vpx/vp8/encoder/ssim.c

523 lines
16 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "vpx_scale/yv12config.h"
#include "math.h"
#define C1 (float)(64 * 64 * 0.01*255*0.01*255)
#define C2 (float)(64 * 64 * 0.03*255*0.03*255)
static int width_y;
static int height_y;
static int height_uv;
static int width_uv;
static int stride_uv;
static int stride;
static int lumimask;
static int luminance;
static double plane_summed_weights = 0;
static short img12_sum_block[8*4096*4096*2] ;
static short img1_sum[8*4096*2];
static short img2_sum[8*4096*2];
static int img1_sq_sum[8*4096*2];
static int img2_sq_sum[8*4096*2];
static int img12_mul_sum[8*4096*2];
double vp8_similarity
(
int mu_x,
int mu_y,
int pre_mu_x2,
int pre_mu_y2,
int pre_mu_xy2
)
{
int mu_x2, mu_y2, mu_xy, theta_x2, theta_y2, theta_xy;
mu_x2 = mu_x * mu_x;
mu_y2 = mu_y * mu_y;
mu_xy = mu_x * mu_y;
theta_x2 = 64 * pre_mu_x2 - mu_x2;
theta_y2 = 64 * pre_mu_y2 - mu_y2;
theta_xy = 64 * pre_mu_xy2 - mu_xy;
return (2 * mu_xy + C1) * (2 * theta_xy + C2) / ((mu_x2 + mu_y2 + C1) * (theta_x2 + theta_y2 + C2));
}
double vp8_ssim
(
const unsigned char *img1,
const unsigned char *img2,
int stride_img1,
int stride_img2,
int width,
int height
)
{
int x, y, x2, y2, img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block, temp;
double plane_quality, weight, mean;
short *img1_sum_ptr1, *img1_sum_ptr2;
short *img2_sum_ptr1, *img2_sum_ptr2;
int *img1_sq_sum_ptr1, *img1_sq_sum_ptr2;
int *img2_sq_sum_ptr1, *img2_sq_sum_ptr2;
int *img12_mul_sum_ptr1, *img12_mul_sum_ptr2;
plane_quality = 0;
if (lumimask)
plane_summed_weights = 0.0f;
else
plane_summed_weights = (height - 7) * (width - 7);
//some prologue for the main loop
temp = 8 * width;
img1_sum_ptr1 = img1_sum + temp;
img2_sum_ptr1 = img2_sum + temp;
img1_sq_sum_ptr1 = img1_sq_sum + temp;
img2_sq_sum_ptr1 = img2_sq_sum + temp;
img12_mul_sum_ptr1 = img12_mul_sum + temp;
for (x = 0; x < width; x++)
{
img1_sum[x] = img1[x];
img2_sum[x] = img2[x];
img1_sq_sum[x] = img1[x] * img1[x];
img2_sq_sum[x] = img2[x] * img2[x];
img12_mul_sum[x] = img1[x] * img2[x];
img1_sum_ptr1[x] = 0;
img2_sum_ptr1[x] = 0;
img1_sq_sum_ptr1[x] = 0;
img2_sq_sum_ptr1[x] = 0;
img12_mul_sum_ptr1[x] = 0;
}
//the main loop
for (y = 1; y < height; y++)
{
img1 += stride_img1;
img2 += stride_img2;
temp = (y - 1) % 9 * width;
img1_sum_ptr1 = img1_sum + temp;
img2_sum_ptr1 = img2_sum + temp;
img1_sq_sum_ptr1 = img1_sq_sum + temp;
img2_sq_sum_ptr1 = img2_sq_sum + temp;
img12_mul_sum_ptr1 = img12_mul_sum + temp;
temp = y % 9 * width;
img1_sum_ptr2 = img1_sum + temp;
img2_sum_ptr2 = img2_sum + temp;
img1_sq_sum_ptr2 = img1_sq_sum + temp;
img2_sq_sum_ptr2 = img2_sq_sum + temp;
img12_mul_sum_ptr2 = img12_mul_sum + temp;
for (x = 0; x < width; x++)
{
img1_sum_ptr2[x] = img1_sum_ptr1[x] + img1[x];
img2_sum_ptr2[x] = img2_sum_ptr1[x] + img2[x];
img1_sq_sum_ptr2[x] = img1_sq_sum_ptr1[x] + img1[x] * img1[x];
