Switch to using submodule for yaml-cpp

This commit is contained in:
Tristan Penman 2022-08-30 13:16:28 +12:00
parent fb995cebd3
commit ac122d9ed3
104 changed files with 13 additions and 11656 deletions

10
.gitmodules vendored
View File

@ -1,10 +1,16 @@
[submodule "thirdparty/picojson"]
path = thirdparty/picojson
url = https://github.com/tristanpenman/picojson.git
url = https://github.com/tristanpenman/picojson.git
shallow = true
[submodule "thirdparty/rapidjson"]
path = thirdparty/rapidjson
url = https://github.com/Tencent/rapidjson.git
url = https://github.com/Tencent/rapidjson.git
shallow = true
[submodule "thirdparty/nlohmann-json"]
path = thirdparty/nlohmann-json
url = https://github.com/nlohmann/json.git
shallow = true
[submodule "thirdparty/yaml-cpp"]
path = thirdparty/yaml-cpp
url = https://github.com/jbeder/yaml-cpp.git
shallow = true

View File

@ -83,11 +83,11 @@ target_include_directories(json11 SYSTEM PRIVATE thirdparty/json11-ec4e452)
set_target_properties(json11 PROPERTIES ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/thirdparty/json11-ec4e452)
# yaml-cpp library
file(GLOB yamlcpp_SOURCES "thirdparty/yaml-cpp-0.7.0/src/*.cpp")
file(GLOB yamlcpp_SOURCES "thirdparty/yaml-cpp/src/*.cpp")
add_library(yamlcpp ${yamlcpp_SOURCES})
target_include_directories(yamlcpp SYSTEM PRIVATE thirdparty/yamlcpp-0.7.0/include)
set_target_properties(yamlcpp PROPERTIES ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/thirdparty/yamlcpp-0.7.0)
target_include_directories(yamlcpp SYSTEM PRIVATE thirdparty/yamlcpp/include)
set_target_properties(yamlcpp PROPERTIES ARCHIVE_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR}/thirdparty/yamlcpp)
# Not all of these are required for examples build it doesn't hurt to include them
include_directories(include SYSTEM
@ -97,7 +97,7 @@ include_directories(include SYSTEM
thirdparty/rapidjson/include
thirdparty/picojson
thirdparty/nlohmann-json/include
thirdparty/yaml-cpp-0.7.0/include
thirdparty/yaml-cpp/include
)
if(valijson_BUILD_TESTS)

1
thirdparty/yaml-cpp vendored Submodule

@ -0,0 +1 @@
Subproject commit 0579ae3d976091d7d664aa9d2527e0d0cff25763

View File

@ -1,3 +0,0 @@
build/
/tags
/bazel-*

View File

@ -1,14 +0,0 @@
cc_library(
name = "yaml-cpp_internal",
visibility = ["//:__subpackages__"],
strip_include_prefix = "src",
hdrs = glob(["src/**/*.h"]),
)
cc_library(
name = "yaml-cpp",
visibility = ["//visibility:public"],
includes = ["include"],
hdrs = glob(["include/**/*.h"]),
srcs = glob(["src/**/*.cpp", "src/**/*.h"]),
)

View File

@ -1,174 +0,0 @@
# 3.5 is actually available almost everywhere, but this a good minimum
cmake_minimum_required(VERSION 3.4)
# enable MSVC_RUNTIME_LIBRARY target property
# see https://cmake.org/cmake/help/latest/policy/CMP0091.html
if(POLICY CMP0091)
cmake_policy(SET CMP0091 NEW)
endif()
project(YAML_CPP VERSION 0.7.0 LANGUAGES CXX)
include(CMakePackageConfigHelpers)
include(CMakeDependentOption)
include(CheckCXXCompilerFlag)
include(GNUInstallDirs)
include(CTest)
find_program(YAML_CPP_CLANG_FORMAT_EXE NAMES clang-format)
option(YAML_CPP_BUILD_CONTRIB "Enable yaml-cpp contrib in library" ON)
option(YAML_CPP_BUILD_TOOLS "Enable parse tools" ON)
option(YAML_BUILD_SHARED_LIBS "Build yaml-cpp shared library" ${BUILD_SHARED_LIBS})
cmake_dependent_option(YAML_CPP_BUILD_TESTS
"Enable yaml-cpp tests" ON
"BUILD_TESTING;CMAKE_SOURCE_DIR STREQUAL PROJECT_SOURCE_DIR" OFF)
cmake_dependent_option(YAML_CPP_INSTALL
"Enable generation of yaml-cpp install targets" ON
"CMAKE_SOURCE_DIR STREQUAL PROJECT_SOURCE_DIR" OFF)
cmake_dependent_option(YAML_MSVC_SHARED_RT
"MSVC: Build yaml-cpp with shared runtime libs (/MD)" ON
"MSVC" OFF)
set(yaml-cpp-type STATIC)
set(yaml-cpp-label-postfix "static")
if (YAML_BUILD_SHARED_LIBS)
set(yaml-cpp-type SHARED)
set(yaml-cpp-label-postfix "shared")
endif()
set(build-shared $<BOOL:${YAML_BUILD_SHARED_LIBS}>)
set(build-windows-dll $<AND:$<BOOL:${CMAKE_HOST_WIN32}>,${build-shared}>)
set(not-msvc $<NOT:$<CXX_COMPILER_ID:MSVC>>)
set(msvc-shared_rt $<BOOL:${YAML_MSVC_SHARED_RT}>)
if (NOT DEFINED CMAKE_MSVC_RUNTIME_LIBRARY)
set(CMAKE_MSVC_RUNTIME_LIBRARY
MultiThreaded$<$<CONFIG:Debug>:Debug>$<${msvc-shared_rt}:DLL>)
endif()
set(contrib-pattern "src/contrib/*.cpp")
set(src-pattern "src/*.cpp")
if (CMAKE_VERSION VERSION_GREATER 3.12)
list(INSERT contrib-pattern 0 CONFIGURE_DEPENDS)
list(INSERT src-pattern 0 CONFIGURE_DEPENDS)
endif()
file(GLOB yaml-cpp-contrib-sources ${contrib-pattern})
file(GLOB yaml-cpp-sources ${src-pattern})
set(msvc-rt $<TARGET_PROPERTY:MSVC_RUNTIME_LIBRARY>)
set(msvc-rt-mtd-static $<STREQUAL:${msvc-rt},MultiThreadedDebug>)
set(msvc-rt-mt-static $<STREQUAL:${msvc-rt},MultiThreaded>)
set(msvc-rt-mtd-dll $<STREQUAL:${msvc-rt},MultiThreadedDebugDLL>)
set(msvc-rt-mt-dll $<STREQUAL:${msvc-rt},MultiThreadedDLL>)
set(backport-msvc-runtime $<VERSION_LESS:${CMAKE_VERSION},3.15>)
add_library(yaml-cpp ${yaml-cpp-type} "")
add_library(yaml-cpp::yaml-cpp ALIAS yaml-cpp)
set_property(TARGET yaml-cpp
PROPERTY
MSVC_RUNTIME_LIBRARY ${CMAKE_MSVC_RUNTIME_LIBRARY})
set_property(TARGET yaml-cpp
PROPERTY
CXX_STANDARD_REQUIRED ON)
target_include_directories(yaml-cpp
PUBLIC
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
PRIVATE
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/src>)
if (NOT DEFINED CMAKE_CXX_STANDARD)
set_target_properties(yaml-cpp
PROPERTIES
CXX_STANDARD 11)
endif()
target_compile_options(yaml-cpp
PRIVATE
$<${not-msvc}:-Wall -Wextra -Wshadow -Weffc++ -Wno-long-long>
$<${not-msvc}:-pedantic -pedantic-errors>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mtd-static}>:-MTd>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mt-static}>:-MT>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mtd-dll}>:-MDd>
$<$<AND:${backport-msvc-runtime},${msvc-rt-mt-dll}>:-MD>
# /wd4127 = disable warning C4127 "conditional expression is constant"
# http://msdn.microsoft.com/en-us/library/6t66728h.aspx
# /wd4355 = disable warning C4355 "'this' : used in base member initializer list
# http://msdn.microsoft.com/en-us/library/3c594ae3.aspx
$<$<CXX_COMPILER_ID:MSVC>:/W3 /wd4127 /wd4355>)
target_compile_definitions(yaml-cpp
PRIVATE
$<${build-windows-dll}:${PROJECT_NAME}_DLL>
$<$<NOT:$<BOOL:${YAML_CPP_BUILD_CONTRIB}>>:YAML_CPP_NO_CONTRIB>)
target_sources(yaml-cpp
PRIVATE
$<$<BOOL:${YAML_CPP_BUILD_CONTRIB}>:${yaml-cpp-contrib-sources}>
${yaml-cpp-sources})
if (NOT DEFINED CMAKE_DEBUG_POSTFIX)
set(CMAKE_DEBUG_POSTFIX "d")
endif()
set_target_properties(yaml-cpp PROPERTIES
VERSION "${PROJECT_VERSION}"
SOVERSION "${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}"
PROJECT_LABEL "yaml-cpp ${yaml-cpp-label-postfix}"
DEBUG_POSTFIX "${CMAKE_DEBUG_POSTFIX}")
configure_package_config_file(
"${PROJECT_SOURCE_DIR}/yaml-cpp-config.cmake.in"
"${PROJECT_BINARY_DIR}/yaml-cpp-config.cmake"
INSTALL_DESTINATION "${CMAKE_INSTALL_DATADIR}/cmake/yaml-cpp")
write_basic_package_version_file(
"${PROJECT_BINARY_DIR}/yaml-cpp-config-version.cmake"
COMPATIBILITY AnyNewerVersion)
configure_file(yaml-cpp.pc.in yaml-cpp.pc @ONLY)
if (YAML_CPP_INSTALL)
install(TARGETS yaml-cpp
EXPORT yaml-cpp-targets
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR})
install(DIRECTORY ${PROJECT_SOURCE_DIR}/include/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
FILES_MATCHING PATTERN "*.h")
install(EXPORT yaml-cpp-targets
DESTINATION "${CMAKE_INSTALL_DATADIR}/cmake/yaml-cpp")
install(FILES
"${PROJECT_BINARY_DIR}/yaml-cpp-config.cmake"
"${PROJECT_BINARY_DIR}/yaml-cpp-config-version.cmake"
DESTINATION "${CMAKE_INSTALL_DATADIR}/cmake/yaml-cpp")
install(FILES "${PROJECT_BINARY_DIR}/yaml-cpp.pc"
DESTINATION ${CMAKE_INSTALL_DATADIR}/pkgconfig)
endif()
if(YAML_CPP_BUILD_TESTS)
add_subdirectory(test)
endif()
if(YAML_CPP_BUILD_TOOLS)
add_subdirectory(util)
endif()
if (YAML_CPP_CLANG_FORMAT_EXE)
add_custom_target(format
COMMAND clang-format --style=file -i $<TARGET_PROPERTY:yaml-cpp,SOURCES>
COMMAND_EXPAND_LISTS
COMMENT "Running clang-format"
VERBATIM)
endif()

View File

@ -1,26 +0,0 @@
# Style
This project is formatted with [clang-format][fmt] using the style file at the root of the repository. Please run clang-format before sending a pull request.
In general, try to follow the style of surrounding code. We mostly follow the [Google C++ style guide][cpp-style].
Commit messages should be in the imperative mood, as described in the [Git contributing file][git-contrib]:
> Describe your changes in imperative mood, e.g. "make xyzzy do frotz"
> instead of "[This patch] makes xyzzy do frotz" or "[I] changed xyzzy
> to do frotz", as if you are giving orders to the codebase to change
> its behaviour.
[fmt]: http://clang.llvm.org/docs/ClangFormat.html
[cpp-style]: https://google.github.io/styleguide/cppguide.html
[git-contrib]: http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
# Tests
Please verify the tests pass by running the target `tests/run_tests`.
If you are adding functionality, add tests accordingly.
# Pull request process
Every pull request undergoes a code review. Unfortunately, github's code review process isn't great, but we'll manage. During the code review, if you make changes, add new commits to the pull request for each change. Once the code review is complete, rebase against the master branch and squash into a single commit.

View File

@ -1,19 +0,0 @@
Copyright (c) 2008-2015 Jesse Beder.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -1,61 +0,0 @@
# yaml-cpp [![Build Status](https://travis-ci.org/jbeder/yaml-cpp.svg?branch=master)](https://travis-ci.org/jbeder/yaml-cpp) [![Documentation](https://codedocs.xyz/jbeder/yaml-cpp.svg)](https://codedocs.xyz/jbeder/yaml-cpp/)
yaml-cpp is a [YAML](http://www.yaml.org/) parser and emitter in C++ matching the [YAML 1.2 spec](http://www.yaml.org/spec/1.2/spec.html).
To get a feel for how it can be used, see the [Tutorial](https://github.com/jbeder/yaml-cpp/wiki/Tutorial) or [How to Emit YAML](https://github.com/jbeder/yaml-cpp/wiki/How-To-Emit-YAML). For the old API (version < 0.5.0), see [How To Parse A Document](https://github.com/jbeder/yaml-cpp/wiki/How-To-Parse-A-Document-(Old-API)).
# Problems? #
If you find a bug, post an [issue](https://github.com/jbeder/yaml-cpp/issues)! If you have questions about how to use yaml-cpp, please post it on http://stackoverflow.com and tag it [`yaml-cpp`](http://stackoverflow.com/questions/tagged/yaml-cpp).
# How to Build #
yaml-cpp uses [CMake](http://www.cmake.org) to support cross-platform building. The basic steps to build are:
1. Download and install [CMake](http://www.cmake.org) (Resources -> Download).
**Note:** If you don't use the provided installer for your platform, make sure that you add CMake's bin folder to your path.
2. Navigate into the source directory, and type:
```
mkdir build
cd build
```
3. Run CMake. The basic syntax is:
```
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=ON|OFF] ..
```
* The `generator` is whatever type of build system you'd like to use. To see a full list of generators on your platform, just run `cmake` (with no arguments). For example:
* On Windows, you might use "Visual Studio 12 2013" to generate a Visual Studio 2013 solution or "Visual Studio 14 2015 Win64" to generate a 64-bit Visual Studio 2015 solution.
* On OS X, you might use "Xcode" to generate an Xcode project
* On a UNIX-y system, simply omit the option to generate a makefile
* yaml-cpp defaults to building a static library, but you may build a shared library by specifying `-DYAML_BUILD_SHARED_LIBS=ON`.
* For more options on customizing the build, see the [CMakeLists.txt](https://github.com/jbeder/yaml-cpp/blob/master/CMakeLists.txt) file.
4. Build it!
5. To clean up, just remove the `build` directory.
# Recent Release #
[yaml-cpp 0.6.0](https://github.com/jbeder/yaml-cpp/releases/tag/yaml-cpp-0.6.0) has been released! This release requires C++11, and no longer depends on Boost.
[yaml-cpp 0.3.0](https://github.com/jbeder/yaml-cpp/releases/tag/release-0.3.0) is still available if you want the old API.
**The old API will continue to be supported, and will still receive bugfixes!** The 0.3.x and 0.4.x versions will be old API releases, and 0.5.x and above will all be new API releases.
# API Documentation
The autogenerated API reference is hosted on [CodeDocs](https://codedocs.xyz/jbeder/yaml-cpp/index.html)
# Third Party Integrations
The following projects are not officially supported:
- [Qt wrapper](https://gist.github.com/brcha/d392b2fe5f1e427cc8a6)

View File

@ -1,10 +0,0 @@
workspace(name = "com_github_jbeder_yaml_cpp")
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
http_archive(
name = "com_google_googletest",
strip_prefix = "googletest-release-1.8.1",
url = "https://github.com/google/googletest/archive/release-1.8.1.tar.gz",
sha256 = "9bf1fe5182a604b4135edc1a425ae356c9ad15e9b23f9f12a02e80184c3a249c",
)

