vpx/test/lpf_8_test.cc

717 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_loopfilter.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
// Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section
// 16 Coefs within filtered section
// 8 Coeffs following filtered section
const int kNumCoeffs = 1024;
const int number_of_iterations = 10000;
#if CONFIG_VP9_HIGHBITDEPTH
typedef void (*loop_op_t)(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count, int bd);
typedef void (*dual_loop_op_t)(uint16_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd);
#else
typedef void (*loop_op_t)(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count);
typedef void (*dual_loop_op_t)(uint8_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1);
#endif // CONFIG_VP9_HIGHBITDEPTH
typedef std::tr1::tuple<loop_op_t, loop_op_t, int, int> loop8_param_t;
typedef std::tr1::tuple<dual_loop_op_t, dual_loop_op_t, int> dualloop8_param_t;
#if HAVE_SSE2
#if CONFIG_VP9_HIGHBITDEPTH
void wrapper_vertical_16_sse2(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count, int bd) {
vp9_highbd_lpf_vertical_16_sse2(s, p, blimit, limit, thresh, bd);
}
void wrapper_vertical_16_c(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count, int bd) {
vp9_highbd_lpf_vertical_16_c(s, p, blimit, limit, thresh, bd);
}
void wrapper_vertical_16_dual_sse2(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count, int bd) {
vp9_highbd_lpf_vertical_16_dual_sse2(s, p, blimit, limit, thresh, bd);
}
void wrapper_vertical_16_dual_c(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count, int bd) {
vp9_highbd_lpf_vertical_16_dual_c(s, p, blimit, limit, thresh, bd);
}
#else
void wrapper_vertical_16_sse2(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_sse2(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_c(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_dual_sse2(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_dual_sse2(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_dual_c(s, p, blimit, limit, thresh);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_SSE2
#if HAVE_NEON_ASM
#if CONFIG_VP9_HIGHBITDEPTH
// No neon high bitdepth functions.
#else
void wrapper_vertical_16_neon(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_neon(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_c(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_dual_neon(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_dual_neon(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_dual_c(s, p, blimit, limit, thresh);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_NEON_ASM
#if HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH)
void wrapper_vertical_16_msa(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_msa(s, p, blimit, limit, thresh);
}
void wrapper_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh,
int count) {
vp9_lpf_vertical_16_c(s, p, blimit, limit, thresh);
}
#endif // HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH)
class Loop8Test6Param : public ::testing::TestWithParam<loop8_param_t> {
public:
virtual ~Loop8Test6Param() {}
virtual void SetUp() {
loopfilter_op_ = GET_PARAM(0);
ref_loopfilter_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
count_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int bit_depth_;
int count_;
int mask_;
loop_op_t loopfilter_op_;
loop_op_t ref_loopfilter_op_;
};
class Loop8Test9Param : public ::testing::TestWithParam<dualloop8_param_t> {
public:
virtual ~Loop8Test9Param() {}
virtual void SetUp() {
loopfilter_op_ = GET_PARAM(0);
ref_loopfilter_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int bit_depth_;
int mask_;
dual_loop_op_t loopfilter_op_;
dual_loop_op_t ref_loopfilter_op_;
};
TEST_P(Loop8Test6Param, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_VP9_HIGHBITDEPTH
int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_VP9_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
int32_t p = kNumCoeffs/32;
uint16_t tmp_s[kNumCoeffs];
int j = 0;
while (j < kNumCoeffs) {
uint8_t val = rnd.Rand8();
if (val & 0x80) { // 50% chance to choose a new value.
tmp_s[j] = rnd.Rand16();
j++;
} else { // 50% chance to repeat previous value in row X times
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd.Rand16();
} else if (val & 0x20) { // Increment by an value within the limit
tmp_s[j] = (tmp_s[j - 1] + (*limit - 1));
} else { // Decrement by an value within the limit
tmp_s[j] = (tmp_s[j - 1] - (*limit - 1));
}
j++;
}
}
}
for (j = 0; j < kNumCoeffs; j++) {
if (i % 2) {
s[j] = tmp_s[j] & mask_;
} else {
s[j] = tmp_s[p * (j % p) + j / p] & mask_;
}
ref_s[j] = s[j];
}
#if CONFIG_VP9_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, count_, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count_, bd));
#else
ref_loopfilter_op_(ref_s+8+p*8, p, blimit, limit, thresh, count_);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count_));
#endif // CONFIG_VP9_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test6Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test6Param, ValueCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_VP9_HIGHBITDEPTH
const int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_VP9_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
// NOTE: The code in vp9_loopfilter.c:update_sharpness computes mblim as a
// function of sharpness_lvl and the loopfilter lvl as:
// block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
// ...
// memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
// SIMD_WIDTH);
// This means that the largest value for mblim will occur when sharpness_lvl
// is equal to 0, and lvl is equal to its greatest value (MAX_LOOP_FILTER).
// In this case block_inside_limit will be equal to MAX_LOOP_FILTER and
// therefore mblim will be equal to (2 * (lvl + 2) + block_inside_limit) =
// 2 * (MAX_LOOP_FILTER + 2) + MAX_LOOP_FILTER = 3 * MAX_LOOP_FILTER + 4
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
int32_t p = kNumCoeffs / 32;
for (int j = 0; j < kNumCoeffs; ++j) {
s[j] = rnd.Rand16() & mask_;
ref_s[j] = s[j];
}
#if CONFIG_VP9_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, count_, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count_, bd));
#else
ref_loopfilter_op_(ref_s+8+p*8, p, blimit, limit, thresh, count_);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count_));
#endif // CONFIG_VP9_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test6Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test9Param, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_VP9_HIGHBITDEPTH
const int32_t bd = bit_depth_;
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_VP9_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
int32_t p = kNumCoeffs / 32;
uint16_t tmp_s[kNumCoeffs];
int j = 0;
const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1;
while (j < kNumCoeffs) {
uint8_t val = rnd.Rand8();
if (val & 0x80) { // 50% chance to choose a new value.
tmp_s[j] = rnd.Rand16();
j++;
} else { // 50% chance to repeat previous value in row X times.
int k = 0;
while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) {
if (j < 1) {
tmp_s[j] = rnd.Rand16();
} else if (val & 0x20) { // Increment by a value within the limit.
tmp_s[j] = (tmp_s[j - 1] + (limit - 1));
} else { // Decrement by an value within the limit.
tmp_s[j] = (tmp_s[j - 1] - (limit - 1));
}
j++;
}
}
}
for (j = 0; j < kNumCoeffs; j++) {
if (i % 2) {
s[j] = tmp_s[j] & mask_;
} else {
s[j] = tmp_s[p * (j % p) + j / p] & mask_;
}
ref_s[j] = s[j];
}
#if CONFIG_VP9_HIGHBITDEPTH
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1, bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1));
#endif // CONFIG_VP9_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test9Param, C output doesn't match SSE2 "
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
TEST_P(Loop8Test9Param, ValueCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = number_of_iterations;
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, s[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref_s[kNumCoeffs]);
#else
DECLARE_ALIGNED(8, uint8_t, s[kNumCoeffs]);
DECLARE_ALIGNED(8, uint8_t, ref_s[kNumCoeffs]);
#endif // CONFIG_VP9_HIGHBITDEPTH
int err_count_total = 0;
int first_failure = -1;
for (int i = 0; i < count_test_block; ++i) {
int err_count = 0;
uint8_t tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh0[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(3 * MAX_LOOP_FILTER + 4));
DECLARE_ALIGNED(16, const uint8_t, blimit1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = static_cast<uint8_t>(rnd(MAX_LOOP_FILTER));
DECLARE_ALIGNED(16, const uint8_t, limit1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
tmp = rnd.Rand8();
DECLARE_ALIGNED(16, const uint8_t, thresh1[16]) = {
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp,
tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
};
int32_t p = kNumCoeffs / 32; // TODO(pdlf) can we have non-square here?
