block are set to 0 after inverse transform
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block_8x8)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
}
else
#endif
{
DEQUANT_INVOKE(&pbi->dequant, block)(b);
if (xd->eobs[24] > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
}
}
#if CONFIG_T8X8
if( tx_type == TX_8X8 )
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block_8x8)//
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16, xd);//
}
else
#endif
if(xd->mode_info_context->mbmi.mode!=I8X8_PRED)
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block)
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
2010-05-18 17:58:33 +02:00
}
2010-05-18 17:58:33 +02:00
2010-05-18 17:58:33 +02:00
static int get_delta_q(vp8_reader *bc, int prev, int *q_update)
{
int ret_val = 0;
if (vp8_read_bit(bc))
{
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void
decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd)
2010-05-18 17:58:33 +02:00
{
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
2010-05-18 17:58:33 +02:00
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
2010-05-18 17:58:33 +02:00
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
/* reset above block coeffs */
2010-05-18 17:58:33 +02:00
xd->above_context = pc->above_context;
2010-05-18 17:58:33 +02:00
xd->up_available = (mb_row != 0);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to values
* that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_ERROR_CONCEALMENT
{
int corrupt_residual = (!pbi->independent_partitions &&
pbi->frame_corrupt_residual) ||
vp8dx_bool_error(xd->current_bc);
if (pbi->ec_active &&
xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME &&
corrupt_residual)
{
/* We have an intra block with corrupt coefficients, better to
* conceal with an inter block. Interpolate MVs from neighboring
* MBs.
*
* Note that for the first mb with corrupt residual in a frame,
* we might not discover that before decoding the residual. That
* happens after this check, and therefore no inter concealment
* will be done.
*/
vp8_interpolate_motion(xd,
mb_row, mb_col,
pc->mb_rows, pc->mb_cols,
pc->mode_info_stride);
}
}
#endif
2010-05-18 17:58:33 +02:00
update_blockd_bmi(xd);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
xd->left_available = (mb_col != 0);
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
2010-05-18 17:58:33 +02:00
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
2010-05-18 17:58:33 +02:00
#if CONFIG_DUALPRED
if (xd->mode_info_context->mbmi.second_ref_frame)
{
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer = pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer = pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer = pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
#endif /* CONFIG_DUALPRED */
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME)
{
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame==1 && mb_row==4 && mb_col==0);
#endif
decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col);
2010-05-18 17:58:33 +02:00
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
2010-05-18 17:58:33 +02:00
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
2010-05-18 17:58:33 +02:00
}
/* adjust to the next row of mbs */
2010-05-18 17:58:33 +02:00
vp8_extend_mb_row(
&pc->yv12_fb[dst_fb_idx],
2010-05-18 17:58:33 +02:00
xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8
);
++xd->mode_info_context; /* skip prediction column */
}
static unsigned int read_partition_size(const unsigned char *cx_size)
{
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
static void setup_token_decoder_partition_input(VP8D_COMP *pbi)
{
vp8_reader *bool_decoder = &pbi->bc2;
int part_idx = 1;
int num_token_partitions;
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
TOKEN_PARTITION multi_token_partition =
(TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2);
if (!vp8dx_bool_error(&pbi->bc))
pbi->common.multi_token_partition = multi_token_partition;
num_token_partitions = 1 << pbi->common.multi_token_partition;
if (num_token_partitions + 1 > pbi->num_partitions)
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"Partitions missing");
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
assert(vp8dx_bool_error(&pbi->bc) ||
multi_token_partition == pbi->common.multi_token_partition);
if (pbi->num_partitions > 2)
{
CHECK_MEM_ERROR(pbi->mbc, vpx_malloc((pbi->num_partitions - 1) *
sizeof(vp8_reader)));
bool_decoder = pbi->mbc;
}
for (; part_idx < pbi->num_partitions; ++part_idx)
{
if (vp8dx_start_decode(bool_decoder,
pbi->partitions[part_idx],
pbi->partition_sizes[part_idx]))
vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d",
part_idx);
bool_decoder++;
}
#if CONFIG_MULTITHREAD
/* Clamp number of decoder threads */
if (pbi->decoding_thread_count > pbi->num_partitions - 1)
pbi->decoding_thread_count = pbi->num_partitions - 1;
#endif
}
2010-05-18 17:58:33 +02:00
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end)
{
return (start + len > start && start + len <= end);
}
2010-05-18 17:58:33 +02:00
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char *cx_data)
{
int num_part;
int i;
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
vp8_reader *bool_decoder;
const unsigned char *partition;
/* Parse number of token partitions to use */
const TOKEN_PARTITION multi_token_partition =
(TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2);
/* Only update the multi_token_partition field if we are sure the value
* is correct. */
if (!pbi->ec_active || !vp8dx_bool_error(&pbi->bc))
pc->multi_token_partition = multi_token_partition;
2010-05-18 17:58:33 +02:00
num_part = 1 << pc->multi_token_partition;
/* Set up pointers to the first partition */
partition = cx_data;
bool_decoder = &pbi->bc2;
if (num_part > 1)
{
CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader)));
bool_decoder = pbi->mbc;
partition += 3 * (num_part - 1);
}
for (i = 0; i < num_part; i++)
{
const unsigned char *partition_size_ptr = cx_data + i * 3;
ptrdiff_t partition_size, bytes_left;
bytes_left = user_data_end - partition;
2010-05-18 17:58:33 +02:00
/* Calculate the length of this partition. The last partition
* size is implicit. If the partition size can't be read, then
* either use the remaining data in the buffer (for EC mode)
* or throw an error.