img2_sq_sum_ptr2[x] = img2_sq_sum_ptr1[x] + img2[x] * img2[x];
img12_mul_sum_ptr2[x] = img12_mul_sum_ptr1[x] + img1[x] * img2[x];
}
if (y > 6)
{
//calculate the sum of the last 8 lines by subtracting the total sum of 8 lines back from the present sum
temp = (y + 1) % 9 * width;
img1_sum_ptr1 = img1_sum + temp;
img2_sum_ptr1 = img2_sum + temp;
img1_sq_sum_ptr1 = img1_sq_sum + temp;
img2_sq_sum_ptr1 = img2_sq_sum + temp;
img12_mul_sum_ptr1 = img12_mul_sum + temp;
for (x = 0; x < width; x++)
{
img1_sum_ptr1[x] = img1_sum_ptr2[x] - img1_sum_ptr1[x];
img2_sum_ptr1[x] = img2_sum_ptr2[x] - img2_sum_ptr1[x];
img1_sq_sum_ptr1[x] = img1_sq_sum_ptr2[x] - img1_sq_sum_ptr1[x];
img2_sq_sum_ptr1[x] = img2_sq_sum_ptr2[x] - img2_sq_sum_ptr1[x];
img12_mul_sum_ptr1[x] = img12_mul_sum_ptr2[x] - img12_mul_sum_ptr1[x];
}
//here we calculate the sum over the 8x8 block of pixels
//this is done by sliding a window across the column sums for the last 8 lines
//each time adding the new column sum, and subtracting the one which fell out of the window
img1_block = 0;
img2_block = 0;
img1_sq_block = 0;
img2_sq_block = 0;
img12_mul_block = 0;
//prologue, and calculation of simularity measure from the first 8 column sums
for (x = 0; x < 8; x++)
{
img1_block += img1_sum_ptr1[x];
img2_block += img2_sum_ptr1[x];
img1_sq_block += img1_sq_sum_ptr1[x];
img2_sq_block += img2_sq_sum_ptr1[x];
img12_mul_block += img12_mul_sum_ptr1[x];
}
if (lumimask)
{
y2 = y - 7;
x2 = 0;
if (luminance)
{
mean = (img2_block + img1_block) / 128.0f;
if (!(y2 % 2 || x2 % 2))
*(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block;
}
else
{
mean = *(img12_sum_block + y2 * width_uv + x2);
mean += *(img12_sum_block + y2 * width_uv + x2 + 4);
mean += *(img12_sum_block + (y2 + 4) * width_uv + x2);
mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4);
mean /= 512.0f;
}
weight = mean < 40 ? 0.0f :
(mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f);
plane_summed_weights += weight;
plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block);
}
else
plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block);
//and for the rest
for (x = 8; x < width; x++)
{
img1_block = img1_block + img1_sum_ptr1[x] - img1_sum_ptr1[x - 8];
img2_block = img2_block + img2_sum_ptr1[x] - img2_sum_ptr1[x - 8];
img1_sq_block = img1_sq_block + img1_sq_sum_ptr1[x] - img1_sq_sum_ptr1[x - 8];
img2_sq_block = img2_sq_block + img2_sq_sum_ptr1[x] - img2_sq_sum_ptr1[x - 8];
img12_mul_block = img12_mul_block + img12_mul_sum_ptr1[x] - img12_mul_sum_ptr1[x - 8];
if (lumimask)
{
y2 = y - 7;
x2 = x - 7;
if (luminance)
{
mean = (img2_block + img1_block) / 128.0f;
if (!(y2 % 2 || x2 % 2))
*(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block;
}
else
{
mean = *(img12_sum_block + y2 * width_uv + x2);
mean += *(img12_sum_block + y2 * width_uv + x2 + 4);
mean += *(img12_sum_block + (y2 + 4) * width_uv + x2);
mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4);
mean /= 512.0f;
}
weight = mean < 40 ? 0.0f :
(mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f);
plane_summed_weights += weight;
plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block);
}
else
plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block);
}
}
}
if (plane_summed_weights == 0)
return 1.0f;
else
return plane_quality / plane_summed_weights;
}
double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight
)
{
double a, b, c;
double frame_weight;
double ssimv;
width_y = source->y_width;
height_y = source->y_height;
height_uv = source->uv_height;
width_uv = source->uv_width;
stride_uv = dest->uv_stride;
stride = dest->y_stride;
lumimask = lumamask;
luminance = 1;
a = vp8_ssim(source->y_buffer, dest->y_buffer,
source->y_stride, dest->y_stride, source->y_width, source->y_height);
luminance = 0;
frame_weight = plane_summed_weights / ((width_y - 7) * (height_y - 7));
if (frame_weight == 0)
a = b = c = 1.0f;
else
{
b = vp8_ssim(source->u_buffer, dest->u_buffer,
source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height);
c = vp8_ssim(source->v_buffer, dest->v_buffer,
source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height);
}
ssimv = a * .8 + .1 * (b + c);
*weight = frame_weight;
return ssimv;
}
// Google version of SSIM
// SSIM
#define KERNEL 3
#define KERNEL_SIZE (2 * KERNEL + 1)
typedef unsigned char uint8;
typedef unsigned int uint32;
static const int K[KERNEL_SIZE] =
{
1, 4, 11, 16, 11, 4, 1 // 16 * exp(-0.3 * i * i)
};
static const double ki_w = 1. / 2304.; // 1 / sum(i:0..6, j..6) K[i]*K[j]
double get_ssimg(const uint8 *org, const uint8 *rec,
int xo, int yo, int W, int H,
const int stride1, const int stride2
)
{
// TODO(skal): use summed tables
int y, x;
const int ymin = (yo - KERNEL < 0) ? 0 : yo - KERNEL;
const int ymax = (yo + KERNEL > H - 1) ? H - 1 : yo + KERNEL;
const int xmin = (xo - KERNEL < 0) ? 0 : xo - KERNEL;
const int xmax = (xo + KERNEL > W - 1) ? W - 1 : xo + KERNEL;
// worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1)
// with a diff of 255, squares. That would a max error of 0x8ee0900,
// which fits into 32 bits integers.
uint32 w = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0;
org += ymin * stride1;
rec += ymin * stride2;
for (y = ymin; y <= ymax; ++y, org += stride1, rec += stride2)
{
const int Wy = K[KERNEL + y - yo];
for (x = xmin; x <= xmax; ++x)
{
const int Wxy = Wy * K[KERNEL + x - xo];
// TODO(skal): inlined assembly
w += Wxy;
xm += Wxy * org[x];
ym += Wxy * rec[x];
xxm += Wxy * org[x] * org[x];
xym += Wxy * org[x] * rec[x];
yym += Wxy * rec[x] * rec[x];
}
}
{
const double iw = 1. / w;
const double iwx = xm * iw;
const double iwy = ym * iw;
double sxx = xxm * iw - iwx * iwx;
double syy = yym * iw - iwy * iwy;
// small errors are possible, due to rounding. Clamp to zero.