for (int j = 0; j < kNumCoeffs; ++j) {
s[j] = rnd.Rand16() & mask_;
ref_s[j] = s[j];
}
#if CONFIG_VP9_HIGHBITDEPTH
const int32_t bd = bit_depth_;
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1, bd);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0,
thresh0, blimit1, limit1, thresh1, bd));
#else
ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1);
ASM_REGISTER_STATE_CHECK(
loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0,
blimit1, limit1, thresh1));
#endif // CONFIG_VP9_HIGHBITDEPTH
for (int j = 0; j < kNumCoeffs; ++j) {
err_count += ref_s[j] != s[j];
}
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Loop8Test9Param, C output doesn't match SSE2"
"loopfilter output. "
<< "First failed at test case " << first_failure;
}
using std::tr1::make_tuple;
#if HAVE_SSE2
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test6Param,
::testing::Values(
make_tuple(&vp9_highbd_lpf_horizontal_4_sse2,
&vp9_highbd_lpf_horizontal_4_c, 8, 1),
make_tuple(&vp9_highbd_lpf_vertical_4_sse2,
&vp9_highbd_lpf_vertical_4_c, 8, 1),
make_tuple(&vp9_highbd_lpf_horizontal_8_sse2,
&vp9_highbd_lpf_horizontal_8_c, 8, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 8, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 8, 2),
make_tuple(&vp9_highbd_lpf_vertical_8_sse2,
&vp9_highbd_lpf_vertical_8_c, 8, 1),
make_tuple(&wrapper_vertical_16_sse2,
&wrapper_vertical_16_c, 8, 1),
make_tuple(&vp9_highbd_lpf_horizontal_4_sse2,
&vp9_highbd_lpf_horizontal_4_c, 10, 1),
make_tuple(&vp9_highbd_lpf_vertical_4_sse2,
&vp9_highbd_lpf_vertical_4_c, 10, 1),
make_tuple(&vp9_highbd_lpf_horizontal_8_sse2,
&vp9_highbd_lpf_horizontal_8_c, 10, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 10, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 10, 2),
make_tuple(&vp9_highbd_lpf_vertical_8_sse2,
&vp9_highbd_lpf_vertical_8_c, 10, 1),
make_tuple(&wrapper_vertical_16_sse2,
&wrapper_vertical_16_c, 10, 1),
make_tuple(&vp9_highbd_lpf_horizontal_4_sse2,
&vp9_highbd_lpf_horizontal_4_c, 12, 1),
make_tuple(&vp9_highbd_lpf_vertical_4_sse2,
&vp9_highbd_lpf_vertical_4_c, 12, 1),
make_tuple(&vp9_highbd_lpf_horizontal_8_sse2,
&vp9_highbd_lpf_horizontal_8_c, 12, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 12, 1),
make_tuple(&vp9_highbd_lpf_horizontal_16_sse2,
&vp9_highbd_lpf_horizontal_16_c, 12, 2),
make_tuple(&vp9_highbd_lpf_vertical_8_sse2,
&vp9_highbd_lpf_vertical_8_c, 12, 1),
make_tuple(&wrapper_vertical_16_sse2,
&wrapper_vertical_16_c, 12, 1),
make_tuple(&wrapper_vertical_16_dual_sse2,
&wrapper_vertical_16_dual_c, 8, 1),
make_tuple(&wrapper_vertical_16_dual_sse2,
&wrapper_vertical_16_dual_c, 10, 1),
make_tuple(&wrapper_vertical_16_dual_sse2,
&wrapper_vertical_16_dual_c, 12, 1)));
#else
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test6Param,
::testing::Values(
make_tuple(&vp9_lpf_horizontal_8_sse2, &vp9_lpf_horizontal_8_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_sse2, &vp9_lpf_horizontal_16_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_sse2, &vp9_lpf_horizontal_16_c, 8, 2),
make_tuple(&vp9_lpf_vertical_8_sse2, &vp9_lpf_vertical_8_c, 8, 1),
make_tuple(&wrapper_vertical_16_sse2, &wrapper_vertical_16_c, 8, 1)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif
#if HAVE_AVX2 && (!CONFIG_VP9_HIGHBITDEPTH)
INSTANTIATE_TEST_CASE_P(
AVX2, Loop8Test6Param,
::testing::Values(
make_tuple(&vp9_lpf_horizontal_16_avx2, &vp9_lpf_horizontal_16_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_avx2, &vp9_lpf_horizontal_16_c, 8,
2)));
#endif
#if HAVE_SSE2
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test9Param,
::testing::Values(
make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2,
&vp9_highbd_lpf_horizontal_4_dual_c, 8),
make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2,
&vp9_highbd_lpf_horizontal_8_dual_c, 8),
make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2,
&vp9_highbd_lpf_vertical_4_dual_c, 8),
make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2,
&vp9_highbd_lpf_vertical_8_dual_c, 8),
make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2,
&vp9_highbd_lpf_horizontal_4_dual_c, 10),
make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2,
&vp9_highbd_lpf_horizontal_8_dual_c, 10),
make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2,
&vp9_highbd_lpf_vertical_4_dual_c, 10),
make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2,
&vp9_highbd_lpf_vertical_8_dual_c, 10),
make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2,
&vp9_highbd_lpf_horizontal_4_dual_c, 12),
make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2,
&vp9_highbd_lpf_horizontal_8_dual_c, 12),
make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2,
&vp9_highbd_lpf_vertical_4_dual_c, 12),
make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2,
&vp9_highbd_lpf_vertical_8_dual_c, 12)));
#else
INSTANTIATE_TEST_CASE_P(
SSE2, Loop8Test9Param,
::testing::Values(
make_tuple(&vp9_lpf_horizontal_4_dual_sse2,
&vp9_lpf_horizontal_4_dual_c, 8),
make_tuple(&vp9_lpf_horizontal_8_dual_sse2,
&vp9_lpf_horizontal_8_dual_c, 8),
make_tuple(&vp9_lpf_vertical_4_dual_sse2,
&vp9_lpf_vertical_4_dual_c, 8),
make_tuple(&vp9_lpf_vertical_8_dual_sse2,
&vp9_lpf_vertical_8_dual_c, 8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif
#if HAVE_NEON
#if CONFIG_VP9_HIGHBITDEPTH
// No neon high bitdepth functions.