2010-05-18 17:58:33 +02:00
*/
if (i < num_part - 1)
{
if (read_is_valid(partition_size_ptr, 3, user_data_end))
partition_size = read_partition_size(partition_size_ptr);
else if (pbi->ec_active)
partition_size = bytes_left;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated partition size data");
2010-05-18 17:58:33 +02:00
}
else
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end))
2010-05-18 17:58:33 +02:00
{
if (pbi->ec_active)
partition_size = bytes_left;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", i + 1);
2010-05-18 17:58:33 +02:00
}
if (vp8dx_start_decode(bool_decoder, partition, partition_size))
2010-05-18 17:58:33 +02:00
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", i + 1);
/* Advance to the next partition */
partition += partition_size;
bool_decoder++;
}
#if CONFIG_MULTITHREAD
2010-05-18 17:58:33 +02:00
/* Clamp number of decoder threads */
if (pbi->decoding_thread_count > num_part - 1)
pbi->decoding_thread_count = num_part - 1;
#endif
2010-05-18 17:58:33 +02:00
}
static void stop_token_decoder(VP8D_COMP *pbi)
{
VP8_COMMON *pc = &pbi->common;
if (pc->multi_token_partition != ONE_PARTITION)
{
2010-05-18 17:58:33 +02:00
vpx_free(pbi->mbc);
pbi->mbc = NULL;
}
2010-05-18 17:58:33 +02:00
}
static void init_frame(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME)
{
/* Various keyframe initializations */
2010-05-18 17:58:33 +02:00
vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_init_mbmode_probs(pc);
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
//#if CONFIG_SEGFEATURES
clearall_segfeatures( xd );
2010-05-18 17:58:33 +02:00
xd->mb_segement_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
2010-05-18 17:58:33 +02:00
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
2010-05-18 17:58:33 +02:00
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
2010-05-18 17:58:33 +02:00
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
#if CONFIG_NEWNEAR
vp8_init_mode_contexts(&pbi->common);
vpx_memcpy( pbi->common.vp8_mode_contexts,
pbi->common.mode_context,
sizeof(pbi->common.mode_context));
#else
vpx_memcpy( pbi->common.vp8_mode_contexts,
default_vp8_mode_contexts,
sizeof(default_vp8_mode_contexts));
#endif /* CONFIG_NEWNEAR */
2010-05-18 17:58:33 +02:00
}
else
{
2010-05-18 17:58:33 +02:00
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = SIXTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interploation filters */
2010-05-18 17:58:33 +02:00
if (pc->mcomp_filter_type == SIXTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16);
#if CONFIG_DUALPRED
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16);
#endif /* CONFIG_DUALPRED */
2010-05-18 17:58:33 +02:00
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16);
#if CONFIG_DUALPRED
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16);
#endif /* CONFIG_DUALPRED */
2010-05-18 17:58:33 +02:00
}
if (pbi->decoded_key_frame && pbi->ec_enabled && !pbi->ec_active)
pbi->ec_active = 1;
2010-05-18 17:58:33 +02:00
}
xd->left_context = &pc->left_context;
2010-05-18 17:58:33 +02:00
xd->mode_info_context = pc->mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
2010-05-18 17:58:33 +02:00
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if(pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
2010-05-18 17:58:33 +02:00
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes;
2010-05-18 17:58:33 +02:00
int mb_row;
int i, j, k, l;
int corrupt_tokens = 0;
int prev_independent_partitions = pbi->independent_partitions;
2010-05-18 17:58:33 +02:00
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
if (pbi->input_partition)
{
data = pbi->partitions[0];
data_end = data + pbi->partition_sizes[0];
}
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3)
2010-05-18 17:58:33 +02:00
{
if (pbi->ec_active)
{
/* Declare the missing frame as an inter frame since it will
be handled as an inter frame when we have estimated its
motion vectors. */
pc->frame_type = INTER_FRAME;
pc->version = 0;
pc->show_frame = 1;