if (sxx < 0.) sxx = 0.;
if (syy < 0.) syy = 0.;
{
const double sxsy = sqrt(sxx * syy);
const double sxy = xym * iw - iwx * iwy;
static const double C11 = (0.01 * 0.01) * (255 * 255);
static const double C22 = (0.03 * 0.03) * (255 * 255);
static const double C33 = (0.015 * 0.015) * (255 * 255);
const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11);
const double c = (2. * sxsy + C22) / (sxx + syy + C22);
const double s = (sxy + C33) / (sxsy + C33);
return l * c * s;
}
}
}
double get_ssimfull_kernelg(const uint8 *org, const uint8 *rec,
int xo, int yo, int W, int H,
const int stride1, const int stride2)
{
// TODO(skal): use summed tables
// worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1)
// with a diff of 255, squares. That would a max error of 0x8ee0900,
// which fits into 32 bits integers.
int y_, x_;
uint32 xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0;
org += (yo - KERNEL) * stride1;
org += (xo - KERNEL);
rec += (yo - KERNEL) * stride2;
rec += (xo - KERNEL);
for (y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride1, rec += stride2)
{
const int Wy = K[y_];
for (x_ = 0; x_ < KERNEL_SIZE; ++x_)
{
const int Wxy = Wy * K[x_];
// TODO(skal): inlined assembly
const int org_x = org[x_];
const int rec_x = rec[x_];
xm += Wxy * org_x;
ym += Wxy * rec_x;
xxm += Wxy * org_x * org_x;
xym += Wxy * org_x * rec_x;
yym += Wxy * rec_x * rec_x;
}
}
{
const double iw = ki_w;
const double iwx = xm * iw;
const double iwy = ym * iw;
double sxx = xxm * iw - iwx * iwx;
double syy = yym * iw - iwy * iwy;
// small errors are possible, due to rounding. Clamp to zero.
if (sxx < 0.) sxx = 0.;
if (syy < 0.) syy = 0.;
{
const double sxsy = sqrt(sxx * syy);
const double sxy = xym * iw - iwx * iwy;
static const double C11 = (0.01 * 0.01) * (255 * 255);
static const double C22 = (0.03 * 0.03) * (255 * 255);
static const double C33 = (0.015 * 0.015) * (255 * 255);
const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11);
const double c = (2. * sxsy + C22) / (sxx + syy + C22);
const double s = (sxy + C33) / (sxsy + C33);
return l * c * s;
}
}
}
double calc_ssimg(const uint8 *org, const uint8 *rec,
const int image_width, const int image_height,
const int stride1, const int stride2
)
{
int j, i;
double SSIM = 0.;
for (j = 0; j < KERNEL; ++j)
{
for (i = 0; i < image_width; ++i)
{
SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2);
}
}
for (j = KERNEL; j < image_height - KERNEL; ++j)
{
for (i = 0; i < KERNEL; ++i)
{
SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2);
}
for (i = KERNEL; i < image_width - KERNEL; ++i)
{
SSIM += get_ssimfull_kernelg(org, rec, i, j,
image_width, image_height, stride1, stride2);
}
for (i = image_width - KERNEL; i < image_width; ++i)
{
SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2);
}
}
for (j = image_height - KERNEL; j < image_height; ++j)
{
for (i = 0; i < image_width; ++i)
{
SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2);
}
}
return SSIM;
}
double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v
)
{
double ssim_all = 0;
int ysize = source->y_width * source->y_height;
int uvsize = ysize / 4;
*ssim_y = calc_ssimg(source->y_buffer, dest->y_buffer,
source->y_width, source->y_height,
source->y_stride, dest->y_stride);
*ssim_u = calc_ssimg(source->u_buffer, dest->u_buffer,
source->uv_width, source->uv_height,
source->uv_stride, dest->uv_stride);
*ssim_v = calc_ssimg(source->v_buffer, dest->v_buffer,
source->uv_width, source->uv_height,
source->uv_stride, dest->uv_stride);
ssim_all = (*ssim_y + *ssim_u + *ssim_v) / (ysize + uvsize + uvsize);
*ssim_y /= ysize;
*ssim_u /= uvsize;
*ssim_v /= uvsize;
return ssim_all;
}