View File

@ -1,17 +0,0 @@
#ifndef ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
namespace YAML {
using anchor_t = std::size_t;
const anchor_t NullAnchor = 0;
}
#endif // ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,71 +0,0 @@
#ifndef BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML {
YAML_CPP_API std::string EncodeBase64(const unsigned char *data,
std::size_t size);
YAML_CPP_API std::vector<unsigned char> DecodeBase64(const std::string &input);
class YAML_CPP_API Binary {
public:
Binary(const unsigned char *data_, std::size_t size_)
: m_data{}, m_unownedData(data_), m_unownedSize(size_) {}
Binary() : Binary(nullptr, 0) {}
Binary(const Binary &) = default;
Binary(Binary &&) = default;
Binary &operator=(const Binary &) = default;
Binary &operator=(Binary &&) = default;
bool owned() const { return !m_unownedData; }
std::size_t size() const { return owned() ? m_data.size() : m_unownedSize; }
const unsigned char *data() const {
return owned() ? &m_data[0] : m_unownedData;
}
void swap(std::vector<unsigned char> &rhs) {
if (m_unownedData) {
m_data.swap(rhs);
rhs.clear();
rhs.resize(m_unownedSize);
std::copy(m_unownedData, m_unownedData + m_unownedSize, rhs.begin());
m_unownedData = nullptr;
m_unownedSize = 0;
} else {
m_data.swap(rhs);
}
}
bool operator==(const Binary &rhs) const {
const std::size_t s = size();
if (s != rhs.size())
return false;
const unsigned char *d1 = data();
const unsigned char *d2 = rhs.data();
for (std::size_t i = 0; i < s; i++) {
if (*d1++ != *d2++)
return false;
}
return true;
}
bool operator!=(const Binary &rhs) const { return !(*this == rhs); }
private:
std::vector<unsigned char> m_data;
const unsigned char *m_unownedData;
std::size_t m_unownedSize;
};
} // namespace YAML
#endif // BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,40 +0,0 @@
#ifndef ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include "../anchor.h"
namespace YAML {
/**
* An object that stores and retrieves values correlating to {@link anchor_t}
* values.
*
* <p>Efficient implementation that can make assumptions about how
* {@code anchor_t} values are assigned by the {@link Parser} class.
*/
template <class T>
class AnchorDict {
public:
AnchorDict() : m_data{} {}
void Register(anchor_t anchor, T value) {
if (anchor > m_data.size()) {
m_data.resize(anchor);
}
m_data[anchor - 1] = value;
}
T Get(anchor_t anchor) const { return m_data[anchor - 1]; }
private:
std::vector<T> m_data;
};
} // namespace YAML
#endif // ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,149 +0,0 @@
#ifndef GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/mark.h"
#include <string>
namespace YAML {
class Parser;
// GraphBuilderInterface
// . Abstraction of node creation
// . pParentNode is always nullptr or the return value of one of the NewXXX()
// functions.
class GraphBuilderInterface {
public:
virtual ~GraphBuilderInterface() = 0;
// Create and return a new node with a null value.
virtual void *NewNull(const Mark &mark, void *pParentNode) = 0;
// Create and return a new node with the given tag and value.
virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) = 0;
// Create and return a new sequence node
virtual void *NewSequence(const Mark &mark, const std::string &tag,
void *pParentNode) = 0;
// Add pNode to pSequence. pNode was created with one of the NewXxx()
// functions and pSequence with NewSequence().
virtual void AppendToSequence(void *pSequence, void *pNode) = 0;
// Note that no moew entries will be added to pSequence
virtual void SequenceComplete(void *pSequence) { (void)pSequence; }
// Create and return a new map node
virtual void *NewMap(const Mark &mark, const std::string &tag,
void *pParentNode) = 0;
// Add the pKeyNode => pValueNode mapping to pMap. pKeyNode and pValueNode
// were created with one of the NewXxx() methods and pMap with NewMap().
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) = 0;
// Note that no more assignments will be made in pMap
virtual void MapComplete(void *pMap) { (void)pMap; }
// Return the node that should be used in place of an alias referencing
// pNode (pNode by default)
virtual void *AnchorReference(const Mark &mark, void *pNode) {
(void)mark;
return pNode;
}
};
// Typesafe wrapper for GraphBuilderInterface. Assumes that Impl defines
// Node, Sequence, and Map types. Sequence and Map must derive from Node
// (unless Node is defined as void). Impl must also implement function with
// all of the same names as the virtual functions in GraphBuilderInterface
// -- including the ones with default implementations -- but with the
// prototypes changed to accept an explicit Node*, Sequence*, or Map* where
// appropriate.
template <class Impl>
class GraphBuilder : public GraphBuilderInterface {
public:
typedef typename Impl::Node Node;
typedef typename Impl::Sequence Sequence;
typedef typename Impl::Map Map;
GraphBuilder(Impl &impl) : m_impl(impl) {
Map *pMap = nullptr;
Sequence *pSeq = nullptr;
Node *pNode = nullptr;
// Type consistency checks
pNode = pMap;
pNode = pSeq;
}
GraphBuilderInterface &AsBuilderInterface() { return *this; }
virtual void *NewNull(const Mark &mark, void *pParentNode) {
return CheckType<Node>(m_impl.NewNull(mark, AsNode(pParentNode)));
}
virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) {
return CheckType<Node>(
m_impl.NewScalar(mark, tag, AsNode(pParentNode), value));
}
virtual void *NewSequence(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Sequence>(
m_impl.NewSequence(mark, tag, AsNode(pParentNode)));
}
virtual void AppendToSequence(void *pSequence, void *pNode) {
m_impl.AppendToSequence(AsSequence(pSequence), AsNode(pNode));
}
virtual void SequenceComplete(void *pSequence) {
m_impl.SequenceComplete(AsSequence(pSequence));
}
virtual void *NewMap(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Map>(m_impl.NewMap(mark, tag, AsNode(pParentNode)));
}
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) {
m_impl.AssignInMap(AsMap(pMap), AsNode(pKeyNode), AsNode(pValueNode));
}
virtual void MapComplete(void *pMap) { m_impl.MapComplete(AsMap(pMap)); }
virtual void *AnchorReference(const Mark &mark, void *pNode) {
return CheckType<Node>(m_impl.AnchorReference(mark, AsNode(pNode)));
}
private:
Impl &m_impl;
// Static check for pointer to T
template <class T, class U>
static T *CheckType(U *p) {
return p;
}
static Node *AsNode(void *pNode) { return static_cast<Node *>(pNode); }
static Sequence *AsSequence(void *pSeq) {
return static_cast<Sequence *>(pSeq);
}
static Map *AsMap(void *pMap) { return static_cast<Map *>(pMap); }
};
void *BuildGraphOfNextDocument(Parser &parser,
GraphBuilderInterface &graphBuilder);
template <class Impl>
typename Impl::Node *BuildGraphOfNextDocument(Parser &parser, Impl &impl) {
GraphBuilder<Impl> graphBuilder(impl);
return static_cast<typename Impl::Node *>(
BuildGraphOfNextDocument(parser, graphBuilder));
}
}
#endif // GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,77 +0,0 @@
#ifndef DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000
#define DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "exceptions.h"
namespace YAML {
/**
* @brief The DeepRecursion class
* An exception class which is thrown by DepthGuard. Ideally it should be
* a member of DepthGuard. However, DepthGuard is a templated class which means
* that any catch points would then need to know the template parameters. It is
* simpler for clients to not have to know at the catch point what was the
* maximum depth.
*/
class DeepRecursion : public ParserException {
public:
virtual ~DeepRecursion() = default;
DeepRecursion(int depth, const Mark& mark_, const std::string& msg_);
// Returns the recursion depth when the exception was thrown
int depth() const {
return m_depth;
}
private:
int m_depth = 0;
};
/**
* @brief The DepthGuard class
* DepthGuard takes a reference to an integer. It increments the integer upon
* construction of DepthGuard and decrements the integer upon destruction.
*
* If the integer would be incremented past max_depth, then an exception is
* thrown. This is ideally geared toward guarding against deep recursion.
*
* @param max_depth
* compile-time configurable maximum depth.
*/
template <int max_depth = 2000>
class DepthGuard final {
public:
DepthGuard(int & depth_, const Mark& mark_, const std::string& msg_) : m_depth(depth_) {
++m_depth;
if ( max_depth <= m_depth ) {
throw DeepRecursion{m_depth, mark_, msg_};
}
}
DepthGuard(const DepthGuard & copy_ctor) = delete;
DepthGuard(DepthGuard && move_ctor) = delete;
DepthGuard & operator=(const DepthGuard & copy_assign) = delete;
DepthGuard & operator=(DepthGuard && move_assign) = delete;
~DepthGuard() {
--m_depth;
}
int current_depth() const {
return m_depth;
}
private:
int & m_depth;
};
} // namespace YAML
#endif // DEPTH_GUARD_H_00000000000000000000000000000000000000000000000000000000