first_partition_length_in_bytes = 0;
}
else
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
}
}
else
{
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
2010-05-18 17:58:33 +02:00
if (!pbi->ec_active && (data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp8_setup_version(pc);
2010-05-18 17:58:33 +02:00
if (pc->frame_type == KEY_FRAME)
2010-05-18 17:58:33 +02:00
{
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (!pbi->ec_active || data + 3 < data_end)
2010-05-18 17:58:33 +02:00
{
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
2010-05-18 17:58:33 +02:00
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (!pbi->ec_active || data + 6 < data_end)
2010-05-18 17:58:33 +02:00
{
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
2010-05-18 17:58:33 +02:00
}
data += 7;
if (Width != pc->Width || Height != pc->Height)
{
int prev_mb_rows = pc->mb_rows;
if (pc->Width <= 0)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
2010-05-18 17:58:33 +02:00
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
#if CONFIG_ERROR_CONCEALMENT
pbi->overlaps = NULL;
if (pbi->ec_enabled)
{
if (vp8_alloc_overlap_lists(pbi))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate overlap lists "
"for error concealment");
}
#endif
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_rd)
vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows);
#endif
}
2010-05-18 17:58:33 +02:00
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0)
2010-05-18 17:58:33 +02:00
{
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(bc, data, data_end - data))
2010-05-18 17:58:33 +02:00
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp8_read_bit(bc);
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc);
}
/* Is segmentation enabled */
2010-05-18 17:58:33 +02:00
xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->segmentation_enabled)
{
// Read whether or not the segmentation map is being explicitly
// updated this frame.
2010-05-18 17:58:33 +02:00
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc);
// If so what method will be used.
if ( xd->update_mb_segmentation_map )
pc->temporal_update = (unsigned char)vp8_read_bit(bc);
// Is the segment data being updated
2010-05-18 17:58:33 +02:00
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc);
if (xd->update_mb_segmentation_data)
{
int data;
2010-05-18 17:58:33 +02:00
xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc);
//#if CONFIG_SEGFEATURES
clearall_segfeatures( xd );
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++)
2010-05-18 17:58:33 +02:00
{
// Is the feature enabled
2010-05-18 17:58:33 +02:00
if (vp8_read_bit(bc))
{
//#if CONFIG_SEGFEATURES
// Update the feature data and mask
enable_segfeature(xd, i, j);
2010-05-18 17:58:33 +02:00
data = (signed char)vp8_read_literal(
bc, seg_feature_data_bits(j));
//#if CONFIG_SEGFEATURES
// Is the segment data signed..
if ( is_segfeature_signed(j) )
{
if (vp8_read_bit(bc))
data = - data;
}
2010-05-18 17:58:33 +02:00
}
else
data = 0;
set_segdata(xd, i, j, data);
2010-05-18 17:58:33 +02:00
}
}
}
if (xd->update_mb_segmentation_map)
{
// Which macro block level features are enabled
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
vpx_memset(xd->mb_segment_tree_probs, 255,
sizeof(xd->mb_segment_tree_probs));
vpx_memset(pc->segment_pred_probs, 255,
sizeof(pc->segment_pred_probs));
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
// Read the probs used to decode the segment id for each macro
// block.
2010-05-18 17:58:33 +02:00
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
// If not explicitly set value is defaulted to 255 by
//memset above
2010-05-18 17:58:33 +02:00
if (vp8_read_bit(bc))
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
xd->mb_segment_tree_probs[i] =
(vp8_prob)vp8_read_literal(bc, 8);
2010-05-18 17:58:33 +02:00
}
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
// If predictive coding of segment map is enabled read the
// prediction probabilities.