#else
INSTANTIATE_TEST_CASE_P(
NEON, Loop8Test6Param,
::testing::Values(
#if HAVE_NEON_ASM
// Using #if inside the macro is unsupported on MSVS but the tests are not
// currently built for MSVS with ARM and NEON.
make_tuple(&vp9_lpf_horizontal_16_neon,
&vp9_lpf_horizontal_16_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_neon,
&vp9_lpf_horizontal_16_c, 8, 2),
make_tuple(&wrapper_vertical_16_neon,
&wrapper_vertical_16_c, 8, 1),
make_tuple(&wrapper_vertical_16_dual_neon,
&wrapper_vertical_16_dual_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_8_neon,
&vp9_lpf_horizontal_8_c, 8, 1),
make_tuple(&vp9_lpf_vertical_8_neon,
&vp9_lpf_vertical_8_c, 8, 1),
#endif // HAVE_NEON_ASM
make_tuple(&vp9_lpf_horizontal_4_neon,
&vp9_lpf_horizontal_4_c, 8, 1),
make_tuple(&vp9_lpf_vertical_4_neon,
&vp9_lpf_vertical_4_c, 8, 1)));
INSTANTIATE_TEST_CASE_P(
NEON, Loop8Test9Param,
::testing::Values(
#if HAVE_NEON_ASM
make_tuple(&vp9_lpf_horizontal_8_dual_neon,
&vp9_lpf_horizontal_8_dual_c, 8),
make_tuple(&vp9_lpf_vertical_8_dual_neon,
&vp9_lpf_vertical_8_dual_c, 8),
#endif // HAVE_NEON_ASM
make_tuple(&vp9_lpf_horizontal_4_dual_neon,
&vp9_lpf_horizontal_4_dual_c, 8),
make_tuple(&vp9_lpf_vertical_4_dual_neon,
&vp9_lpf_vertical_4_dual_c, 8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_NEON
#if HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH)
INSTANTIATE_TEST_CASE_P(
MSA, Loop8Test6Param,
::testing::Values(
make_tuple(&vp9_lpf_horizontal_8_msa, &vp9_lpf_horizontal_8_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_msa, &vp9_lpf_horizontal_16_c, 8, 1),
make_tuple(&vp9_lpf_horizontal_16_msa, &vp9_lpf_horizontal_16_c, 8, 2),
make_tuple(&vp9_lpf_vertical_8_msa, &vp9_lpf_vertical_8_c, 8, 1),
make_tuple(&wrapper_vertical_16_msa, &wrapper_vertical_16_c, 8, 1)));
INSTANTIATE_TEST_CASE_P(
MSA, Loop8Test9Param,
::testing::Values(
make_tuple(&vp9_lpf_horizontal_4_dual_msa,
&vp9_lpf_horizontal_4_dual_c, 8),
make_tuple(&vp9_lpf_horizontal_8_dual_msa,
&vp9_lpf_horizontal_8_dual_c, 8),
make_tuple(&vp9_lpf_vertical_4_dual_msa,
&vp9_lpf_vertical_4_dual_c, 8),
make_tuple(&vp9_lpf_vertical_8_dual_msa,
&vp9_lpf_vertical_8_dual_c, 8)));
#endif // HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH)
} // namespace