View File

@ -1,33 +0,0 @@
#ifndef DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
// The following ifdef block is the standard way of creating macros which make
// exporting from a DLL simpler. All files within this DLL are compiled with the
// yaml_cpp_EXPORTS symbol defined on the command line. This symbol should not
// be defined on any project that uses this DLL. This way any other project
// whose source files include this file see YAML_CPP_API functions as being
// imported from a DLL, whereas this DLL sees symbols defined with this macro as
// being exported.
#undef YAML_CPP_API
#ifdef YAML_CPP_DLL // Using or Building YAML-CPP DLL (definition defined
// manually)
#ifdef yaml_cpp_EXPORTS // Building YAML-CPP DLL (definition created by CMake
// or defined manually)
// #pragma message( "Defining YAML_CPP_API for DLL export" )
#define YAML_CPP_API __declspec(dllexport)
#else // yaml_cpp_EXPORTS
// #pragma message( "Defining YAML_CPP_API for DLL import" )
#define YAML_CPP_API __declspec(dllimport)
#endif // yaml_cpp_EXPORTS
#else // YAML_CPP_DLL
#define YAML_CPP_API
#endif // YAML_CPP_DLL
#endif // DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,57 +0,0 @@
#ifndef EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <stack>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
namespace YAML {
struct Mark;
} // namespace YAML
namespace YAML {
class Emitter;
class EmitFromEvents : public EventHandler {
public:
EmitFromEvents(Emitter& emitter);
void OnDocumentStart(const Mark& mark) override;
void OnDocumentEnd() override;
void OnNull(const Mark& mark, anchor_t anchor) override;
void OnAlias(const Mark& mark, anchor_t anchor) override;
void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) override;
void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnSequenceEnd() override;
void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnMapEnd() override;
private:
void BeginNode();
void EmitProps(const std::string& tag, anchor_t anchor);
private:
Emitter& m_emitter;
struct State {
enum value { WaitingForSequenceEntry, WaitingForKey, WaitingForValue };
};
std::stack<State::value> m_stateStack;
};
}
#endif // EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,281 +0,0 @@
#ifndef EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include "yaml-cpp/binary.h"
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/null.h"
#include "yaml-cpp/ostream_wrapper.h"
namespace YAML {
class Binary;
struct _Null;
} // namespace YAML
namespace YAML {
class EmitterState;
class YAML_CPP_API Emitter {
public:
Emitter();
explicit Emitter(std::ostream& stream);
Emitter(const Emitter&) = delete;
Emitter& operator=(const Emitter&) = delete;
~Emitter();
// output
const char* c_str() const;
std::size_t size() const;
// state checking
bool good() const;
const std::string GetLastError() const;
// global setters
bool SetOutputCharset(EMITTER_MANIP value);
bool SetStringFormat(EMITTER_MANIP value);
bool SetBoolFormat(EMITTER_MANIP value);
bool SetNullFormat(EMITTER_MANIP value);
bool SetIntBase(EMITTER_MANIP value);
bool SetSeqFormat(EMITTER_MANIP value);
bool SetMapFormat(EMITTER_MANIP value);
bool SetIndent(std::size_t n);
bool SetPreCommentIndent(std::size_t n);
bool SetPostCommentIndent(std::size_t n);
bool SetFloatPrecision(std::size_t n);
bool SetDoublePrecision(std::size_t n);
void RestoreGlobalModifiedSettings();
// local setters
Emitter& SetLocalValue(EMITTER_MANIP value);
Emitter& SetLocalIndent(const _Indent& indent);
Emitter& SetLocalPrecision(const _Precision& precision);
// overloads of write
Emitter& Write(const std::string& str);
Emitter& Write(bool b);
Emitter& Write(char ch);
Emitter& Write(const _Alias& alias);
Emitter& Write(const _Anchor& anchor);
Emitter& Write(const _Tag& tag);
Emitter& Write(const _Comment& comment);
Emitter& Write(const _Null& n);
Emitter& Write(const Binary& binary);
template <typename T>
Emitter& WriteIntegralType(T value);
template <typename T>
Emitter& WriteStreamable(T value);
private:
template <typename T>
void SetStreamablePrecision(std::stringstream&) {}
std::size_t GetFloatPrecision() const;
std::size_t GetDoublePrecision() const;
void PrepareIntegralStream(std::stringstream& stream) const;
void StartedScalar();
private:
void EmitBeginDoc();
void EmitEndDoc();
void EmitBeginSeq();
void EmitEndSeq();
void EmitBeginMap();
void EmitEndMap();
void EmitNewline();
void EmitKindTag();
void EmitTag(bool verbatim, const _Tag& tag);
void PrepareNode(EmitterNodeType::value child);
void PrepareTopNode(EmitterNodeType::value child);
void FlowSeqPrepareNode(EmitterNodeType::value child);
void BlockSeqPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareLongKey(EmitterNodeType::value child);
void FlowMapPrepareLongKeyValue(EmitterNodeType::value child);
void FlowMapPrepareSimpleKey(EmitterNodeType::value child);
void FlowMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void BlockMapPrepareNode(EmitterNodeType::value child);
void BlockMapPrepareLongKey(EmitterNodeType::value child);
void BlockMapPrepareLongKeyValue(EmitterNodeType::value child);
void BlockMapPrepareSimpleKey(EmitterNodeType::value child);
void BlockMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void SpaceOrIndentTo(bool requireSpace, std::size_t indent);
const char* ComputeFullBoolName(bool b) const;
const char* ComputeNullName() const;
bool CanEmitNewline() const;
private:
std::unique_ptr<EmitterState> m_pState;
ostream_wrapper m_stream;
};
template <typename T>
inline Emitter& Emitter::WriteIntegralType(T value) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
PrepareIntegralStream(stream);
stream << value;
m_stream << stream.str();
StartedScalar();
return *this;
}
template <typename T>
inline Emitter& Emitter::WriteStreamable(T value) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
SetStreamablePrecision<T>(stream);
bool special = false;
if (std::is_floating_point<T>::value) {
if ((std::numeric_limits<T>::has_quiet_NaN ||
std::numeric_limits<T>::has_signaling_NaN) &&
std::isnan(value)) {
special = true;
stream << ".nan";
} else if (std::numeric_limits<T>::has_infinity && std::isinf(value)) {
special = true;
if (std::signbit(value)) {
stream << "-.inf";
} else {
stream << ".inf";
}
}
}
if (!special) {
stream << value;
}
m_stream << stream.str();
StartedScalar();
return *this;
}
template <>
inline void Emitter::SetStreamablePrecision<float>(std::stringstream& stream) {
stream.precision(static_cast<std::streamsize>(GetFloatPrecision()));
}
template <>
inline void Emitter::SetStreamablePrecision<double>(std::stringstream& stream) {
stream.precision(static_cast<std::streamsize>(GetDoublePrecision()));
}
// overloads of insertion
inline Emitter& operator<<(Emitter& emitter, const std::string& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, bool v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, char v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned char v) {
return emitter.Write(static_cast<char>(v));
}
inline Emitter& operator<<(Emitter& emitter, const _Alias& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Anchor& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Tag& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Comment& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Null& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const Binary& b) {
return emitter.Write(b);
}
inline Emitter& operator<<(Emitter& emitter, const char* v) {
return emitter.Write(std::string(v));
}
inline Emitter& operator<<(Emitter& emitter, int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, float v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, double v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, EMITTER_MANIP value) {
return emitter.SetLocalValue(value);
}
inline Emitter& operator<<(Emitter& emitter, _Indent indent) {
return emitter.SetLocalIndent(indent);
}
inline Emitter& operator<<(Emitter& emitter, _Precision precision) {
return emitter.SetLocalPrecision(precision);
}
} // namespace YAML
#endif // EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,16 +0,0 @@
#ifndef EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
struct EmitterNodeType {
enum value { NoType, Property, Scalar, FlowSeq, BlockSeq, FlowMap, BlockMap };
};
}
#endif // EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,144 +0,0 @@
#ifndef EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
namespace YAML {
enum EMITTER_MANIP {
// general manipulators
Auto,
TagByKind,
Newline,
// output character set
EmitNonAscii,
EscapeNonAscii,
EscapeAsJson,
// string manipulators
// Auto, // duplicate
SingleQuoted,
DoubleQuoted,
Literal,
// null manipulators
LowerNull,
UpperNull,
CamelNull,
TildeNull,
// bool manipulators
YesNoBool, // yes, no
TrueFalseBool, // true, false
OnOffBool, // on, off
UpperCase, // TRUE, N
LowerCase, // f, yes
CamelCase, // No, Off
LongBool, // yes, On
ShortBool, // y, t
// int manipulators
Dec,
Hex,
Oct,
// document manipulators
BeginDoc,
EndDoc,
// sequence manipulators
BeginSeq,
EndSeq,
Flow,
Block,
// map manipulators
BeginMap,
EndMap,
Key,
Value,
// Flow, // duplicate
// Block, // duplicate
// Auto, // duplicate
LongKey
};
struct _Indent {
_Indent(int value_) : value(value_) {}
int value;
};
inline _Indent Indent(int value) { return _Indent(value); }
struct _Alias {
_Alias(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Alias Alias(const std::string& content) { return _Alias(content); }
struct _Anchor {
_Anchor(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Anchor Anchor(const std::string& content) { return _Anchor(content); }
struct _Tag {
struct Type {
enum value { Verbatim, PrimaryHandle, NamedHandle };
};
explicit _Tag(const std::string& prefix_, const std::string& content_,
Type::value type_)
: prefix(prefix_), content(content_), type(type_) {}
std::string prefix;
std::string content;
Type::value type;
};
inline _Tag VerbatimTag(const std::string& content) {
return _Tag("", content, _Tag::Type::Verbatim);
}
inline _Tag LocalTag(const std::string& content) {
return _Tag("", content, _Tag::Type::PrimaryHandle);
}
inline _Tag LocalTag(const std::string& prefix, const std::string content) {
return _Tag(prefix, content, _Tag::Type::NamedHandle);
}
inline _Tag SecondaryTag(const std::string& content) {
return _Tag("", content, _Tag::Type::NamedHandle);
}
struct _Comment {
_Comment(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Comment Comment(const std::string& content) { return _Comment(content); }
struct _Precision {
_Precision(int floatPrecision_, int doublePrecision_)
: floatPrecision(floatPrecision_), doublePrecision(doublePrecision_) {}
int floatPrecision;
int doublePrecision;
};
inline _Precision FloatPrecision(int n) { return _Precision(n, -1); }
inline _Precision DoublePrecision(int n) { return _Precision(-1, n); }
inline _Precision Precision(int n) { return _Precision(n, n); }
}
#endif // EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,16 +0,0 @@
#ifndef EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
struct EmitterStyle {
enum value { Default, Block, Flow };
};
}
#endif // EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,45 +0,0 @@
#ifndef EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
namespace YAML {
struct Mark;
class EventHandler {
public:
virtual ~EventHandler() = default;
virtual void OnDocumentStart(const Mark& mark) = 0;
virtual void OnDocumentEnd() = 0;
virtual void OnNull(const Mark& mark, anchor_t anchor) = 0;
virtual void OnAlias(const Mark& mark, anchor_t anchor) = 0;
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) = 0;
virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) = 0;
virtual void OnSequenceEnd() = 0;
virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) = 0;
virtual void OnMapEnd() = 0;
virtual void OnAnchor(const Mark& /*mark*/,
const std::string& /*anchor_name*/) {
// empty default implementation for compatibility
}
};
} // namespace YAML
#endif // EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,303 +0,0 @@
#ifndef EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/mark.h"
#include "yaml-cpp/noexcept.h"
#include "yaml-cpp/traits.h"
#include <sstream>
#include <stdexcept>
#include <string>
namespace YAML {
// error messages
namespace ErrorMsg {
const char* const YAML_DIRECTIVE_ARGS =
"YAML directives must have exactly one argument";
const char* const YAML_VERSION = "bad YAML version: ";
const char* const YAML_MAJOR_VERSION = "YAML major version too large";
const char* const REPEATED_YAML_DIRECTIVE = "repeated YAML directive";
const char* const TAG_DIRECTIVE_ARGS =
"TAG directives must have exactly two arguments";
const char* const REPEATED_TAG_DIRECTIVE = "repeated TAG directive";
const char* const CHAR_IN_TAG_HANDLE =
"illegal character found while scanning tag handle";
const char* const TAG_WITH_NO_SUFFIX = "tag handle with no suffix";
const char* const END_OF_VERBATIM_TAG = "end of verbatim tag not found";
const char* const END_OF_MAP = "end of map not found";
const char* const END_OF_MAP_FLOW = "end of map flow not found";
const char* const END_OF_SEQ = "end of sequence not found";
const char* const END_OF_SEQ_FLOW = "end of sequence flow not found";
const char* const MULTIPLE_TAGS =
"cannot assign multiple tags to the same node";
const char* const MULTIPLE_ANCHORS =
"cannot assign multiple anchors to the same node";
const char* const MULTIPLE_ALIASES =
"cannot assign multiple aliases to the same node";
const char* const ALIAS_CONTENT =
"aliases can't have any content, *including* tags";
const char* const INVALID_HEX = "bad character found while scanning hex number";
const char* const INVALID_UNICODE = "invalid unicode: ";
const char* const INVALID_ESCAPE = "unknown escape character: ";
const char* const UNKNOWN_TOKEN = "unknown token";
const char* const DOC_IN_SCALAR = "illegal document indicator in scalar";
const char* const EOF_IN_SCALAR = "illegal EOF in scalar";
const char* const CHAR_IN_SCALAR = "illegal character in scalar";
const char* const TAB_IN_INDENTATION =
"illegal tab when looking for indentation";
const char* const FLOW_END = "illegal flow end";
const char* const BLOCK_ENTRY = "illegal block entry";
const char* const MAP_KEY = "illegal map key";
const char* const MAP_VALUE = "illegal map value";
const char* const ALIAS_NOT_FOUND = "alias not found after *";
const char* const ANCHOR_NOT_FOUND = "anchor not found after &";
const char* const CHAR_IN_ALIAS =
"illegal character found while scanning alias";
const char* const CHAR_IN_ANCHOR =
"illegal character found while scanning anchor";
const char* const ZERO_INDENT_IN_BLOCK =
"cannot set zero indentation for a block scalar";
const char* const CHAR_IN_BLOCK = "unexpected character in block scalar";
const char* const AMBIGUOUS_ANCHOR =
"cannot assign the same alias to multiple nodes";
const char* const UNKNOWN_ANCHOR = "the referenced anchor is not defined";
const char* const INVALID_NODE =
"invalid node; this may result from using a map iterator as a sequence "
"iterator, or vice-versa";
const char* const INVALID_SCALAR = "invalid scalar";
const char* const KEY_NOT_FOUND = "key not found";
const char* const BAD_CONVERSION = "bad conversion";
const char* const BAD_DEREFERENCE = "bad dereference";
const char* const BAD_SUBSCRIPT = "operator[] call on a scalar";
const char* const BAD_PUSHBACK = "appending to a non-sequence";
const char* const BAD_INSERT = "inserting in a non-convertible-to-map";
const char* const UNMATCHED_GROUP_TAG = "unmatched group tag";
const char* const UNEXPECTED_END_SEQ = "unexpected end sequence token";
const char* const UNEXPECTED_END_MAP = "unexpected end map token";
const char* const SINGLE_QUOTED_CHAR =
"invalid character in single-quoted string";
const char* const INVALID_ANCHOR = "invalid anchor";
const char* const INVALID_ALIAS = "invalid alias";
const char* const INVALID_TAG = "invalid tag";
const char* const BAD_FILE = "bad file";
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(
const T&, typename disable_if<is_numeric<T>>::type* = 0) {
return KEY_NOT_FOUND;
}
inline const std::string KEY_NOT_FOUND_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
inline const std::string KEY_NOT_FOUND_WITH_KEY(const char* key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(
const T& key, typename enable_if<is_numeric<T>>::type* = 0) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string BAD_SUBSCRIPT_WITH_KEY(
const T&, typename disable_if<is_numeric<T>>::type* = nullptr) {
return BAD_SUBSCRIPT;
}
inline const std::string BAD_SUBSCRIPT_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
inline const std::string BAD_SUBSCRIPT_WITH_KEY(const char* key) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
template <typename T>
inline const std::string BAD_SUBSCRIPT_WITH_KEY(
const T& key, typename enable_if<is_numeric<T>>::type* = nullptr) {
std::stringstream stream;
stream << BAD_SUBSCRIPT << " (key: \"" << key << "\")";
return stream.str();
}
inline const std::string INVALID_NODE_WITH_KEY(const std::string& key) {
std::stringstream stream;
if (key.empty()) {
return INVALID_NODE;
}
stream << "invalid node; first invalid key: \"" << key << "\"";
return stream.str();
}
} // namespace ErrorMsg
class YAML_CPP_API Exception : public std::runtime_error {
public:
Exception(const Mark& mark_, const std::string& msg_)
: std::runtime_error(build_what(mark_, msg_)), mark(mark_), msg(msg_) {}
~Exception() YAML_CPP_NOEXCEPT override;
Exception(const Exception&) = default;
Mark mark;
std::string msg;
private:
static const std::string build_what(const Mark& mark,
const std::string& msg) {
if (mark.is_null()) {
return msg;
}
std::stringstream output;
output << "yaml-cpp: error at line " << mark.line + 1 << ", column "
<< mark.column + 1 << ": " << msg;
return output.str();
}
};
class YAML_CPP_API ParserException : public Exception {
public:
ParserException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
ParserException(const ParserException&) = default;
~ParserException() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API RepresentationException : public Exception {
public:
RepresentationException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
RepresentationException(const RepresentationException&) = default;
~RepresentationException() YAML_CPP_NOEXCEPT override;
};
// representation exceptions
class YAML_CPP_API InvalidScalar : public RepresentationException {
public:
InvalidScalar(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::INVALID_SCALAR) {}
InvalidScalar(const InvalidScalar&) = default;
~InvalidScalar() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API KeyNotFound : public RepresentationException {
public:
template <typename T>
KeyNotFound(const Mark& mark_, const T& key_)
: RepresentationException(mark_, ErrorMsg::KEY_NOT_FOUND_WITH_KEY(key_)) {
}
KeyNotFound(const KeyNotFound&) = default;
~KeyNotFound() YAML_CPP_NOEXCEPT override;
};
template <typename T>
class YAML_CPP_API TypedKeyNotFound : public KeyNotFound {
public:
TypedKeyNotFound(const Mark& mark_, const T& key_)
: KeyNotFound(mark_, key_), key(key_) {}
~TypedKeyNotFound() YAML_CPP_NOEXCEPT override = default;
T key;
};
template <typename T>
inline TypedKeyNotFound<T> MakeTypedKeyNotFound(const Mark& mark,
const T& key) {
return TypedKeyNotFound<T>(mark, key);
}
class YAML_CPP_API InvalidNode : public RepresentationException {
public:
InvalidNode(const std::string& key)
: RepresentationException(Mark::null_mark(),
ErrorMsg::INVALID_NODE_WITH_KEY(key)) {}
InvalidNode(const InvalidNode&) = default;
~InvalidNode() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadConversion : public RepresentationException {
public:
explicit BadConversion(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::BAD_CONVERSION) {}
BadConversion(const BadConversion&) = default;
~BadConversion() YAML_CPP_NOEXCEPT override;
};
template <typename T>
class TypedBadConversion : public BadConversion {
public:
explicit TypedBadConversion(const Mark& mark_) : BadConversion(mark_) {}
};
class YAML_CPP_API BadDereference : public RepresentationException {
public:
BadDereference()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_DEREFERENCE) {}
BadDereference(const BadDereference&) = default;
~BadDereference() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadSubscript : public RepresentationException {
public:
template <typename Key>
BadSubscript(const Mark& mark_, const Key& key)
: RepresentationException(mark_, ErrorMsg::BAD_SUBSCRIPT_WITH_KEY(key)) {}
BadSubscript(const BadSubscript&) = default;
~BadSubscript() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadPushback : public RepresentationException {
public:
BadPushback()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_PUSHBACK) {}
BadPushback(const BadPushback&) = default;
~BadPushback() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadInsert : public RepresentationException {
public:
BadInsert()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_INSERT) {}
BadInsert(const BadInsert&) = default;
~BadInsert() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API EmitterException : public Exception {
public:
EmitterException(const std::string& msg_)
: Exception(Mark::null_mark(), msg_) {}
EmitterException(const EmitterException&) = default;
~EmitterException() YAML_CPP_NOEXCEPT override;
};
class YAML_CPP_API BadFile : public Exception {
public:
explicit BadFile(const std::string& filename)
: Exception(Mark::null_mark(),
std::string(ErrorMsg::BAD_FILE) + ": " + filename) {}
BadFile(const BadFile&) = default;
~BadFile() YAML_CPP_NOEXCEPT override;
};
} // namespace YAML
#endif // EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,29 +0,0 @@
#ifndef MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
namespace YAML {
struct YAML_CPP_API Mark {
Mark() : pos(0), line(0), column(0) {}
static const Mark null_mark() { return Mark(-1, -1, -1); }
bool is_null() const { return pos == -1 && line == -1 && column == -1; }
int pos;
int line, column;
private:
Mark(int pos_, int line_, int column_)
: pos(pos_), line(line_), column(column_) {}
};
}
#endif // MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,392 +0,0 @@
#ifndef NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <array>
#include <cmath>
#include <limits>
#include <list>
#include <map>
#include <sstream>
#include <type_traits>
#include <vector>
#include "yaml-cpp/binary.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/null.h"
namespace YAML {
class Binary;
struct _Null;
template <typename T>
struct convert;
} // namespace YAML
namespace YAML {
namespace conversion {
inline bool IsInfinity(const std::string& input) {
return input == ".inf" || input == ".Inf" || input == ".INF" ||
input == "+.inf" || input == "+.Inf" || input == "+.INF";
}
inline bool IsNegativeInfinity(const std::string& input) {
return input == "-.inf" || input == "-.Inf" || input == "-.INF";
}
inline bool IsNaN(const std::string& input) {
return input == ".nan" || input == ".NaN" || input == ".NAN";
}
}
// Node
template <>
struct convert<Node> {
static Node encode(const Node& rhs) { return rhs; }
static bool decode(const Node& node, Node& rhs) {
rhs.reset(node);
return true;
}
};
// std::string
template <>
struct convert<std::string> {
static Node encode(const std::string& rhs) { return Node(rhs); }
static bool decode(const Node& node, std::string& rhs) {
if (!node.IsScalar())
return false;
rhs = node.Scalar();
return true;
}
};
// C-strings can only be encoded
template <>
struct convert<const char*> {
static Node encode(const char* rhs) { return Node(rhs); }
};
template <>
struct convert<char*> {
static Node encode(const char* rhs) { return Node(rhs); }
};
template <std::size_t N>
struct convert<char[N]> {
static Node encode(const char* rhs) { return Node(rhs); }
};
template <>
struct convert<_Null> {
static Node encode(const _Null& /* rhs */) { return Node(); }
static bool decode(const Node& node, _Null& /* rhs */) {
return node.IsNull();
}
};
namespace conversion {
template <typename T>
typename std::enable_if< std::is_floating_point<T>::value, void>::type
inner_encode(const T& rhs, std::stringstream& stream){
if (std::isnan(rhs)) {
stream << ".nan";
} else if (std::isinf(rhs)) {
if (std::signbit(rhs)) {
stream << "-.inf";
} else {
stream << ".inf";
}
} else {
stream << rhs;
}
}
template <typename T>
typename std::enable_if<!std::is_floating_point<T>::value, void>::type
inner_encode(const T& rhs, std::stringstream& stream){
stream << rhs;
}
template <typename T>
typename std::enable_if<(std::is_same<T, unsigned char>::value ||
std::is_same<T, signed char>::value), bool>::type
ConvertStreamTo(std::stringstream& stream, T& rhs) {
int num;
if ((stream >> std::noskipws >> num) && (stream >> std::ws).eof()) {
if (num >= (std::numeric_limits<T>::min)() &&
num <= (std::numeric_limits<T>::max)()) {
rhs = (T)num;
return true;
}
}
return false;
}
template <typename T>
typename std::enable_if<!(std::is_same<T, unsigned char>::value ||
std::is_same<T, signed char>::value), bool>::type
ConvertStreamTo(std::stringstream& stream, T& rhs) {
if ((stream >> std::noskipws >> rhs) && (stream >> std::ws).eof()) {
return true;
}
return false;
}
}
#define YAML_DEFINE_CONVERT_STREAMABLE(type, negative_op) \
template <> \
struct convert<type> { \
\
static Node encode(const type& rhs) { \
std::stringstream stream; \
stream.precision(std::numeric_limits<type>::max_digits10); \
conversion::inner_encode(rhs, stream); \
return Node(stream.str()); \
} \
\
static bool decode(const Node& node, type& rhs) { \
if (node.Type() != NodeType::Scalar) { \
return false; \
} \
const std::string& input = node.Scalar(); \
std::stringstream stream(input); \
stream.unsetf(std::ios::dec); \
if ((stream.peek() == '-') && std::is_unsigned<type>::value) { \
return false; \
} \
if (conversion::ConvertStreamTo(stream, rhs)) { \
return true; \
} \
if (std::numeric_limits<type>::has_infinity) { \
if (conversion::IsInfinity(input)) { \
rhs = std::numeric_limits<type>::infinity(); \
return true; \
} else if (conversion::IsNegativeInfinity(input)) { \
rhs = negative_op std::numeric_limits<type>::infinity(); \
return true; \
} \
} \
\
if (std::numeric_limits<type>::has_quiet_NaN) { \
if (conversion::IsNaN(input)) { \
rhs = std::numeric_limits<type>::quiet_NaN(); \
return true; \
} \
} \
\
return false; \
} \
}
#define YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE(type, -)
#define YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE(type, +)
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(int);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(short);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned short);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(signed char);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(float);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(double);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long double);
#undef YAML_DEFINE_CONVERT_STREAMABLE_SIGNED
#undef YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED
#undef YAML_DEFINE_CONVERT_STREAMABLE
// bool
template <>
struct convert<bool> {
static Node encode(bool rhs) { return rhs ? Node("true") : Node("false"); }
YAML_CPP_API static bool decode(const Node& node, bool& rhs);
};
// std::map
template <typename K, typename V, typename C, typename A>
struct convert<std::map<K, V, C, A>> {
static Node encode(const std::map<K, V, C, A>& rhs) {
Node node(NodeType::Map);
for (const auto& element : rhs)
node.force_insert(element.first, element.second);
return node;
}
static bool decode(const Node& node, std::map<K, V, C, A>& rhs) {
if (!node.IsMap())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[element.first.template as<K>()] = element.second.template as<V>();
#else
rhs[element.first.as<K>()] = element.second.as<V>();
#endif
return true;
}
};
// std::vector
template <typename T, typename A>
struct convert<std::vector<T, A>> {
static Node encode(const std::vector<T, A>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs)
node.push_back(element);
return node;
}
static bool decode(const Node& node, std::vector<T, A>& rhs) {
if (!node.IsSequence())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.push_back(element.template as<T>());
#else
rhs.push_back(element.as<T>());
#endif
return true;
}
};
// std::list
template <typename T, typename A>
struct convert<std::list<T,A>> {
static Node encode(const std::list<T,A>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs)
node.push_back(element);
return node;
}
static bool decode(const Node& node, std::list<T,A>& rhs) {
if (!node.IsSequence())
return false;
rhs.clear();
for (const auto& element : node)
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.push_back(element.template as<T>());
#else
rhs.push_back(element.as<T>());
#endif
return true;
}
};
// std::array
template <typename T, std::size_t N>
struct convert<std::array<T, N>> {
static Node encode(const std::array<T, N>& rhs) {
Node node(NodeType::Sequence);
for (const auto& element : rhs) {
node.push_back(element);
}
return node;
}
static bool decode(const Node& node, std::array<T, N>& rhs) {
if (!isNodeValid(node)) {
return false;
}
for (auto i = 0u; i < node.size(); ++i) {
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs[i] = node[i].template as<T>();
#else
rhs[i] = node[i].as<T>();
#endif
}
return true;
}
private:
static bool isNodeValid(const Node& node) {
return node.IsSequence() && node.size() == N;
}
};
// std::pair
template <typename T, typename U>
struct convert<std::pair<T, U>> {
static Node encode(const std::pair<T, U>& rhs) {
Node node(NodeType::Sequence);
node.push_back(rhs.first);
node.push_back(rhs.second);
return node;
}
static bool decode(const Node& node, std::pair<T, U>& rhs) {
if (!node.IsSequence())
return false;
if (node.size() != 2)
return false;
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.first = node[0].template as<T>();
#else
rhs.first = node[0].as<T>();
#endif
#if defined(__GNUC__) && __GNUC__ < 4
// workaround for GCC 3:
rhs.second = node[1].template as<U>();
#else
rhs.second = node[1].as<U>();
#endif
return true;
}
};
// binary
template <>
struct convert<Binary> {
static Node encode(const Binary& rhs) {
return Node(EncodeBase64(rhs.data(), rhs.size()));
}
static bool decode(const Node& node, Binary& rhs) {
if (!node.IsScalar())
return false;
std::vector<unsigned char> data = DecodeBase64(node.Scalar());
if (data.empty() && !node.Scalar().empty())
return false;
rhs.swap(data);
return true;
}
};
}
#endif // NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,235 +0,0 @@
#ifndef NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_data.h"
#include <algorithm>
#include <type_traits>
namespace YAML {
namespace detail {
template <typename Key, typename Enable = void>
struct get_idx {
static node* get(const std::vector<node*>& /* sequence */,
const Key& /* key */, shared_memory_holder /* pMemory */) {
return nullptr;
}
};
template <typename Key>
struct get_idx<Key,
typename std::enable_if<std::is_unsigned<Key>::value &&
!std::is_same<Key, bool>::value>::type> {
static node* get(const std::vector<node*>& sequence, const Key& key,
shared_memory_holder /* pMemory */) {
return key < sequence.size() ? sequence[key] : nullptr;
}
static node* get(std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
if (key > sequence.size() || (key > 0 && !sequence[key - 1]->is_defined()))
return nullptr;
if (key == sequence.size())
sequence.push_back(&pMemory->create_node());
return sequence[key];
}
};
template <typename Key>
struct get_idx<Key, typename std::enable_if<std::is_signed<Key>::value>::type> {
static node* get(const std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(
sequence, static_cast<std::size_t>(key), pMemory)
: nullptr;
}
static node* get(std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(
sequence, static_cast<std::size_t>(key), pMemory)
: nullptr;
}
};
template <typename Key, typename Enable = void>
struct remove_idx {
static bool remove(std::vector<node*>&, const Key&, std::size_t&) {
return false;
}
};
template <typename Key>
struct remove_idx<
Key, typename std::enable_if<std::is_unsigned<Key>::value &&
!std::is_same<Key, bool>::value>::type> {
static bool remove(std::vector<node*>& sequence, const Key& key,
std::size_t& seqSize) {
if (key >= sequence.size()) {
return false;
} else {
sequence.erase(sequence.begin() + key);
if (seqSize > key) {
--seqSize;
}
return true;
}
}
};
template <typename Key>
struct remove_idx<Key,
typename std::enable_if<std::is_signed<Key>::value>::type> {
static bool remove(std::vector<node*>& sequence, const Key& key,
std::size_t& seqSize) {
return key >= 0 ? remove_idx<std::size_t>::remove(
sequence, static_cast<std::size_t>(key), seqSize)
: false;
}
};
template <typename T>