if ( pc->temporal_update )
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
{
// Read the prediction probs needed to decode the segment id
// when predictive coding enabled
for (i = 0; i < PREDICTION_PROBS; i++)
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
{
// If not explicitly set value is defaulted to 255 by
// memset above
if (vp8_read_bit(bc))
pc->segment_pred_probs[i] =
Further work on Segmentation Experiment: This check in includes quite a lot of clean up and refactoring. Most of the analysis and set up for the different coding options for the segment map (currently simple distribution based coding or temporaly predicted coding), has been moved to one location (the function choose_segmap_coding_method() in segmenation.c). This code was previously scattered around in various locations making integration with other experiments and modification / debug more difficult. Currently the functionality is as it was with the exception that the prediction probabilities are now only transmitted when the temporal prediction mode is selected. There is still quite a bit more clean up work that will be possible when the #ifdef is removed. Also at that time I may rename and alter the sense of macroblock based variable "segment_flag" which indicates (1 that the segmnet id is not predicted vs 0 that it is predicted). I also intend to experiment with a spatial prediction mode that can be used when coding a key frame segment map or in cases where temporal prediction does not work well but there is spatial correlation. In a later check in when the ifdefs have gone I may also move the call to choose_segmap_coding_method() to just before where the bitsream is packed (currently it is in vp8_encode_frame()) to further reduce the possibility of clashes with other experiments and prevent it being called on each itteration of the recode loop. Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 12:13:33 +01:00
(vp8_prob)vp8_read_literal(bc, 8);
}
}
2010-05-18 17:58:33 +02:00
}
}
#if CONFIG_COMPRED
// Read common prediction model status flag probability updates for the
// reference frame
if ( pc->frame_type == KEY_FRAME )
{
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
}
else
{
for (i = 0; i < PREDICTION_PROBS; i++)
{
if ( vp8_read_bit(bc) )
pc->ref_pred_probs[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
}
#endif
/* Read the loop filter level and type */
2010-05-18 17:58:33 +02:00
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc);
pc->filter_level = vp8_read_literal(bc, 6);
pc->sharpness_level = vp8_read_literal(bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
2010-05-18 17:58:33 +02:00
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_enabled)
{
/* Do the deltas need to be updated */
2010-05-18 17:58:33 +02:00
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_update)
{
/* Send update */
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
2010-05-18 17:58:33 +02:00
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
2010-05-18 17:58:33 +02:00
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
2010-05-18 17:58:33 +02:00
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
2010-05-18 17:58:33 +02:00
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
2010-05-18 17:58:33 +02:00
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
New ways of passing encoded data between encoder and decoder. With this commit frames can be received partition-by-partition from the encoder and passed partition-by-partition to the decoder. At the encoder-side this makes it easier to split encoded frames at partition boundaries, useful when packetizing frames. When VPX_CODEC_USE_OUTPUT_PARTITION is enabled, several VPX_CODEC_CX_FRAME_PKT packets will be returned from vpx_codec_get_cx_data(), containing one partition each. The partition_id (starting at 0) specifies the decoding order of the partitions. All partitions but the last has the VPX_FRAME_IS_FRAGMENT flag set. At the decoder this opens up the possibility of decoding partition N even though partition N-1 was lost (given that independent partitioning has been enabled in the encoder) if more info about the missing parts of the stream is available through external signaling. Each partition is passed to the decoder through the vpx_codec_decode() function, with the data pointer pointing to the start of the partition, and with data_sz equal to the size of the partition. Missing partitions can be signaled to the decoder by setting data != NULL and data_sz = 0. When all partitions have been given to the decoder "end of data" should be signaled by calling vpx_codec_decode() with data = NULL and data_sz = 0. The first partition is the first partition according to the VP8 bitstream + the uncompressed data chunk + DCT address offsets if multiple residual partitions are used. Change-Id: I5bc0682b9e4112e0db77904755c694c3c7ac6e74
2011-06-13 16:42:27 +02:00
if (pbi->input_partition)
{
setup_token_decoder_partition_input(pbi);
}
else
{
setup_token_decoder(pbi, data + first_partition_length_in_bytes);
}
2010-05-18 17:58:33 +02:00
xd->current_bc = &pbi->bc2;
/* Read the default quantizers. */
2010-05-18 17:58:33 +02:00
{
int Q, q_update;
Q = vp8_read_literal(bc, QINDEX_BITS); /* AC 1st order Q = default */
2010-05-18 17:58:33 +02:00