inline bool node::equals(const T& rhs, shared_memory_holder pMemory) {
T lhs;
if (convert<T>::decode(Node(*this, pMemory), lhs)) {
return lhs == rhs;
}
return false;
}
inline bool node::equals(const char* rhs, shared_memory_holder pMemory) {
std::string lhs;
if (convert<std::string>::decode(Node(*this, std::move(pMemory)), lhs)) {
return lhs == rhs;
}
return false;
}
// indexing
template <typename Key>
inline node* node_data::get(const Key& key,
shared_memory_holder pMemory) const {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
return nullptr;
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory))
return pNode;
return nullptr;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
auto it = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
return it != m_map.end() ? it->second : nullptr;
}
template <typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory)) {
m_type = NodeType::Sequence;
return *pNode;
}
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
auto it = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
if (it != m_map.end()) {
return *it->second;
}
node& k = convert_to_node(key, pMemory);
node& v = pMemory->create_node();
insert_map_pair(k, v);
return v;
}
template <typename Key>
inline bool node_data::remove(const Key& key, shared_memory_holder pMemory) {
if (m_type == NodeType::Sequence) {
return remove_idx<Key>::remove(m_sequence, key, m_seqSize);
}
if (m_type == NodeType::Map) {
kv_pairs::iterator it = m_undefinedPairs.begin();
while (it != m_undefinedPairs.end()) {
kv_pairs::iterator jt = std::next(it);
if (it->first->equals(key, pMemory)) {
m_undefinedPairs.erase(it);
}
it = jt;
}
auto iter = std::find_if(m_map.begin(), m_map.end(), [&](const kv_pair m) {
return m.first->equals(key, pMemory);
});
if (iter != m_map.end()) {
m_map.erase(iter);
return true;
}
}
return false;
}
// map
template <typename Key, typename Value>
inline void node_data::force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadInsert();
}
node& k = convert_to_node(key, pMemory);
node& v = convert_to_node(value, pMemory);
insert_map_pair(k, v);
}
template <typename T>
inline node& node_data::convert_to_node(const T& rhs,
shared_memory_holder pMemory) {
Node value = convert<T>::encode(rhs);
value.EnsureNodeExists();
pMemory->merge(*value.m_pMemory);
return *value.m_pNode;
}
}
}
#endif // NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,96 +0,0 @@
#ifndef VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/ptr.h"
#include <cstddef>
#include <iterator>
namespace YAML {
namespace detail {
struct iterator_value;
template <typename V>
class iterator_base {
private:
template <typename>
friend class iterator_base;
struct enabler {};
using base_type = node_iterator;
struct proxy {
explicit proxy(const V& x) : m_ref(x) {}
V* operator->() { return std::addressof(m_ref); }
operator V*() { return std::addressof(m_ref); }
V m_ref;
};
public:
using iterator_category = std::forward_iterator_tag;
using value_type = V;
using difference_type = std::ptrdiff_t;
using pointer = V*;
using reference = V;
public:
iterator_base() : m_iterator(), m_pMemory() {}
explicit iterator_base(base_type rhs, shared_memory_holder pMemory)
: m_iterator(rhs), m_pMemory(pMemory) {}
template <class W>
iterator_base(const iterator_base<W>& rhs,
typename std::enable_if<std::is_convertible<W*, V*>::value,
enabler>::type = enabler())
: m_iterator(rhs.m_iterator), m_pMemory(rhs.m_pMemory) {}
iterator_base<V>& operator++() {
++m_iterator;
return *this;
}
iterator_base<V> operator++(int) {
iterator_base<V> iterator_pre(*this);
++(*this);
return iterator_pre;
}
template <typename W>
bool operator==(const iterator_base<W>& rhs) const {
return m_iterator == rhs.m_iterator;
}
template <typename W>
bool operator!=(const iterator_base<W>& rhs) const {
return m_iterator != rhs.m_iterator;
}
value_type operator*() const {
const typename base_type::value_type& v = *m_iterator;
if (v.pNode)
return value_type(Node(*v, m_pMemory));
if (v.first && v.second)
return value_type(Node(*v.first, m_pMemory), Node(*v.second, m_pMemory));
return value_type();
}
proxy operator->() const { return proxy(**this); }
private:
base_type m_iterator;
shared_memory_holder m_pMemory;
};
} // namespace detail
} // namespace YAML
#endif // VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,27 +0,0 @@
#ifndef VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include <list>
#include <utility>
#include <vector>
namespace YAML {
namespace detail {
struct iterator_value;
template <typename V>
class iterator_base;
}
using iterator = detail::iterator_base<detail::iterator_value>;
using const_iterator = detail::iterator_base<const detail::iterator_value>;
}
#endif // VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,47 +0,0 @@
#ifndef VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <set>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h"
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
namespace YAML {
namespace detail {
class YAML_CPP_API memory {
public:
memory() : m_nodes{} {}
node& create_node();
void merge(const memory& rhs);
private:
using Nodes = std::set<shared_node>;
Nodes m_nodes;
};
class YAML_CPP_API memory_holder {
public:
memory_holder() : m_pMemory(new memory) {}
node& create_node() { return m_pMemory->create_node(); }
void merge(memory_holder& rhs);
private:
shared_memory m_pMemory;
};
} // namespace detail
} // namespace YAML
#endif // VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,177 +0,0 @@
#ifndef NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/node/detail/node_ref.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include <set>
#include <atomic>
namespace YAML {
namespace detail {
class node {
private:
struct less {
bool operator ()(const node* l, const node* r) const {return l->m_index < r->m_index;}
};
public:
node() : m_pRef(new node_ref), m_dependencies{}, m_index{} {}
node(const node&) = delete;
node& operator=(const node&) = delete;
bool is(const node& rhs) const { return m_pRef == rhs.m_pRef; }
const node_ref* ref() const { return m_pRef.get(); }
bool is_defined() const { return m_pRef->is_defined(); }
const Mark& mark() const { return m_pRef->mark(); }
NodeType::value type() const { return m_pRef->type(); }
const std::string& scalar() const { return m_pRef->scalar(); }
const std::string& tag() const { return m_pRef->tag(); }
EmitterStyle::value style() const { return m_pRef->style(); }
template <typename T>
bool equals(const T& rhs, shared_memory_holder pMemory);
bool equals(const char* rhs, shared_memory_holder pMemory);
void mark_defined() {
if (is_defined())
return;
m_pRef->mark_defined();
for (node* dependency : m_dependencies)
dependency->mark_defined();
m_dependencies.clear();
}
void add_dependency(node& rhs) {
if (is_defined())
rhs.mark_defined();
else
m_dependencies.insert(&rhs);
}
void set_ref(const node& rhs) {
if (rhs.is_defined())
mark_defined();
m_pRef = rhs.m_pRef;
}
void set_data(const node& rhs) {
if (rhs.is_defined())
mark_defined();
m_pRef->set_data(*rhs.m_pRef);
}
void set_mark(const Mark& mark) { m_pRef->set_mark(mark); }
void set_type(NodeType::value type) {
if (type != NodeType::Undefined)
mark_defined();
m_pRef->set_type(type);
}
void set_null() {
mark_defined();
m_pRef->set_null();
}
void set_scalar(const std::string& scalar) {
mark_defined();
m_pRef->set_scalar(scalar);
}
void set_tag(const std::string& tag) {
mark_defined();
m_pRef->set_tag(tag);
}
// style
void set_style(EmitterStyle::value style) {
mark_defined();
m_pRef->set_style(style);
}
// size/iterator
std::size_t size() const { return m_pRef->size(); }
const_node_iterator begin() const {
return static_cast<const node_ref&>(*m_pRef).begin();
}
node_iterator begin() { return m_pRef->begin(); }
const_node_iterator end() const {
return static_cast<const node_ref&>(*m_pRef).end();
}
node_iterator end() { return m_pRef->end(); }
// sequence
void push_back(node& input, shared_memory_holder pMemory) {
m_pRef->push_back(input, pMemory);
input.add_dependency(*this);
m_index = m_amount.fetch_add(1);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pRef->insert(key, value, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
}
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const {
// NOTE: this returns a non-const node so that the top-level Node can wrap
// it, and returns a pointer so that it can be nullptr (if there is no such
// key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
value.add_dependency(*this);
return value;
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
node* get(node& key, shared_memory_holder pMemory) const {
// NOTE: this returns a non-const node so that the top-level Node can wrap
// it, and returns a pointer so that it can be nullptr (if there is no such
// key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
return value;
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pRef->force_insert(key, value, pMemory);
}
private:
shared_node_ref m_pRef;
using nodes = std::set<node*, less>;
nodes m_dependencies;
size_t m_index;
static std::atomic<size_t> m_amount;
};
} // namespace detail
} // namespace YAML
#endif // NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,127 +0,0 @@
#ifndef VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
namespace YAML {
namespace detail {
class YAML_CPP_API node_data {
public:
node_data();
node_data(const node_data&) = delete;
node_data& operator=(const node_data&) = delete;
void mark_defined();
void set_mark(const Mark& mark);
void set_type(NodeType::value type);
void set_tag(const std::string& tag);
void set_null();
void set_scalar(const std::string& scalar);
void set_style(EmitterStyle::value style);
bool is_defined() const { return m_isDefined; }
const Mark& mark() const { return m_mark; }
NodeType::value type() const {
return m_isDefined ? m_type : NodeType::Undefined;
}
const std::string& scalar() const { return m_scalar; }
const std::string& tag() const { return m_tag; }
EmitterStyle::value style() const { return m_style; }
// size/iterator
std::size_t size() const;
const_node_iterator begin() const;
node_iterator begin();
const_node_iterator end() const;
node_iterator end();
// sequence
void push_back(node& node, const shared_memory_holder& pMemory);
void insert(node& key, node& value, const shared_memory_holder& pMemory);
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const;
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory);
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory);
node* get(node& key, const shared_memory_holder& pMemory) const;
node& get(node& key, const shared_memory_holder& pMemory);
bool remove(node& key, const shared_memory_holder& pMemory);
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory);
public:
static const std::string& empty_scalar();
private:
void compute_seq_size() const;
void compute_map_size() const;
void reset_sequence();
void reset_map();
void insert_map_pair(node& key, node& value);
void convert_to_map(const shared_memory_holder& pMemory);
void convert_sequence_to_map(const shared_memory_holder& pMemory);
template <typename T>
static node& convert_to_node(const T& rhs, shared_memory_holder pMemory);
private:
bool m_isDefined;
Mark m_mark;
NodeType::value m_type;
std::string m_tag;
EmitterStyle::value m_style;
// scalar
std::string m_scalar;
// sequence
using node_seq = std::vector<node *>;
node_seq m_sequence;
mutable std::size_t m_seqSize;
// map
using node_map = std::vector<std::pair<node*, node*>>;
node_map m_map;
using kv_pair = std::pair<node*, node*>;
using kv_pairs = std::list<kv_pair>;
mutable kv_pairs m_undefinedPairs;
};
}
}
#endif // VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,181 +0,0 @@
#ifndef VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h"
#include <cstddef>
#include <iterator>
#include <memory>
#include <map>
#include <utility>
#include <vector>
namespace YAML {
namespace detail {
struct iterator_type {
enum value { NoneType, Sequence, Map };
};
template <typename V>
struct node_iterator_value : public std::pair<V*, V*> {
using kv = std::pair<V*, V*>;
node_iterator_value() : kv(), pNode(nullptr) {}
explicit node_iterator_value(V& rhs) : kv(), pNode(&rhs) {}
explicit node_iterator_value(V& key, V& value) : kv(&key, &value), pNode(nullptr) {}
V& operator*() const { return *pNode; }
V& operator->() const { return *pNode; }
V* pNode;
};
using node_seq = std::vector<node *>;
using node_map = std::vector<std::pair<node*, node*>>;
template <typename V>
struct node_iterator_type {
using seq = node_seq::iterator;
using map = node_map::iterator;
};
template <typename V>
struct node_iterator_type<const V> {
using seq = node_seq::const_iterator;
using map = node_map::const_iterator;
};
template <typename V>
class node_iterator_base {
private:
struct enabler {};
struct proxy {
explicit proxy(const node_iterator_value<V>& x) : m_ref(x) {}
node_iterator_value<V>* operator->() { return std::addressof(m_ref); }
operator node_iterator_value<V>*() { return std::addressof(m_ref); }
node_iterator_value<V> m_ref;
};
public:
using iterator_category = std::forward_iterator_tag;
using value_type = node_iterator_value<V>;
using difference_type = std::ptrdiff_t;
using pointer = node_iterator_value<V>*;
using reference = node_iterator_value<V>;
using SeqIter = typename node_iterator_type<V>::seq;
using MapIter = typename node_iterator_type<V>::map;
node_iterator_base()
: m_type(iterator_type::NoneType), m_seqIt(), m_mapIt(), m_mapEnd() {}
explicit node_iterator_base(SeqIter seqIt)
: m_type(iterator_type::Sequence),
m_seqIt(seqIt),
m_mapIt(),
m_mapEnd() {}
explicit node_iterator_base(MapIter mapIt, MapIter mapEnd)
: m_type(iterator_type::Map),
m_seqIt(),
m_mapIt(mapIt),
m_mapEnd(mapEnd) {
m_mapIt = increment_until_defined(m_mapIt);
}
template <typename W>
node_iterator_base(const node_iterator_base<W>& rhs,
typename std::enable_if<std::is_convertible<W*, V*>::value,
enabler>::type = enabler())
: m_type(rhs.m_type),
m_seqIt(rhs.m_seqIt),
m_mapIt(rhs.m_mapIt),
m_mapEnd(rhs.m_mapEnd) {}
template <typename>
friend class node_iterator_base;
template <typename W>
bool operator==(const node_iterator_base<W>& rhs) const {
if (m_type != rhs.m_type)
return false;
switch (m_type) {
case iterator_type::NoneType:
return true;
case iterator_type::Sequence:
return m_seqIt == rhs.m_seqIt;
case iterator_type::Map:
return m_mapIt == rhs.m_mapIt;
}
return true;
}
template <typename W>
bool operator!=(const node_iterator_base<W>& rhs) const {
return !(*this == rhs);
}
node_iterator_base<V>& operator++() {
switch (m_type) {
case iterator_type::NoneType:
break;
case iterator_type::Sequence:
++m_seqIt;
break;
case iterator_type::Map:
++m_mapIt;
m_mapIt = increment_until_defined(m_mapIt);
break;
}
return *this;
}
node_iterator_base<V> operator++(int) {
node_iterator_base<V> iterator_pre(*this);
++(*this);
return iterator_pre;
}
value_type operator*() const {
switch (m_type) {
case iterator_type::NoneType:
return value_type();
case iterator_type::Sequence:
return value_type(**m_seqIt);
case iterator_type::Map:
return value_type(*m_mapIt->first, *m_mapIt->second);
}
return value_type();
}
proxy operator->() const { return proxy(**this); }
MapIter increment_until_defined(MapIter it) {
while (it != m_mapEnd && !is_defined(it))
++it;
return it;
}
bool is_defined(MapIter it) const {
return it->first->is_defined() && it->second->is_defined();
}
private:
typename iterator_type::value m_type;
SeqIter m_seqIt;
MapIter m_mapIt, m_mapEnd;
};
using node_iterator = node_iterator_base<node>;
using const_node_iterator = node_iterator_base<const node>;
}
}
#endif // VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,98 +0,0 @@
#ifndef VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node_data.h"
namespace YAML {
namespace detail {
class node_ref {
public:
node_ref() : m_pData(new node_data) {}
node_ref(const node_ref&) = delete;
node_ref& operator=(const node_ref&) = delete;
bool is_defined() const { return m_pData->is_defined(); }
const Mark& mark() const { return m_pData->mark(); }
NodeType::value type() const { return m_pData->type(); }
const std::string& scalar() const { return m_pData->scalar(); }
const std::string& tag() const { return m_pData->tag(); }
EmitterStyle::value style() const { return m_pData->style(); }
void mark_defined() { m_pData->mark_defined(); }
void set_data(const node_ref& rhs) { m_pData = rhs.m_pData; }
void set_mark(const Mark& mark) { m_pData->set_mark(mark); }
void set_type(NodeType::value type) { m_pData->set_type(type); }
void set_tag(const std::string& tag) { m_pData->set_tag(tag); }
void set_null() { m_pData->set_null(); }
void set_scalar(const std::string& scalar) { m_pData->set_scalar(scalar); }
void set_style(EmitterStyle::value style) { m_pData->set_style(style); }
// size/iterator
std::size_t size() const { return m_pData->size(); }
const_node_iterator begin() const {
return static_cast<const node_data&>(*m_pData).begin();
}
node_iterator begin() { return m_pData->begin(); }
const_node_iterator end() const {
return static_cast<const node_data&>(*m_pData).end();
}
node_iterator end() { return m_pData->end(); }
// sequence
void push_back(node& node, shared_memory_holder pMemory) {
m_pData->push_back(node, pMemory);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pData->insert(key, value, pMemory);
}
// indexing
template <typename Key>
node* get(const Key& key, shared_memory_holder pMemory) const {
return static_cast<const node_data&>(*m_pData).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
node* get(node& key, shared_memory_holder pMemory) const {
return static_cast<const node_data&>(*m_pData).get(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pData->force_insert(key, value, pMemory);
}
private:
shared_node_data m_pData;
};
}
}
#endif // VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,32 +0,0 @@
#ifndef NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <iosfwd>
#include "yaml-cpp/dll.h"
namespace YAML {
class Emitter;
class Node;
/**
* Emits the node to the given {@link Emitter}. If there is an error in writing,
* {@link Emitter#good} will return false.
*/
YAML_CPP_API Emitter& operator<<(Emitter& out, const Node& node);
/** Emits the node to the given output stream. */
YAML_CPP_API std::ostream& operator<<(std::ostream& out, const Node& node);
/** Converts the node to a YAML string. */
YAML_CPP_API std::string Dump(const Node& node);
} // namespace YAML
#endif // NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,385 +0,0 @@
#ifndef NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/node.h"
#include <sstream>
#include <string>
namespace YAML {
inline Node::Node()
: m_isValid(true), m_invalidKey{}, m_pMemory(nullptr), m_pNode(nullptr) {}
inline Node::Node(NodeType::value type)
: m_isValid(true),
m_invalidKey{},
m_pMemory(new detail::memory_holder),
m_pNode(&m_pMemory->create_node()) {
m_pNode->set_type(type);
}
template <typename T>
inline Node::Node(const T& rhs)
: m_isValid(true),
m_invalidKey{},
m_pMemory(new detail::memory_holder),
m_pNode(&m_pMemory->create_node()) {
Assign(rhs);
}
inline Node::Node(const detail::iterator_value& rhs)
: m_isValid(rhs.m_isValid),
m_invalidKey(rhs.m_invalidKey),
m_pMemory(rhs.m_pMemory),
m_pNode(rhs.m_pNode) {}
inline Node::Node(const Node& rhs) = default;
inline Node::Node(Zombie)
: m_isValid(false), m_invalidKey{}, m_pMemory{}, m_pNode(nullptr) {}
inline Node::Node(Zombie, const std::string& key)
: m_isValid(false), m_invalidKey(key), m_pMemory{}, m_pNode(nullptr) {}
inline Node::Node(detail::node& node, detail::shared_memory_holder pMemory)
: m_isValid(true), m_invalidKey{}, m_pMemory(pMemory), m_pNode(&node) {}
inline Node::~Node() = default;
inline void Node::EnsureNodeExists() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
if (!m_pNode) {
m_pMemory.reset(new detail::memory_holder);
m_pNode = &m_pMemory->create_node();
m_pNode->set_null();
}
}
inline bool Node::IsDefined() const {
if (!m_isValid) {
return false;
}
return m_pNode ? m_pNode->is_defined() : true;
}
inline Mark Node::Mark() const {
if (!m_isValid) {
throw InvalidNode(m_invalidKey);
}
return m_pNode ? m_pNode->mark() : Mark::null_mark();
}
inline NodeType::value Node::Type() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->type() : NodeType::Null;
}
// access
// template helpers
template <typename T, typename S>
struct as_if {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
T operator()(const S& fallback) const {
if (!node.m_pNode)
return fallback;
T t;
if (convert<T>::decode(node, t))
return t;
return fallback;
}
};
template <typename S>
struct as_if<std::string, S> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
std::string operator()(const S& fallback) const {
if (node.Type() == NodeType::Null)
return "null";
if (node.Type() != NodeType::Scalar)
return fallback;
return node.Scalar();
}
};
template <typename T>
struct as_if<T, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
T operator()() const {
if (!node.m_pNode)
throw TypedBadConversion<T>(node.Mark());
T t;
if (convert<T>::decode(node, t))
return t;
throw TypedBadConversion<T>(node.Mark());
}
};
template <>
struct as_if<std::string, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
std::string operator()() const {
if (node.Type() == NodeType::Null)
return "null";
if (node.Type() != NodeType::Scalar)
throw TypedBadConversion<std::string>(node.Mark());
return node.Scalar();
}
};
// access functions
template <typename T>
inline T Node::as() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return as_if<T, void>(*this)();
}
template <typename T, typename S>
inline T Node::as(const S& fallback) const {
if (!m_isValid)
return fallback;
return as_if<T, S>(*this)(fallback);
}
inline const std::string& Node::Scalar() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->scalar() : detail::node_data::empty_scalar();
}
inline const std::string& Node::Tag() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->tag() : detail::node_data::empty_scalar();
}
inline void Node::SetTag(const std::string& tag) {
EnsureNodeExists();
m_pNode->set_tag(tag);
}
inline EmitterStyle::value Node::Style() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->style() : EmitterStyle::Default;
}
inline void Node::SetStyle(EmitterStyle::value style) {
EnsureNodeExists();
m_pNode->set_style(style);
}
// assignment
inline bool Node::is(const Node& rhs) const {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode(m_invalidKey);
if (!m_pNode || !rhs.m_pNode)
return false;
return m_pNode->is(*rhs.m_pNode);
}
template <typename T>
inline Node& Node::operator=(const T& rhs) {
Assign(rhs);
return *this;
}
inline Node& Node::operator=(const Node& rhs) {
if (is(rhs))
return *this;
AssignNode(rhs);
return *this;
}
inline void Node::reset(const YAML::Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode(m_invalidKey);
m_pMemory = rhs.m_pMemory;
m_pNode = rhs.m_pNode;
}
template <typename T>
inline void Node::Assign(const T& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
AssignData(convert<T>::encode(rhs));
}
template <>
inline void Node::Assign(const std::string& rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(const char* rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(char* rhs) {
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::AssignData(const Node& rhs) {
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->set_data(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
}
inline void Node::AssignNode(const Node& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
rhs.EnsureNodeExists();
if (!m_pNode) {
m_pNode = rhs.m_pNode;
m_pMemory = rhs.m_pMemory;
return;
}
m_pNode->set_ref(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
m_pNode = rhs.m_pNode;
}
// size/iterator
inline std::size_t Node::size() const {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
return m_pNode ? m_pNode->size() : 0;
}
inline const_iterator Node::begin() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->begin(), m_pMemory)
: const_iterator();
}
inline iterator Node::begin() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->begin(), m_pMemory) : iterator();
}
inline const_iterator Node::end() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->end(), m_pMemory) : const_iterator();
}
inline iterator Node::end() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->end(), m_pMemory) : iterator();
}
// sequence
template <typename T>
inline void Node::push_back(const T& rhs) {
if (!m_isValid)
throw InvalidNode(m_invalidKey);
push_back(Node(rhs));
}
inline void Node::push_back(const Node& rhs) {
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->push_back(*rhs.m_pNode, m_pMemory);
m_pMemory->merge(*rhs.m_pMemory);
}
template<typename Key>
std::string key_to_string(const Key& key) {
return streamable_to_string<Key, is_streamable<std::stringstream, Key>::value>().impl(key);
}
// indexing
template <typename Key>
inline const Node Node::operator[](const Key& key) const {
EnsureNodeExists();
detail::node* value =
static_cast<const detail::node&>(*m_pNode).get(key, m_pMemory);
if (!value) {
return Node(ZombieNode, key_to_string(key));
}
return Node(*value, m_pMemory);
}
template <typename Key>
inline Node Node::operator[](const Key& key) {
EnsureNodeExists();
detail::node& value = m_pNode->get(key, m_pMemory);
return Node(value, m_pMemory);
}
template <typename Key>
inline bool Node::remove(const Key& key) {
EnsureNodeExists();
return m_pNode->remove(key, m_pMemory);
}
inline const Node Node::operator[](const Node& key) const {
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node* value =
static_cast<const detail::node&>(*m_pNode).get(*key.m_pNode, m_pMemory);
if (!value) {
return Node(ZombieNode, key_to_string(key));
}
return Node(*value, m_pMemory);
}
inline Node Node::operator[](const Node& key) {
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node& value = m_pNode->get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline bool Node::remove(const Node& key) {
EnsureNodeExists();
key.EnsureNodeExists();
return m_pNode->remove(*key.m_pNode, m_pMemory);
}
// map
template <typename Key, typename Value>
inline void Node::force_insert(const Key& key, const Value& value) {
EnsureNodeExists();
m_pNode->force_insert(key, value, m_pMemory);
}
// free functions
inline bool operator==(const Node& lhs, const Node& rhs) { return lhs.is(rhs); }
} // namespace YAML
#endif // NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,31 +0,0 @@
#ifndef VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
#include "yaml-cpp/node/detail/iterator.h"
#include <list>
#include <utility>
#include <vector>
namespace YAML {
namespace detail {
struct iterator_value : public Node, std::pair<Node, Node> {
iterator_value() = default;
explicit iterator_value(const Node& rhs)
: Node(rhs),
std::pair<Node, Node>(Node(Node::ZombieNode), Node(Node::ZombieNode)) {}
explicit iterator_value(const Node& key, const Node& value)
: Node(Node::ZombieNode), std::pair<Node, Node>(key, value) {}
};
}
}
#endif // VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,148 +0,0 @@
#ifndef NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <stdexcept>
#include <string>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
namespace detail {
class node;
class node_data;
struct iterator_value;
} // namespace detail
} // namespace YAML
namespace YAML {
class YAML_CPP_API Node {
public:
friend class NodeBuilder;
friend class NodeEvents;
friend struct detail::iterator_value;
friend class detail::node;
friend class detail::node_data;
template <typename>
friend class detail::iterator_base;
template <typename T, typename S>
friend struct as_if;
using iterator = YAML::iterator;
using const_iterator = YAML::const_iterator;
Node();
explicit Node(NodeType::value type);
template <typename T>
explicit Node(const T& rhs);
explicit Node(const detail::iterator_value& rhs);
Node(const Node& rhs);
~Node();
YAML::Mark Mark() const;
NodeType::value Type() const;
bool IsDefined() const;
bool IsNull() const { return Type() == NodeType::Null; }
bool IsScalar() const { return Type() == NodeType::Scalar; }
bool IsSequence() const { return Type() == NodeType::Sequence; }
bool IsMap() const { return Type() == NodeType::Map; }
// bool conversions
explicit operator bool() const { return IsDefined(); }
bool operator!() const { return !IsDefined(); }
// access
template <typename T>
T as() const;
template <typename T, typename S>
T as(const S& fallback) const;
const std::string& Scalar() const;
const std::string& Tag() const;
void SetTag(const std::string& tag);
// style
// WARNING: This API might change in future releases.
EmitterStyle::value Style() const;
void SetStyle(EmitterStyle::value style);
// assignment
bool is(const Node& rhs) const;
template <typename T>
Node& operator=(const T& rhs);
Node& operator=(const Node& rhs);
void reset(const Node& rhs = Node());
// size/iterator
std::size_t size() const;
const_iterator begin() const;
iterator begin();
const_iterator end() const;
iterator end();
// sequence
template <typename T>
void push_back(const T& rhs);
void push_back(const Node& rhs);
// indexing
template <typename Key>
const Node operator[](const Key& key) const;
template <typename Key>
Node operator[](const Key& key);
template <typename Key>
bool remove(const Key& key);
const Node operator[](const Node& key) const;
Node operator[](const Node& key);
bool remove(const Node& key);
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value);
private:
enum Zombie { ZombieNode };
explicit Node(Zombie);
explicit Node(Zombie, const std::string&);
explicit Node(detail::node& node, detail::shared_memory_holder pMemory);
void EnsureNodeExists() const;
template <typename T>
void Assign(const T& rhs);
void Assign(const char* rhs);
void Assign(char* rhs);
void AssignData(const Node& rhs);
void AssignNode(const Node& rhs);
private:
bool m_isValid;
// String representation of invalid key, if the node is invalid.
std::string m_invalidKey;
mutable detail::shared_memory_holder m_pMemory;
mutable detail::node* m_pNode;
};
YAML_CPP_API bool operator==(const Node& lhs, const Node& rhs);
YAML_CPP_API Node Clone(const Node& node);
template <typename T>
struct convert;
}
#endif // NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,78 +0,0 @@
#ifndef VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <iosfwd>
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML {
class Node;
/**
* Loads the input string as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(const std::string& input);
/**
* Loads the input string as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(const char* input);
/**
* Loads the input stream as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API Node Load(std::istream& input);
/**
* Loads the input file as a single YAML document.
*
* @throws {@link ParserException} if it is malformed.
* @throws {@link BadFile} if the file cannot be loaded.
*/
YAML_CPP_API Node LoadFile(const std::string& filename);
/**
* Loads the input string as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(const std::string& input);
/**
* Loads the input string as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(const char* input);
/**
* Loads the input stream as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
*/
YAML_CPP_API std::vector<Node> LoadAll(std::istream& input);
/**
* Loads the input file as a list of YAML documents.
*
* @throws {@link ParserException} if it is malformed.
* @throws {@link BadFile} if the file cannot be loaded.
*/
YAML_CPP_API std::vector<Node> LoadAllFromFile(const std::string& filename);
} // namespace YAML
#endif // VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,29 +0,0 @@
#ifndef VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include <memory>
namespace YAML {
namespace detail {
class node;
class node_ref;
class node_data;
class memory;
class memory_holder;
using shared_node = std::shared_ptr<node>;
using shared_node_ref = std::shared_ptr<node_ref>;
using shared_node_data = std::shared_ptr<node_data>;
using shared_memory_holder = std::shared_ptr<memory_holder>;
using shared_memory = std::shared_ptr<memory>;
}
}
#endif // VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,16 +0,0 @@
#ifndef VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
struct NodeType {
enum value { Undefined, Null, Scalar, Sequence, Map };
};
}
#endif // VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,18 +0,0 @@
#ifndef NOEXCEPT_H_768872DA_476C_11EA_88B8_90B11C0C0FF8
#define NOEXCEPT_H_768872DA_476C_11EA_88B8_90B11C0C0FF8
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
// This is here for compatibility with older versions of Visual Studio
// which don't support noexcept.
#if defined(_MSC_VER) && _MSC_VER < 1900
#define YAML_CPP_NOEXCEPT _NOEXCEPT
#else
#define YAML_CPP_NOEXCEPT noexcept
#endif
#endif

View File

@ -1,26 +0,0 @@
#ifndef NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/dll.h"
#include <string>
namespace YAML {
class Node;
struct YAML_CPP_API _Null {};
inline bool operator==(const _Null&, const _Null&) { return true; }
inline bool operator!=(const _Null&, const _Null&) { return false; }
YAML_CPP_API bool IsNull(const Node& node); // old API only
YAML_CPP_API bool IsNullString(const std::string& str);
extern YAML_CPP_API _Null Null;
}
#endif // NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,76 +0,0 @@
#ifndef OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML {
class YAML_CPP_API ostream_wrapper {
public:
ostream_wrapper();
explicit ostream_wrapper(std::ostream& stream);
ostream_wrapper(const ostream_wrapper&) = delete;
ostream_wrapper(ostream_wrapper&&) = delete;
ostream_wrapper& operator=(const ostream_wrapper&) = delete;
ostream_wrapper& operator=(ostream_wrapper&&) = delete;
~ostream_wrapper();
void write(const std::string& str);
void write(const char* str, std::size_t size);
void set_comment() { m_comment = true; }
const char* str() const {
if (m_pStream) {
return nullptr;
} else {
m_buffer[m_pos] = '\0';
return &m_buffer[0];
}
}
std::size_t row() const { return m_row; }
std::size_t col() const { return m_col; }
std::size_t pos() const { return m_pos; }
bool comment() const { return m_comment; }
private:
void update_pos(char ch);
private:
mutable std::vector<char> m_buffer;
std::ostream* const m_pStream;
std::size_t m_pos;
std::size_t m_row, m_col;
bool m_comment;
};
template <std::size_t N>
inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const char (&str)[N]) {
stream.write(str, N - 1);
return stream;
}
inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const std::string& str) {
stream.write(str);
return stream;
}
inline ostream_wrapper& operator<<(ostream_wrapper& stream, char ch) {
stream.write(&ch, 1);
return stream;
}
} // namespace YAML
#endif // OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,90 +0,0 @@
#ifndef PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <ios>
#include <memory>
#include "yaml-cpp/dll.h"
namespace YAML {
class EventHandler;
class Node;
class Scanner;
struct Directives;
struct Token;
/**
* A parser turns a stream of bytes into one stream of "events" per YAML
* document in the input stream.
*/
class YAML_CPP_API Parser {
public:
/** Constructs an empty parser (with no input. */
Parser();
Parser(const Parser&) = delete;
Parser(Parser&&) = delete;
Parser& operator=(const Parser&) = delete;
Parser& operator=(Parser&&) = delete;
/**
* Constructs a parser from the given input stream. The input stream must
* live as long as the parser.
*/
explicit Parser(std::istream& in);
~Parser();
/** Evaluates to true if the parser has some valid input to be read. */
explicit operator bool() const;
/**
* Resets the parser with the given input stream. Any existing state is
* erased.
*/
void Load(std::istream& in);
/**
* Handles the next document by calling events on the {@code eventHandler}.
*
* @throw a ParserException on error.
* @return false if there are no more documents
*/
bool HandleNextDocument(EventHandler& eventHandler);
void PrintTokens(std::ostream& out);
private:
/**
* Reads any directives that are next in the queue, setting the internal
* {@code m_pDirectives} state.
*/
void ParseDirectives();
void HandleDirective(const Token& token);
/**
* Handles a "YAML" directive, which should be of the form 'major.minor' (like
* a version number).
*/
void HandleYamlDirective(const Token& token);
/**
* Handles a "TAG" directive, which should be of the form 'handle prefix',
* where 'handle' is converted to 'prefix' in the file.
*/
void HandleTagDirective(const Token& token);
private:
std::unique_ptr<Scanner> m_pScanner;
std::unique_ptr<Directives> m_pDirectives;
};
} // namespace YAML
#endif // PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,50 +0,0 @@
#ifndef STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include <list>
#include <set>
#include <map>
namespace YAML {
template <typename Seq>
inline Emitter& EmitSeq(Emitter& emitter, const Seq& seq) {
emitter << BeginSeq;
for (const auto& v : seq)
emitter << v;
emitter << EndSeq;
return emitter;
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::vector<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::list<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::set<T>& v) {
return EmitSeq(emitter, v);
}
template <typename K, typename V>
inline Emitter& operator<<(Emitter& emitter, const std::map<K, V>& m) {
emitter << BeginMap;
for (const auto& v : m)
emitter << Key << v.first << Value << v.second;
emitter << EndMap;
return emitter;
}
}
#endif // STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,135 +0,0 @@
#ifndef TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <type_traits>
#include <utility>
#include <string>
#include <sstream>
namespace YAML {
template <typename>
struct is_numeric {
enum { value = false };
};
template <>
struct is_numeric<char> {
enum { value = true };
};
template <>
struct is_numeric<unsigned char> {
enum { value = true };
};
template <>
struct is_numeric<int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned int> {
enum { value = true };
};
template <>
struct is_numeric<long int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long int> {
enum { value = true };
};
template <>
struct is_numeric<short int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned short int> {
enum { value = true };
};
#if defined(_MSC_VER) && (_MSC_VER < 1310)
template <>
struct is_numeric<__int64> {
enum { value = true };
};
template <>
struct is_numeric<unsigned __int64> {
enum { value = true };
};
#else
template <>
struct is_numeric<long long> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long long> {
enum { value = true };
};
#endif
template <>
struct is_numeric<float> {
enum { value = true };
};
template <>
struct is_numeric<double> {
enum { value = true };
};
template <>
struct is_numeric<long double> {
enum { value = true };
};
template <bool, class T = void>
struct enable_if_c {
using type = T;
};
template <class T>
struct enable_if_c<false, T> {};
template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {};
template <bool, class T = void>
struct disable_if_c {
using type = T;
};
template <class T>
struct disable_if_c<true, T> {};
template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {};
}
template <typename S, typename T>
struct is_streamable {
template <typename SS, typename TT>
static auto test(int)
-> decltype(std::declval<SS&>() << std::declval<TT>(), std::true_type());
template <typename, typename>
static auto test(...) -> std::false_type;
static const bool value = decltype(test<S, T>(0))::value;
};
template<typename Key, bool Streamable>
struct streamable_to_string {
static std::string impl(const Key& key) {
std::stringstream ss;
ss << key;
return ss.str();
}
};
template<typename Key>
struct streamable_to_string<Key, false> {
static std::string impl(const Key&) {
return "";
}
};
#endif // TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,24 +0,0 @@
#ifndef YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/parser.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/stlemitter.h"
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/convert.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/detail/impl.h"
#include "yaml-cpp/node/parse.h"
#include "yaml-cpp/node/emit.h"
#endif // YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,100 +0,0 @@
#include "yaml-cpp/binary.h"
#include <cctype>
namespace YAML {
static const char encoding[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
std::string EncodeBase64(const unsigned char *data, std::size_t size) {
const char PAD = '=';
std::string ret;
ret.resize(4 * size / 3 + 3);
char *out = &ret[0];
std::size_t chunks = size / 3;
std::size_t remainder = size % 3;
for (std::size_t i = 0; i < chunks; i++, data += 3) {
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2) | (data[2] >> 6)];
*out++ = encoding[data[2] & 0x3f];
}
switch (remainder) {
case 0:
break;
case 1:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4)];
*out++ = PAD;
*out++ = PAD;
break;
case 2:
*out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2)];
*out++ = PAD;
break;
}
ret.resize(out - &ret[0]);
return ret;
}
static const unsigned char decoding[] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255,
255, 255, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255,
255, 0, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 255, 255, 255, 255, 255, 255, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,
};
std::vector<unsigned char> DecodeBase64(const std::string &input) {
using ret_type = std::vector<unsigned char>;
if (input.empty())
return ret_type();
ret_type ret(3 * input.size() / 4 + 1);
unsigned char *out = &ret[0];
unsigned value = 0;
for (std::size_t i = 0, cnt = 0; i < input.size(); i++) {
if (std::isspace(input[i])) {
// skip newlines
continue;
}
unsigned char d = decoding[static_cast<unsigned>(input[i])];
if (d == 255)
return ret_type();
value = (value << 6) | d;
if (cnt % 4 == 3) {
*out++ = value >> 16;
if (i > 0 && input[i - 1] != '=')
*out++ = value >> 8;
if (input[i] != '=')
*out++ = value;
}
++cnt;
}
ret.resize(out - &ret[0]);
return ret;
}
} // namespace YAML