pc->base_qindex = Q;
q_update = 0;
pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
/* MB level dequantizer setup */
2010-05-18 17:58:33 +02:00
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
2010-05-18 17:58:33 +02:00
if (pc->frame_type != KEY_FRAME)
{
/* Should the GF or ARF be updated from the current frame */
2010-05-18 17:58:33 +02:00
pc->refresh_golden_frame = vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't refresh golden if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_golden_frame = 0;
#endif
2010-05-18 17:58:33 +02:00
pc->refresh_alt_ref_frame = vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't refresh altref if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_alt_ref_frame = 0;
#endif
2010-05-18 17:58:33 +02:00
if(pc->refresh_alt_ref_frame)
{
vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc));
#if CONFIG_NEWNEAR
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context_a,
sizeof(pc->vp8_mode_contexts));
#endif
}
else
{
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
#if CONFIG_NEWNEAR
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context,
sizeof(pc->vp8_mode_contexts));
#endif
}
/* Buffer to buffer copy flags. */
2010-05-18 17:58:33 +02:00
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(bc, 2);
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc);
}
pc->refresh_entropy_probs = vp8_read_bit(bc);
if (pc->refresh_entropy_probs == 0)
{
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we should refresh the last frame if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_last_frame = 1;
#endif
2010-05-18 17:58:33 +02:00
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
{
pbi->independent_partitions = 1;
/* read coef probability tree */
2010-05-18 17:58:33 +02:00
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < ENTROPY_NODES; l++)
2010-05-18 17:58:33 +02:00
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
if (k > 0 && *p != pc->fc.coef_probs[i][j][k-1][l])
pbi->independent_partitions = 0;
2010-05-18 17:58:33 +02:00
}
}
#if CONFIG_T8X8
{
// read coef probability tree
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++)
{
vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs_8x8 [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
#endif
2010-05-18 17:58:33 +02:00
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
2010-05-18 17:58:33 +02:00
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
#if CONFIG_MULTITHREAD
if (!(pbi->b_multithreaded_rd) || pc->multi_token_partition == ONE_PARTITION || !(pc->filter_level))
#endif
vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
2010-05-18 17:58:33 +02:00
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
/* clear out the coeff buffer */
2010-05-18 17:58:33 +02:00
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
2010-05-18 17:58:33 +02:00
pc->mb_no_coeff_skip = (int)vp8_read_bit(bc);
vp8_decode_mode_mvs(pbi);
#if CONFIG_NEWNEAR
if(pbi->common.frame_type != KEY_FRAME)
{
vp8_update_mode_context(&pbi->common);
}
#endif
2010-05-18 17:58:33 +02:00
#if CONFIG_ERROR_CONCEALMENT
if (pbi->ec_active &&
pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows)
{
/* Motion vectors are missing in this frame. We will try to estimate
* them and then continue decoding the frame as usual */
vp8_estimate_missing_mvs(pbi);
}
#endif
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
2010-05-18 17:58:33 +02:00
// Resset the macroblock mode info context to the start of the list
xd->mode_info_context = pc->mi;
#if CONFIG_MULTITHREAD
2010-06-11 16:17:57 +02:00
if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION)
2010-05-18 17:58:33 +02:00
{
int i;
pbi->frame_corrupt_residual = 0;
vp8mt_decode_mb_rows(pbi, xd);
vp8_yv12_extend_frame_borders_ptr(&pc->yv12_fb[pc->new_fb_idx]); /*cm->frame_to_show);*/
for (i = 0; i < pbi->decoding_thread_count; ++i)
corrupt_tokens |= pbi->mb_row_di[i].mbd.corrupted;
2010-05-18 17:58:33 +02:00
}
else
#endif
2010-05-18 17:58:33 +02:00
{
int ibc = 0;
2010-06-11 16:17:57 +02:00
int num_part = 1 << pc->multi_token_partition;
pbi->frame_corrupt_residual = 0;
2010-05-18 17:58:33 +02:00
/* Decode the individual macro block */
2010-05-18 17:58:33 +02:00
for (mb_row = 0; mb_row < pc->mb_rows; mb_row++)
{
if (num_part > 1)
{
xd->current_bc = & pbi->mbc[ibc];
ibc++;
if (ibc == num_part)
ibc = 0;
}
decode_mb_row(pbi, pc, mb_row, xd);
2010-05-18 17:58:33 +02:00
}
corrupt_tokens |= xd->corrupted;
2010-05-18 17:58:33 +02:00
}
stop_token_decoder(pbi);
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame)
{
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
/* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */
2010-05-18 17:58:33 +02:00
/* If this was a kf or Gf note the Q used */
2010-06-11 16:17:57 +02:00
if ((pc->frame_type == KEY_FRAME) ||
pc->refresh_golden_frame || pc->refresh_alt_ref_frame)
{
2010-05-18 17:58:33 +02:00
pc->last_kf_gf_q = pc->base_qindex;
2010-06-11 16:17:57 +02:00
}
if(pc->refresh_entropy_probs)
{
if(pc->refresh_alt_ref_frame)
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
else
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
2010-05-18 17:58:33 +02:00
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
//printf("Frame %d Done\n", frame_count++);
2010-05-18 17:58:33 +02:00
return 0;
}