View File

@ -1,41 +0,0 @@
#ifndef COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cassert>
#include <stack>
namespace YAML {
struct CollectionType {
enum value { NoCollection, BlockMap, BlockSeq, FlowMap, FlowSeq, CompactMap };
};
class CollectionStack {
public:
CollectionStack() : collectionStack{} {}
CollectionType::value GetCurCollectionType() const {
if (collectionStack.empty())
return CollectionType::NoCollection;
return collectionStack.top();
}
void PushCollectionType(CollectionType::value type) {
collectionStack.push(type);
}
void PopCollectionType(CollectionType::value type) {
assert(type == GetCurCollectionType());
(void)type;
collectionStack.pop();
}
private:
std::stack<CollectionType::value> collectionStack;
};
} // namespace YAML
#endif // COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,16 +0,0 @@
#include "graphbuilderadapter.h"
#include "yaml-cpp/parser.h" // IWYU pragma: keep
namespace YAML {
class GraphBuilderInterface;
void* BuildGraphOfNextDocument(Parser& parser,
GraphBuilderInterface& graphBuilder) {
GraphBuilderAdapter eventHandler(graphBuilder);
if (parser.HandleNextDocument(eventHandler)) {
return eventHandler.RootNode();
}
return nullptr;
}
} // namespace YAML

View File

@ -1,94 +0,0 @@
#include "graphbuilderadapter.h"
#include "yaml-cpp/contrib/graphbuilder.h"
namespace YAML {
struct Mark;
int GraphBuilderAdapter::ContainerFrame::sequenceMarker;
void GraphBuilderAdapter::OnNull(const Mark &mark, anchor_t anchor) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewNull(mark, pParent);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnAlias(const Mark &mark, anchor_t anchor) {
void *pReffedNode = m_anchors.Get(anchor);
DispositionNode(m_builder.AnchorReference(mark, pReffedNode));
}
void GraphBuilderAdapter::OnScalar(const Mark &mark, const std::string &tag,
anchor_t anchor, const std::string &value) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewScalar(mark, tag, pParent, value);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnSequenceStart(const Mark &mark,
const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewSequence(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode));
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnSequenceEnd() {
void *pSequence = m_containers.top().pContainer;
m_containers.pop();
DispositionNode(pSequence);
}
void GraphBuilderAdapter::OnMapStart(const Mark &mark, const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewMap(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode, m_pKeyNode));
m_pKeyNode = nullptr;
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnMapEnd() {
void *pMap = m_containers.top().pContainer;
m_pKeyNode = m_containers.top().pPrevKeyNode;
m_containers.pop();
DispositionNode(pMap);
}
void *GraphBuilderAdapter::GetCurrentParent() const {
if (m_containers.empty()) {
return nullptr;
}
return m_containers.top().pContainer;
}
void GraphBuilderAdapter::RegisterAnchor(anchor_t anchor, void *pNode) {
if (anchor) {
m_anchors.Register(anchor, pNode);
}
}
void GraphBuilderAdapter::DispositionNode(void *pNode) {
if (m_containers.empty()) {
m_pRootNode = pNode;
return;
}
void *pContainer = m_containers.top().pContainer;
if (m_containers.top().isMap()) {
if (m_pKeyNode) {
m_builder.AssignInMap(pContainer, m_pKeyNode, pNode);
m_pKeyNode = nullptr;
} else {
m_pKeyNode = pNode;
}
} else {
m_builder.AppendToSequence(pContainer, pNode);
}
}
} // namespace YAML

View File

@ -1,87 +0,0 @@
#ifndef GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstdlib>
#include <map>
#include <stack>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/contrib/anchordict.h"
#include "yaml-cpp/contrib/graphbuilder.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
namespace YAML {
class GraphBuilderInterface;
struct Mark;
} // namespace YAML
namespace YAML {
class GraphBuilderAdapter : public EventHandler {
public:
GraphBuilderAdapter(GraphBuilderInterface& builder)
: m_builder(builder),
m_containers{},
m_anchors{},
m_pRootNode(nullptr),
m_pKeyNode(nullptr) {}
GraphBuilderAdapter(const GraphBuilderAdapter&) = delete;
GraphBuilderAdapter(GraphBuilderAdapter&&) = delete;
GraphBuilderAdapter& operator=(const GraphBuilderAdapter&) = delete;
GraphBuilderAdapter& operator=(GraphBuilderAdapter&&) = delete;
virtual void OnDocumentStart(const Mark& mark) { (void)mark; }
virtual void OnDocumentEnd() {}
virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style);
virtual void OnSequenceEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style);
virtual void OnMapEnd();
void* RootNode() const { return m_pRootNode; }
private:
struct ContainerFrame {
ContainerFrame(void* pSequence)
: pContainer(pSequence), pPrevKeyNode(&sequenceMarker) {}
ContainerFrame(void* pMap, void* pPreviousKeyNode)
: pContainer(pMap), pPrevKeyNode(pPreviousKeyNode) {}
void* pContainer;
void* pPrevKeyNode;
bool isMap() const { return pPrevKeyNode != &sequenceMarker; }
private:
static int sequenceMarker;
};
typedef std::stack<ContainerFrame> ContainerStack;
typedef AnchorDict<void*> AnchorMap;
GraphBuilderInterface& m_builder;
ContainerStack m_containers;
AnchorMap m_anchors;
void* m_pRootNode;
void* m_pKeyNode;
void* GetCurrentParent() const;
void RegisterAnchor(anchor_t anchor, void* pNode);
void DispositionNode(void* pNode);
};
} // namespace YAML
#endif // GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,32 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- MSVC Debugger visualization hints for YAML::Node and YAML::detail::node -->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="YAML::Node">
<DisplayString Condition="!m_isValid">{{invalid}}</DisplayString>
<DisplayString Condition="!m_pNode">{{pNode==nullptr}}</DisplayString>
<DisplayString>{{ {*m_pNode} }}</DisplayString>
<Expand>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar" Name="scalar">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_scalar</Item>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence" Name="sequence">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_sequence</Item>
<Item Condition="m_pNode->m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map" Name="map">m_pNode->m_pRef._Ptr->m_pData._Ptr->m_map</Item>
<Item Name="[details]" >m_pNode->m_pRef._Ptr->m_pData._Ptr</Item>
</Expand>
</Type>
<Type Name="YAML::detail::node">
<DisplayString Condition="!m_pRef._Ptr">{{node:pRef==nullptr}}</DisplayString>
<DisplayString Condition="!m_pRef._Ptr->m_pData._Ptr">{{node:pRef->pData==nullptr}}</DisplayString>
<DisplayString Condition="!m_pRef._Ptr->m_pData._Ptr->m_isDefined">{{undefined}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar">{{{m_pRef._Ptr->m_pData._Ptr->m_scalar}}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map">{{ Map {m_pRef._Ptr->m_pData._Ptr->m_map}}}</DisplayString>
<DisplayString Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence">{{ Seq {m_pRef._Ptr->m_pData._Ptr->m_sequence}}}</DisplayString>
<DisplayString>{{{m_pRef._Ptr->m_pData._Ptr->m_type}}}</DisplayString>
<Expand>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Scalar" Name="scalar">m_pRef._Ptr->m_pData._Ptr->m_scalar</Item>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Sequence" Name="sequence">m_pRef._Ptr->m_pData._Ptr->m_sequence</Item>
<Item Condition="m_pRef._Ptr->m_pData._Ptr->m_type==YAML::NodeType::Map" Name="map">m_pRef._Ptr->m_pData._Ptr->m_map</Item>
<Item Name="[details]" >m_pRef._Ptr->m_pData._Ptr</Item>
</Expand>
</Type>
</AutoVisualizer>

View File

@ -1,9 +0,0 @@
# MSVC debugger visualizer for YAML::Node
## How to use
Add yaml-cpp.natvis to your Visual C++ project like any other source file. It will be included in the debug information, and improve debugger display on YAML::Node and contained types.
## Compatibility and Troubleshooting
This has been tested for MSVC 2017. It is expected to be compatible with VS 2015 and VS 2019. If you have any problems, you can open an issue here: https://github.com/peterchen-cp/yaml-cpp-natvis

View File

@ -1,74 +0,0 @@
#include <algorithm>
#include "yaml-cpp/node/convert.h"
namespace {
// we're not gonna mess with the mess that is all the isupper/etc. functions
bool IsLower(char ch) { return 'a' <= ch && ch <= 'z'; }
bool IsUpper(char ch) { return 'A' <= ch && ch <= 'Z'; }
char ToLower(char ch) { return IsUpper(ch) ? ch + 'a' - 'A' : ch; }
std::string tolower(const std::string& str) {
std::string s(str);
std::transform(s.begin(), s.end(), s.begin(), ToLower);
return s;
}
template <typename T>
bool IsEntirely(const std::string& str, T func) {
return std::all_of(str.begin(), str.end(), [=](char ch) { return func(ch); });
}
// IsFlexibleCase
// . Returns true if 'str' is:
// . UPPERCASE
// . lowercase
// . Capitalized
bool IsFlexibleCase(const std::string& str) {
if (str.empty())
return true;
if (IsEntirely(str, IsLower))
return true;
bool firstcaps = IsUpper(str[0]);
std::string rest = str.substr(1);
return firstcaps && (IsEntirely(rest, IsLower) || IsEntirely(rest, IsUpper));
}
} // namespace
namespace YAML {
bool convert<bool>::decode(const Node& node, bool& rhs) {
if (!node.IsScalar())
return false;
// we can't use iostream bool extraction operators as they don't
// recognize all possible values in the table below (taken from
// http://yaml.org/type/bool.html)
static const struct {
std::string truename, falsename;
} names[] = {
{"y", "n"},
{"yes", "no"},
{"true", "false"},
{"on", "off"},
};
if (!IsFlexibleCase(node.Scalar()))
return false;
for (const auto& name : names) {
if (name.truename == tolower(node.Scalar())) {
rhs = true;
return true;
}
if (name.falsename == tolower(node.Scalar())) {
rhs = false;
return true;
}
}
return false;
}
} // namespace YAML

View File

@ -1,9 +0,0 @@
#include "yaml-cpp/depthguard.h"
namespace YAML {
DeepRecursion::DeepRecursion(int depth, const Mark& mark_,
const std::string& msg_)
: ParserException(mark_, msg_), m_depth(depth) {}
} // namespace YAML

View File

@ -1,17 +0,0 @@
#include "directives.h"
namespace YAML {
Directives::Directives() : version{true, 1, 2}, tags{} {}
const std::string Directives::TranslateTagHandle(
const std::string& handle) const {
auto it = tags.find(handle);
if (it == tags.end()) {
if (handle == "!!")
return "tag:yaml.org,2002:";
return handle;
}
return it->second;
}
} // namespace YAML

View File

@ -1,29 +0,0 @@
#ifndef DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <map>
namespace YAML {
struct Version {
bool isDefault;
int major, minor;
};
struct Directives {
Directives();
const std::string TranslateTagHandle(const std::string& handle) const;
Version version;
std::map<std::string, std::string> tags;
};
}
#endif // DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,25 +0,0 @@
#include "yaml-cpp/node/emit.h"
#include "nodeevents.h"
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
namespace YAML {
Emitter& operator<<(Emitter& out, const Node& node) {
EmitFromEvents emitFromEvents(out);
NodeEvents events(node);
events.Emit(emitFromEvents);
return out;
}
std::ostream& operator<<(std::ostream& out, const Node& node) {
Emitter emitter(out);
emitter << node;
return out;
}
std::string Dump(const Node& node) {
Emitter emitter;
emitter << node;
return emitter.c_str();
}
} // namespace YAML

View File

@ -1,124 +0,0 @@
#include <cassert>
#include <sstream>
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/null.h"
namespace YAML {
struct Mark;
} // namespace YAML
namespace {
std::string ToString(YAML::anchor_t anchor) {
std::stringstream stream;
stream << anchor;
return stream.str();
}
} // namespace
namespace YAML {
EmitFromEvents::EmitFromEvents(Emitter& emitter)
: m_emitter(emitter), m_stateStack{} {}
void EmitFromEvents::OnDocumentStart(const Mark&) {}
void EmitFromEvents::OnDocumentEnd() {}
void EmitFromEvents::OnNull(const Mark&, anchor_t anchor) {
BeginNode();
EmitProps("", anchor);
m_emitter << Null;
}
void EmitFromEvents::OnAlias(const Mark&, anchor_t anchor) {
BeginNode();
m_emitter << Alias(ToString(anchor));
}
void EmitFromEvents::OnScalar(const Mark&, const std::string& tag,
anchor_t anchor, const std::string& value) {
BeginNode();
EmitProps(tag, anchor);
m_emitter << value;
}
void EmitFromEvents::OnSequenceStart(const Mark&, const std::string& tag,
anchor_t anchor,
EmitterStyle::value style) {
BeginNode();
EmitProps(tag, anchor);
switch (style) {
case EmitterStyle::Block:
m_emitter << Block;
break;
case EmitterStyle::Flow:
m_emitter << Flow;
break;
default:
break;
}
// Restore the global settings to eliminate the override from node style
m_emitter.RestoreGlobalModifiedSettings();
m_emitter << BeginSeq;
m_stateStack.push(State::WaitingForSequenceEntry);
}
void EmitFromEvents::OnSequenceEnd() {
m_emitter << EndSeq;
assert(m_stateStack.top() == State::WaitingForSequenceEntry);
m_stateStack.pop();
}
void EmitFromEvents::OnMapStart(const Mark&, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
BeginNode();
EmitProps(tag, anchor);
switch (style) {
case EmitterStyle::Block:
m_emitter << Block;
break;
case EmitterStyle::Flow:
m_emitter << Flow;
break;
default:
break;
}
// Restore the global settings to eliminate the override from node style
m_emitter.RestoreGlobalModifiedSettings();
m_emitter << BeginMap;
m_stateStack.push(State::WaitingForKey);
}
void EmitFromEvents::OnMapEnd() {
m_emitter << EndMap;
assert(m_stateStack.top() == State::WaitingForKey);
m_stateStack.pop();
}
void EmitFromEvents::BeginNode() {
if (m_stateStack.empty())
return;
switch (m_stateStack.top()) {
case State::WaitingForKey:
m_emitter << Key;
m_stateStack.top() = State::WaitingForValue;
break;
case State::WaitingForValue:
m_emitter << Value;
m_stateStack.top() = State::WaitingForKey;
break;
default:
break;
}
}
void EmitFromEvents::EmitProps(const std::string& tag, anchor_t anchor) {
if (!tag.empty() && tag != "?" && tag != "!")
m_emitter << VerbatimTag(tag);
if (anchor)
m_emitter << Anchor(ToString(anchor));
}
} // namespace YAML

View File

@ -1,971 +0,0 @@
#include <sstream>
#include "emitterutils.h"
#include "indentation.h" // IWYU pragma: keep
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML {
class Binary;
struct _Null;
Emitter::Emitter() : m_pState(new EmitterState), m_stream{} {}
Emitter::Emitter(std::ostream& stream)
: m_pState(new EmitterState), m_stream(stream) {}
Emitter::~Emitter() = default;
const char* Emitter::c_str() const { return m_stream.str(); }
std::size_t Emitter::size() const { return m_stream.pos(); }
// state checking
bool Emitter::good() const { return m_pState->good(); }
const std::string Emitter::GetLastError() const {
return m_pState->GetLastError();
}
// global setters
bool Emitter::SetOutputCharset(EMITTER_MANIP value) {
return m_pState->SetOutputCharset(value, FmtScope::Global);
}
bool Emitter::SetStringFormat(EMITTER_MANIP value) {
return m_pState->SetStringFormat(value, FmtScope::Global);
}
bool Emitter::SetBoolFormat(EMITTER_MANIP value) {
bool ok = false;
if (m_pState->SetBoolFormat(value, FmtScope::Global))
ok = true;
if (m_pState->SetBoolCaseFormat(value, FmtScope::Global))
ok = true;
if (m_pState->SetBoolLengthFormat(value, FmtScope::Global))
ok = true;
return ok;
}
bool Emitter::SetNullFormat(EMITTER_MANIP value) {
return m_pState->SetNullFormat(value, FmtScope::Global);
}
bool Emitter::SetIntBase(EMITTER_MANIP value) {
return m_pState->SetIntFormat(value, FmtScope::Global);
}
bool Emitter::SetSeqFormat(EMITTER_MANIP value) {
return m_pState->SetFlowType(GroupType::Seq, value, FmtScope::Global);
}
bool Emitter::SetMapFormat(EMITTER_MANIP value) {
bool ok = false;
if (m_pState->SetFlowType(GroupType::Map, value, FmtScope::Global))
ok = true;
if (m_pState->SetMapKeyFormat(value, FmtScope::Global))
ok = true;
return ok;
}
bool Emitter::SetIndent(std::size_t n) {
return m_pState->SetIndent(n, FmtScope::Global);
}
bool Emitter::SetPreCommentIndent(std::size_t n) {
return m_pState->SetPreCommentIndent(n, FmtScope::Global);
}
bool Emitter::SetPostCommentIndent(std::size_t n) {
return m_pState->SetPostCommentIndent(n, FmtScope::Global);
}
bool Emitter::SetFloatPrecision(std::size_t n) {
return m_pState->SetFloatPrecision(n, FmtScope::Global);
}
bool Emitter::SetDoublePrecision(std::size_t n) {
return m_pState->SetDoublePrecision(n, FmtScope::Global);
}
void Emitter::RestoreGlobalModifiedSettings() {
m_pState->RestoreGlobalModifiedSettings();
}
// SetLocalValue
// . Either start/end a group, or set a modifier locally
Emitter& Emitter::SetLocalValue(EMITTER_MANIP value) {
if (!good())
return *this;
switch (value) {
case BeginDoc:
EmitBeginDoc();
break;
case EndDoc:
EmitEndDoc();
break;
case BeginSeq:
EmitBeginSeq();
break;
case EndSeq:
EmitEndSeq();
break;
case BeginMap:
EmitBeginMap();
break;
case EndMap:
EmitEndMap();
break;
case Key:
case Value:
// deprecated (these can be deduced by the parity of nodes in a map)
break;
case TagByKind:
EmitKindTag();
break;
case Newline:
EmitNewline();
break;
default:
m_pState->SetLocalValue(value);
break;
}
return *this;
}
Emitter& Emitter::SetLocalIndent(const _Indent& indent) {
m_pState->SetIndent(indent.value, FmtScope::Local);
return *this;
}
Emitter& Emitter::SetLocalPrecision(const _Precision& precision) {
if (precision.floatPrecision >= 0)
m_pState->SetFloatPrecision(precision.floatPrecision, FmtScope::Local);
if (precision.doublePrecision >= 0)
m_pState->SetDoublePrecision(precision.doublePrecision, FmtScope::Local);
return *this;
}
// EmitBeginDoc
void Emitter::EmitBeginDoc() {
if (!good())
return;
if (m_pState->CurGroupType() != GroupType::NoType) {
m_pState->SetError("Unexpected begin document");
return;
}
if (m_pState->HasAnchor() || m_pState->HasTag()) {
m_pState->SetError("Unexpected begin document");
return;
}
if (m_stream.col() > 0)
m_stream << "\n";
m_stream << "---\n";
m_pState->StartedDoc();
}
// EmitEndDoc
void Emitter::EmitEndDoc() {
if (!good())
return;
if (m_pState->CurGroupType() != GroupType::NoType) {
m_pState->SetError("Unexpected begin document");
return;
}
if (m_pState->HasAnchor() || m_pState->HasTag()) {
m_pState->SetError("Unexpected begin document");
return;
}
if (m_stream.col() > 0)
m_stream << "\n";
m_stream << "...\n";
}
// EmitBeginSeq
void Emitter::EmitBeginSeq() {
if (!good())
return;
PrepareNode(m_pState->NextGroupType(GroupType::Seq));
m_pState->StartedGroup(GroupType::Seq);
}
// EmitEndSeq
void Emitter::EmitEndSeq() {
if (!good())
return;
FlowType::value originalType = m_pState->CurGroupFlowType();
if (m_pState->CurGroupChildCount() == 0)
m_pState->ForceFlow();
if (m_pState->CurGroupFlowType() == FlowType::Flow) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(m_pState->CurIndent());
if (originalType == FlowType::Block) {
m_stream << "[";
} else {
if (m_pState->CurGroupChildCount() == 0 && !m_pState->HasBegunNode())
m_stream << "[";
}
m_stream << "]";
}
m_pState->EndedGroup(GroupType::Seq);
}
// EmitBeginMap
void Emitter::EmitBeginMap() {
if (!good())
return;
PrepareNode(m_pState->NextGroupType(GroupType::Map));
m_pState->StartedGroup(GroupType::Map);
}
// EmitEndMap
void Emitter::EmitEndMap() {
if (!good())
return;
FlowType::value originalType = m_pState->CurGroupFlowType();
if (m_pState->CurGroupChildCount() == 0)
m_pState->ForceFlow();
if (m_pState->CurGroupFlowType() == FlowType::Flow) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(m_pState->CurIndent());
if (originalType == FlowType::Block) {
m_stream << "{";
} else {
if (m_pState->CurGroupChildCount() == 0 && !m_pState->HasBegunNode())
m_stream << "{";
}
m_stream << "}";
}
m_pState->EndedGroup(GroupType::Map);
}
// EmitNewline
void Emitter::EmitNewline() {
if (!good())
return;
PrepareNode(EmitterNodeType::NoType);
m_stream << "\n";
m_pState->SetNonContent();
}
bool Emitter::CanEmitNewline() const { return true; }
// Put the stream in a state so we can simply write the next node
// E.g., if we're in a sequence, write the "- "
void Emitter::PrepareNode(EmitterNodeType::value child) {
switch (m_pState->CurGroupNodeType()) {
case EmitterNodeType::NoType:
PrepareTopNode(child);
break;
case EmitterNodeType::FlowSeq:
FlowSeqPrepareNode(child);
break;
case EmitterNodeType::BlockSeq:
BlockSeqPrepareNode(child);
break;
case EmitterNodeType::FlowMap:
FlowMapPrepareNode(child);
break;
case EmitterNodeType::BlockMap:
BlockMapPrepareNode(child);
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
assert(false);
break;
}
}
void Emitter::PrepareTopNode(EmitterNodeType::value child) {
if (child == EmitterNodeType::NoType)
return;
if (m_pState->CurGroupChildCount() > 0 && m_stream.col() > 0)
EmitBeginDoc();
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
// TODO: if we were writing null, and
// we wanted it blank, we wouldn't want a space
SpaceOrIndentTo(m_pState->HasBegunContent(), 0);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
if (m_pState->HasBegunNode())
m_stream << "\n";
break;
}
}
void Emitter::FlowSeqPrepareNode(EmitterNodeType::value child) {
const std::size_t lastIndent = m_pState->LastIndent();
if (!m_pState->HasBegunNode()) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(lastIndent);
if (m_pState->CurGroupChildCount() == 0)
m_stream << "[";
else
m_stream << ",";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(
m_pState->HasBegunContent() || m_pState->CurGroupChildCount() > 0,
lastIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
assert(false);
break;
}
}
void Emitter::BlockSeqPrepareNode(EmitterNodeType::value child) {
const std::size_t curIndent = m_pState->CurIndent();
const std::size_t nextIndent = curIndent + m_pState->CurGroupIndent();
if (child == EmitterNodeType::NoType)
return;
if (!m_pState->HasBegunContent()) {
if (m_pState->CurGroupChildCount() > 0 || m_stream.comment()) {
m_stream << "\n";
}
m_stream << IndentTo(curIndent);
m_stream << "-";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(m_pState->HasBegunContent(), nextIndent);
break;
case EmitterNodeType::BlockSeq:
m_stream << "\n";
break;
case EmitterNodeType::BlockMap:
if (m_pState->HasBegunContent() || m_stream.comment())
m_stream << "\n";
break;
}
}
void Emitter::FlowMapPrepareNode(EmitterNodeType::value child) {
if (m_pState->CurGroupChildCount() % 2 == 0) {
if (m_pState->GetMapKeyFormat() == LongKey)
m_pState->SetLongKey();
if (m_pState->CurGroupLongKey())
FlowMapPrepareLongKey(child);
else
FlowMapPrepareSimpleKey(child);
} else {
if (m_pState->CurGroupLongKey())
FlowMapPrepareLongKeyValue(child);
else
FlowMapPrepareSimpleKeyValue(child);
}
}
void Emitter::FlowMapPrepareLongKey(EmitterNodeType::value child) {
const std::size_t lastIndent = m_pState->LastIndent();
if (!m_pState->HasBegunNode()) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(lastIndent);
if (m_pState->CurGroupChildCount() == 0)
m_stream << "{ ?";
else
m_stream << ", ?";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(
m_pState->HasBegunContent() || m_pState->CurGroupChildCount() > 0,
lastIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
assert(false);
break;
}
}
void Emitter::FlowMapPrepareLongKeyValue(EmitterNodeType::value child) {
const std::size_t lastIndent = m_pState->LastIndent();
if (!m_pState->HasBegunNode()) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(lastIndent);
m_stream << ":";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(
m_pState->HasBegunContent() || m_pState->CurGroupChildCount() > 0,
lastIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
assert(false);
break;
}
}
void Emitter::FlowMapPrepareSimpleKey(EmitterNodeType::value child) {
const std::size_t lastIndent = m_pState->LastIndent();
if (!m_pState->HasBegunNode()) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(lastIndent);
if (m_pState->CurGroupChildCount() == 0)
m_stream << "{";
else
m_stream << ",";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(
m_pState->HasBegunContent() || m_pState->CurGroupChildCount() > 0,
lastIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
assert(false);
break;
}
}
void Emitter::FlowMapPrepareSimpleKeyValue(EmitterNodeType::value child) {
const std::size_t lastIndent = m_pState->LastIndent();
if (!m_pState->HasBegunNode()) {
if (m_stream.comment())
m_stream << "\n";
m_stream << IndentTo(lastIndent);
if (m_pState->HasAlias()) {
m_stream << " ";
}
m_stream << ":";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(
m_pState->HasBegunContent() || m_pState->CurGroupChildCount() > 0,
lastIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
assert(false);
break;
}
}
void Emitter::BlockMapPrepareNode(EmitterNodeType::value child) {
if (m_pState->CurGroupChildCount() % 2 == 0) {
if (m_pState->GetMapKeyFormat() == LongKey)
m_pState->SetLongKey();
if (child == EmitterNodeType::BlockSeq ||
child == EmitterNodeType::BlockMap)
m_pState->SetLongKey();
if (m_pState->CurGroupLongKey())
BlockMapPrepareLongKey(child);
else
BlockMapPrepareSimpleKey(child);
} else {
if (m_pState->CurGroupLongKey())
BlockMapPrepareLongKeyValue(child);
else
BlockMapPrepareSimpleKeyValue(child);
}
}
void Emitter::BlockMapPrepareLongKey(EmitterNodeType::value child) {
const std::size_t curIndent = m_pState->CurIndent();
const std::size_t childCount = m_pState->CurGroupChildCount();
if (child == EmitterNodeType::NoType)
return;
if (!m_pState->HasBegunContent()) {
if (childCount > 0) {
m_stream << "\n";
}
if (m_stream.comment()) {
m_stream << "\n";
}
m_stream << IndentTo(curIndent);
m_stream << "?";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(true, curIndent + 1);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
if (m_pState->HasBegunContent())
m_stream << "\n";
break;
}
}
void Emitter::BlockMapPrepareLongKeyValue(EmitterNodeType::value child) {
const std::size_t curIndent = m_pState->CurIndent();
if (child == EmitterNodeType::NoType)
return;
if (!m_pState->HasBegunContent()) {
m_stream << "\n";
m_stream << IndentTo(curIndent);
m_stream << ":";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(true, curIndent + 1);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
if (m_pState->HasBegunContent())
m_stream << "\n";
SpaceOrIndentTo(true, curIndent + 1);
break;
}
}
void Emitter::BlockMapPrepareSimpleKey(EmitterNodeType::value child) {
const std::size_t curIndent = m_pState->CurIndent();
const std::size_t childCount = m_pState->CurGroupChildCount();
if (child == EmitterNodeType::NoType)
return;
if (!m_pState->HasBegunNode()) {
if (childCount > 0) {
m_stream << "\n";
}
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(m_pState->HasBegunContent(), curIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
break;
}
}
void Emitter::BlockMapPrepareSimpleKeyValue(EmitterNodeType::value child) {
const std::size_t curIndent = m_pState->CurIndent();
const std::size_t nextIndent = curIndent + m_pState->CurGroupIndent();
if (!m_pState->HasBegunNode()) {
if (m_pState->HasAlias()) {
m_stream << " ";
}
m_stream << ":";
}
switch (child) {
case EmitterNodeType::NoType:
break;
case EmitterNodeType::Property:
case EmitterNodeType::Scalar:
case EmitterNodeType::FlowSeq:
case EmitterNodeType::FlowMap:
SpaceOrIndentTo(true, nextIndent);
break;
case EmitterNodeType::BlockSeq:
case EmitterNodeType::BlockMap:
m_stream << "\n";
break;
}
}
// SpaceOrIndentTo
// . Prepares for some more content by proper spacing
void Emitter::SpaceOrIndentTo(bool requireSpace, std::size_t indent) {
if (m_stream.comment())
m_stream << "\n";
if (m_stream.col() > 0 && requireSpace)
m_stream << " ";
m_stream << IndentTo(indent);
}
void Emitter::PrepareIntegralStream(std::stringstream& stream) const {
switch (m_pState->GetIntFormat()) {
case Dec:
stream << std::dec;
break;
case Hex:
stream << "0x";
stream << std::hex;
break;
case Oct:
stream << "0";
stream << std::oct;
break;
default:
assert(false);
}
}
void Emitter::StartedScalar() { m_pState->StartedScalar(); }
// *******************************************************************************************
// overloads of Write
StringEscaping::value GetStringEscapingStyle(const EMITTER_MANIP emitterManip) {
switch (emitterManip) {
case EscapeNonAscii:
return StringEscaping::NonAscii;
case EscapeAsJson:
return StringEscaping::JSON;
default:
return StringEscaping::None;
break;
}
}
Emitter& Emitter::Write(const std::string& str) {
if (!good())
return *this;
StringEscaping::value stringEscaping = GetStringEscapingStyle(m_pState->GetOutputCharset());
const StringFormat::value strFormat =
Utils::ComputeStringFormat(str, m_pState->GetStringFormat(),
m_pState->CurGroupFlowType(), stringEscaping == StringEscaping::NonAscii);
if (strFormat == StringFormat::Literal || str.size() > 1024)
m_pState->SetMapKeyFormat(YAML::LongKey, FmtScope::Local);
PrepareNode(EmitterNodeType::Scalar);
switch (strFormat) {
case StringFormat::Plain:
m_stream << str;
break;
case StringFormat::SingleQuoted:
Utils::WriteSingleQuotedString(m_stream, str);
break;
case StringFormat::DoubleQuoted:
Utils::WriteDoubleQuotedString(m_stream, str, stringEscaping);
break;
case StringFormat::Literal:
Utils::WriteLiteralString(m_stream, str,
m_pState->CurIndent() + m_pState->GetIndent());
break;
}
StartedScalar();
return *this;
}
std::size_t Emitter::GetFloatPrecision() const {
return m_pState->GetFloatPrecision();
}
std::size_t Emitter::GetDoublePrecision() const {
return m_pState->GetDoublePrecision();
}
const char* Emitter::ComputeFullBoolName(bool b) const {
const EMITTER_MANIP mainFmt = (m_pState->GetBoolLengthFormat() == ShortBool
? YesNoBool
: m_pState->GetBoolFormat());
const EMITTER_MANIP caseFmt = m_pState->GetBoolCaseFormat();
switch (mainFmt) {
case YesNoBool:
switch (caseFmt) {
case UpperCase:
return b ? "YES" : "NO";
case CamelCase:
return b ? "Yes" : "No";
case LowerCase:
return b ? "yes" : "no";
default:
break;
}
break;
case OnOffBool:
switch (caseFmt) {
case UpperCase:
return b ? "ON" : "OFF";
case CamelCase:
return b ? "On" : "Off";
case LowerCase:
return b ? "on" : "off";
default:
break;
}
break;
case TrueFalseBool:
switch (caseFmt) {
case UpperCase:
return b ? "TRUE" : "FALSE";
case CamelCase:
return b ? "True" : "False";
case LowerCase:
return b ? "true" : "false";
default:
break;
}
break;
default:
break;
}
return b ? "y" : "n"; // should never get here, but it can't hurt to give
// these answers
}
const char* Emitter::ComputeNullName() const {
switch (m_pState->GetNullFormat()) {
case LowerNull:
return "null";
case UpperNull:
return "NULL";
case CamelNull:
return "Null";
case TildeNull:
// fallthrough
default:
return "~";
}
}
Emitter& Emitter::Write(bool b) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
const char* name = ComputeFullBoolName(b);
if (m_pState->GetBoolLengthFormat() == ShortBool)
m_stream << name[0];
else
m_stream << name;
StartedScalar();
return *this;
}
Emitter& Emitter::Write(char ch) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
Utils::WriteChar(m_stream, ch, GetStringEscapingStyle(m_pState->GetOutputCharset()));
StartedScalar();
return *this;
}
Emitter& Emitter::Write(const _Alias& alias) {
if (!good())
return *this;
if (m_pState->HasAnchor() || m_pState->HasTag()) {
m_pState->SetError(ErrorMsg::INVALID_ALIAS);
return *this;
}
PrepareNode(EmitterNodeType::Scalar);
if (!Utils::WriteAlias(m_stream, alias.content)) {
m_pState->SetError(ErrorMsg::INVALID_ALIAS);
return *this;
}
StartedScalar();
m_pState->SetAlias();
return *this;
}
Emitter& Emitter::Write(const _Anchor& anchor) {
if (!good())
return *this;
if (m_pState->HasAnchor()) {
m_pState->SetError(ErrorMsg::INVALID_ANCHOR);
return *this;
}
PrepareNode(EmitterNodeType::Property);
if (!Utils::WriteAnchor(m_stream, anchor.content)) {
m_pState->SetError(ErrorMsg::INVALID_ANCHOR);
return *this;
}
m_pState->SetAnchor();
return *this;
}
Emitter& Emitter::Write(const _Tag& tag) {
if (!good())
return *this;
if (m_pState->HasTag()) {
m_pState->SetError(ErrorMsg::INVALID_TAG);
return *this;
}
PrepareNode(EmitterNodeType::Property);
bool success = false;
if (tag.type == _Tag::Type::Verbatim)
success = Utils::WriteTag(m_stream, tag.content, true);
else if (tag.type == _Tag::Type::PrimaryHandle)
success = Utils::WriteTag(m_stream, tag.content, false);
else
success = Utils::WriteTagWithPrefix(m_stream, tag.prefix, tag.content);
if (!success) {
m_pState->SetError(ErrorMsg::INVALID_TAG);
return *this;
}
m_pState->SetTag();
return *this;
}
void Emitter::EmitKindTag() { Write(LocalTag("")); }
Emitter& Emitter::Write(const _Comment& comment) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::NoType);
if (m_stream.col() > 0)
m_stream << Indentation(m_pState->GetPreCommentIndent());
Utils::WriteComment(m_stream, comment.content,
m_pState->GetPostCommentIndent());
m_pState->SetNonContent();
return *this;
}
Emitter& Emitter::Write(const _Null& /*null*/) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
m_stream << ComputeNullName();
StartedScalar();
return *this;
}
Emitter& Emitter::Write(const Binary& binary) {
Write(SecondaryTag("binary"));
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
Utils::WriteBinary(m_stream, binary);
StartedScalar();
return *this;
}
} // namespace YAML

View File

@ -1,400 +0,0 @@
#include <limits>
#include "emitterstate.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML {
EmitterState::EmitterState()
: m_isGood(true),
m_lastError{},
// default global manipulators
m_charset(EmitNonAscii),
m_strFmt(Auto),
m_boolFmt(TrueFalseBool),
m_boolLengthFmt(LongBool),
m_boolCaseFmt(LowerCase),
m_nullFmt(TildeNull),
m_intFmt(Dec),
m_indent(2),
m_preCommentIndent(2),
m_postCommentIndent(1),
m_seqFmt(Block),
m_mapFmt(Block),
m_mapKeyFmt(Auto),
m_floatPrecision(std::numeric_limits<float>::max_digits10),
m_doublePrecision(std::numeric_limits<double>::max_digits10),
//
m_modifiedSettings{},
m_globalModifiedSettings{},
m_groups{},
m_curIndent(0),
m_hasAnchor(false),
m_hasAlias(false),
m_hasTag(false),
m_hasNonContent(false),
m_docCount(0) {}
EmitterState::~EmitterState() = default;
// SetLocalValue
// . We blindly tries to set all possible formatters to this value
// . Only the ones that make sense will be accepted
void EmitterState::SetLocalValue(EMITTER_MANIP value) {
SetOutputCharset(value, FmtScope::Local);
SetStringFormat(value, FmtScope::Local);
SetBoolFormat(value, FmtScope::Local);
SetBoolCaseFormat(value, FmtScope::Local);
SetBoolLengthFormat(value, FmtScope::Local);
SetNullFormat(value, FmtScope::Local);
SetIntFormat(value, FmtScope::Local);
SetFlowType(GroupType::Seq, value, FmtScope::Local);
SetFlowType(GroupType::Map, value, FmtScope::Local);
SetMapKeyFormat(value, FmtScope::Local);
}
void EmitterState::SetAnchor() { m_hasAnchor = true; }
void EmitterState::SetAlias() { m_hasAlias = true; }
void EmitterState::SetTag() { m_hasTag = true; }
void EmitterState::SetNonContent() { m_hasNonContent = true; }
void EmitterState::SetLongKey() {
assert(!m_groups.empty());
if (m_groups.empty()) {
return;
}
assert(m_groups.back()->type == GroupType::Map);
m_groups.back()->longKey = true;
}
void EmitterState::ForceFlow() {
assert(!m_groups.empty());
if (m_groups.empty()) {
return;
}
m_groups.back()->flowType = FlowType::Flow;
}
void EmitterState::StartedNode() {
if (m_groups.empty()) {
m_docCount++;
} else {
m_groups.back()->childCount++;
if (m_groups.back()->childCount % 2 == 0) {
m_groups.back()->longKey = false;
}
}
m_hasAnchor = false;
m_hasAlias = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::NextGroupType(
GroupType::value type) const {
if (type == GroupType::Seq) {
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockSeq;
return EmitterNodeType::FlowSeq;
}
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockMap;
return EmitterNodeType::FlowMap;
// can't happen
assert(false);
return EmitterNodeType::NoType;
}
void EmitterState::StartedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::EndedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::StartedScalar() {
StartedNode();
ClearModifiedSettings();
}
void EmitterState::StartedGroup(GroupType::value type) {
StartedNode();
const std::size_t lastGroupIndent =
(m_groups.empty() ? 0 : m_groups.back()->indent);
m_curIndent += lastGroupIndent;
// TODO: Create move constructors for settings types to simplify transfer
std::unique_ptr<Group> pGroup(new Group(type));
// transfer settings (which last until this group is done)
//
// NB: if pGroup->modifiedSettings == m_modifiedSettings,
// m_modifiedSettings is not changed!
pGroup->modifiedSettings = std::move(m_modifiedSettings);
// set up group
if (GetFlowType(type) == Block) {
pGroup->flowType = FlowType::Block;
} else {
pGroup->flowType = FlowType::Flow;
}
pGroup->indent = GetIndent();
m_groups.push_back(std::move(pGroup));
}
void EmitterState::EndedGroup(GroupType::value type) {
if (m_groups.empty()) {
if (type == GroupType::Seq) {
return SetError(ErrorMsg::UNEXPECTED_END_SEQ);
}
return SetError(ErrorMsg::UNEXPECTED_END_MAP);
}
if (m_hasTag) {
SetError(ErrorMsg::INVALID_TAG);
}
if (m_hasAnchor) {
SetError(ErrorMsg::INVALID_ANCHOR);
}
// get rid of the current group
{
std::unique_ptr<Group> pFinishedGroup = std::move(m_groups.back());
m_groups.pop_back();
if (pFinishedGroup->type != type) {
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
}
}
// reset old settings
std::size_t lastIndent = (m_groups.empty() ? 0 : m_groups.back()->indent);
assert(m_curIndent >= lastIndent);
m_curIndent -= lastIndent;
// some global settings that we changed may have been overridden
// by a local setting we just popped, so we need to restore them
m_globalModifiedSettings.restore();
ClearModifiedSettings();
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::CurGroupNodeType() const {
if (m_groups.empty()) {
return EmitterNodeType::NoType;
}
return m_groups.back()->NodeType();
}
GroupType::value EmitterState::CurGroupType() const {
return m_groups.empty() ? GroupType::NoType : m_groups.back()->type;
}
FlowType::value EmitterState::CurGroupFlowType() const {
return m_groups.empty() ? FlowType::NoType : m_groups.back()->flowType;
}
std::size_t EmitterState::CurGroupIndent() const {
return m_groups.empty() ? 0 : m_groups.back()->indent;
}
std::size_t EmitterState::CurGroupChildCount() const {
return m_groups.empty() ? m_docCount : m_groups.back()->childCount;
}
bool EmitterState::CurGroupLongKey() const {
return m_groups.empty() ? false : m_groups.back()->longKey;
}
std::size_t EmitterState::LastIndent() const {
if (m_groups.size() <= 1) {
return 0;
}
return m_curIndent - m_groups[m_groups.size() - 2]->indent;
}
void EmitterState::ClearModifiedSettings() { m_modifiedSettings.clear(); }
void EmitterState::RestoreGlobalModifiedSettings() {
m_globalModifiedSettings.restore();
}
bool EmitterState::SetOutputCharset(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case EmitNonAscii:
case EscapeNonAscii:
case EscapeAsJson:
_Set(m_charset, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetStringFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case SingleQuoted:
case DoubleQuoted:
case Literal:
_Set(m_strFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case OnOffBool:
case TrueFalseBool:
case YesNoBool:
_Set(m_boolFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolLengthFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case LongBool:
case ShortBool:
_Set(m_boolLengthFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolCaseFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case UpperCase:
case LowerCase:
case CamelCase:
_Set(m_boolCaseFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetNullFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case LowerNull:
case UpperNull:
case CamelNull:
case TildeNull:
_Set(m_nullFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIntFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Dec:
case Hex:
case Oct:
_Set(m_intFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIndent(std::size_t value, FmtScope::value scope) {
if (value <= 1)
return false;
_Set(m_indent, value, scope);
return true;
}
bool EmitterState::SetPreCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_preCommentIndent, value, scope);
return true;
}
bool EmitterState::SetPostCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_postCommentIndent, value, scope);
return true;
}
bool EmitterState::SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case Block:
case Flow:
_Set(groupType == GroupType::Seq ? m_seqFmt : m_mapFmt, value, scope);
return true;
default:
return false;
}
}
EMITTER_MANIP EmitterState::GetFlowType(GroupType::value groupType) const {
// force flow style if we're currently in a flow
if (CurGroupFlowType() == FlowType::Flow)
return Flow;
// otherwise, go with what's asked of us
return (groupType == GroupType::Seq ? m_seqFmt.get() : m_mapFmt.get());
}
bool EmitterState::SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case LongKey:
_Set(m_mapKeyFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetFloatPrecision(std::size_t value, FmtScope::value scope) {
if (value > std::numeric_limits<float>::max_digits10)
return false;
_Set(m_floatPrecision, value, scope);
return true;
}
bool EmitterState::SetDoublePrecision(std::size_t value,
FmtScope::value scope) {
if (value > std::numeric_limits<double>::max_digits10)
return false;
_Set(m_doublePrecision, value, scope);
return true;
}
} // namespace YAML

View File

@ -1,216 +0,0 @@
#ifndef EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "setting.h"
#include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/emittermanip.h"
#include <cassert>
#include <memory>
#include <stack>
#include <stdexcept>
#include <vector>
namespace YAML {
struct FmtScope {
enum value { Local, Global };
};
struct GroupType {
enum value { NoType, Seq, Map };
};
struct FlowType {
enum value { NoType, Flow, Block };
};
class EmitterState {
public:
EmitterState();
~EmitterState();
// basic state checking
bool good() const { return m_isGood; }
const std::string GetLastError() const { return m_lastError; }
void SetError(const std::string& error) {
m_isGood = false;
m_lastError = error;
}
// node handling
void SetAnchor();
void SetAlias();
void SetTag();
void SetNonContent();
void SetLongKey();
void ForceFlow();
void StartedDoc();
void EndedDoc();
void StartedScalar();
void StartedGroup(GroupType::value type);
void EndedGroup(GroupType::value type);
EmitterNodeType::value NextGroupType(GroupType::value type) const;
EmitterNodeType::value CurGroupNodeType() const;
GroupType::value CurGroupType() const;
FlowType::value CurGroupFlowType() const;
std::size_t CurGroupIndent() const;
std::size_t CurGroupChildCount() const;
bool CurGroupLongKey() const;
std::size_t LastIndent() const;
std::size_t CurIndent() const { return m_curIndent; }
bool HasAnchor() const { return m_hasAnchor; }
bool HasAlias() const { return m_hasAlias; }
bool HasTag() const { return m_hasTag; }
bool HasBegunNode() const {
return m_hasAnchor || m_hasTag || m_hasNonContent;
}
bool HasBegunContent() const { return m_hasAnchor || m_hasTag; }
void ClearModifiedSettings();
void RestoreGlobalModifiedSettings();
// formatters
void SetLocalValue(EMITTER_MANIP value);
bool SetOutputCharset(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetOutputCharset() const { return m_charset.get(); }
bool SetStringFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetStringFormat() const { return m_strFmt.get(); }
bool SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolFormat() const { return m_boolFmt.get(); }
bool SetBoolLengthFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolLengthFormat() const { return m_boolLengthFmt.get(); }
bool SetBoolCaseFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolCaseFormat() const { return m_boolCaseFmt.get(); }
bool SetNullFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetNullFormat() const { return m_nullFmt.get(); }
bool SetIntFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetIntFormat() const { return m_intFmt.get(); }
bool SetIndent(std::size_t value, FmtScope::value scope);
std::size_t GetIndent() const { return m_indent.get(); }
bool SetPreCommentIndent(std::size_t value, FmtScope::value scope);
std::size_t GetPreCommentIndent() const { return m_preCommentIndent.get(); }
bool SetPostCommentIndent(std::size_t value, FmtScope::value scope);
std::size_t GetPostCommentIndent() const { return m_postCommentIndent.get(); }
bool SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
FmtScope::value scope);
EMITTER_MANIP GetFlowType(GroupType::value groupType) const;
bool SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetMapKeyFormat() const { return m_mapKeyFmt.get(); }
bool SetFloatPrecision(std::size_t value, FmtScope::value scope);
std::size_t GetFloatPrecision() const { return m_floatPrecision.get(); }
bool SetDoublePrecision(std::size_t value, FmtScope::value scope);
std::size_t GetDoublePrecision() const { return m_doublePrecision.get(); }
private:
template <typename T>
void _Set(Setting<T>& fmt, T value, FmtScope::value scope);
void StartedNode();
private:
// basic state ok?
bool m_isGood;
std::string m_lastError;
// other state
Setting<EMITTER_MANIP> m_charset;
Setting<EMITTER_MANIP> m_strFmt;
Setting<EMITTER_MANIP> m_boolFmt;
Setting<EMITTER_MANIP> m_boolLengthFmt;
Setting<EMITTER_MANIP> m_boolCaseFmt;
Setting<EMITTER_MANIP> m_nullFmt;
Setting<EMITTER_MANIP> m_intFmt;
Setting<std::size_t> m_indent;
Setting<std::size_t> m_preCommentIndent, m_postCommentIndent;
Setting<EMITTER_MANIP> m_seqFmt;
Setting<EMITTER_MANIP> m_mapFmt;
Setting<EMITTER_MANIP> m_mapKeyFmt;
Setting<std::size_t> m_floatPrecision;
Setting<std::size_t> m_doublePrecision;
SettingChanges m_modifiedSettings;
SettingChanges m_globalModifiedSettings;
struct Group {
explicit Group(GroupType::value type_)
: type(type_),
flowType{},
indent(0),
childCount(0),
longKey(false),
modifiedSettings{} {}
GroupType::value type;
FlowType::value flowType;
std::size_t indent;
std::size_t childCount;
bool longKey;
SettingChanges modifiedSettings;
EmitterNodeType::value NodeType() const {
if (type == GroupType::Seq) {
if (flowType == FlowType::Flow)
return EmitterNodeType::FlowSeq;
else
return EmitterNodeType::BlockSeq;
} else {
if (flowType == FlowType::Flow)
return EmitterNodeType::FlowMap;
else
return EmitterNodeType::BlockMap;
}
// can't get here
assert(false);
return EmitterNodeType::NoType;
}
};
std::vector<std::unique_ptr<Group>> m_groups;
std::size_t m_curIndent;
bool m_hasAnchor;
bool m_hasAlias;
bool m_hasTag;
bool m_hasNonContent;
std::size_t m_docCount;
};
template <typename T>
void EmitterState::_Set(Setting<T>& fmt, T value, FmtScope::value scope) {
switch (scope) {
case FmtScope::Local:
m_modifiedSettings.push(fmt.set(value));
break;
case FmtScope::Global:
fmt.set(value);
m_globalModifiedSettings.push(
fmt.set(value)); // this pushes an identity set, so when we restore,
// it restores to the value here, and not the previous one
break;
default:
assert(false);
}
}
} // namespace YAML
#endif // EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,497 +0,0 @@
#include <algorithm>
#include <iomanip>
#include <sstream>
#include "emitterutils.h"
#include "exp.h"
#include "indentation.h"
#include "regex_yaml.h"
#include "regeximpl.h"
#include "stringsource.h"
#include "yaml-cpp/binary.h" // IWYU pragma: keep
#include "yaml-cpp/null.h"
#include "yaml-cpp/ostream_wrapper.h"
namespace YAML {
namespace Utils {
namespace {
enum { REPLACEMENT_CHARACTER = 0xFFFD };
bool IsAnchorChar(int ch) { // test for ns-anchor-char
switch (ch) {
case ',':
case '[':
case ']':
case '{':
case '}': // c-flow-indicator
case ' ':
case '\t': // s-white
case 0xFEFF: // c-byte-order-mark
case 0xA:
case 0xD: // b-char
return false;
case 0x85:
return true;
}
if (ch < 0x20) {
return false;
}
if (ch < 0x7E) {
return true;
}
if (ch < 0xA0) {
return false;
}
if (ch >= 0xD800 && ch <= 0xDFFF) {
return false;
}
if ((ch & 0xFFFE) == 0xFFFE) {
return false;
}
if ((ch >= 0xFDD0) && (ch <= 0xFDEF)) {
return false;
}
if (ch > 0x10FFFF) {
return false;
}
return true;
}
int Utf8BytesIndicated(char ch) {
int byteVal = static_cast<unsigned char>(ch);
switch (byteVal >> 4) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
return 1;
case 12:
case 13:
return 2;
case 14:
return 3;
case 15:
return 4;
default:
return -1;
}
}
bool IsTrailingByte(char ch) { return (ch & 0xC0) == 0x80; }
bool GetNextCodePointAndAdvance(int& codePoint,
std::string::const_iterator& first,
std::string::const_iterator last) {
if (first == last)
return false;
int nBytes = Utf8BytesIndicated(*first);
if (nBytes < 1) {
// Bad lead byte
++first;
codePoint = REPLACEMENT_CHARACTER;
return true;
}
if (nBytes == 1) {
codePoint = *first++;
return true;
}
// Gather bits from trailing bytes
codePoint = static_cast<unsigned char>(*first) & ~(0xFF << (7 - nBytes));
++first;
--nBytes;
for (; nBytes > 0; ++first, --nBytes) {
if ((first == last) || !IsTrailingByte(*first)) {
codePoint = REPLACEMENT_CHARACTER;
break;
}
codePoint <<= 6;
codePoint |= *first & 0x3F;
}
// Check for illegal code points
if (codePoint > 0x10FFFF)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xD800 && codePoint <= 0xDFFF)
codePoint = REPLACEMENT_CHARACTER;
else if ((codePoint & 0xFFFE) == 0xFFFE)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xFDD0 && codePoint <= 0xFDEF)
codePoint = REPLACEMENT_CHARACTER;
return true;
}
void WriteCodePoint(ostream_wrapper& out, int codePoint) {
if (codePoint < 0 || codePoint > 0x10FFFF) {
codePoint = REPLACEMENT_CHARACTER;
}
if (codePoint <= 0x7F) {
out << static_cast<char>(codePoint);
} else if (codePoint <= 0x7FF) {
out << static_cast<char>(0xC0 | (codePoint >> 6))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else if (codePoint <= 0xFFFF) {
out << static_cast<char>(0xE0 | (codePoint >> 12))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else {
out << static_cast<char>(0xF0 | (codePoint >> 18))
<< static_cast<char>(0x80 | ((codePoint >> 12) & 0x3F))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
}
}
bool IsValidPlainScalar(const std::string& str, FlowType::value flowType,
bool allowOnlyAscii) {
// check against null
if (IsNullString(str)) {
return false;
}
// check the start
const RegEx& start = (flowType == FlowType::Flow ? Exp::PlainScalarInFlow()
: Exp::PlainScalar());
if (!start.Matches(str)) {
return false;
}
// and check the end for plain whitespace (which can't be faithfully kept in a
// plain scalar)
if (!str.empty() && *str.rbegin() == ' ') {
return false;
}
// then check until something is disallowed
static const RegEx& disallowed_flow =
Exp::EndScalarInFlow() | (Exp::BlankOrBreak() + Exp::Comment()) |
Exp::NotPrintable() | Exp::Utf8_ByteOrderMark() | Exp::Break() |
Exp::Tab();
static const RegEx& disallowed_block =
Exp::EndScalar() | (Exp::BlankOrBreak() + Exp::Comment()) |
Exp::NotPrintable() | Exp::Utf8_ByteOrderMark() | Exp::Break() |
Exp::Tab();
const RegEx& disallowed =
flowType == FlowType::Flow ? disallowed_flow : disallowed_block;
StringCharSource buffer(str.c_str(), str.size());
while (buffer) {
if (disallowed.Matches(buffer)) {
return false;
}
if (allowOnlyAscii && (0x80 <= static_cast<unsigned char>(buffer[0]))) {
return false;
}
++buffer;
}
return true;
}
bool IsValidSingleQuotedScalar(const std::string& str, bool escapeNonAscii) {
// TODO: check for non-printable characters?
return std::none_of(str.begin(), str.end(), [=](char ch) {
return (escapeNonAscii && (0x80 <= static_cast<unsigned char>(ch))) ||
(ch == '\n');
});
}
bool IsValidLiteralScalar(const std::string& str, FlowType::value flowType,
bool escapeNonAscii) {
if (flowType == FlowType::Flow) {
return false;
}
// TODO: check for non-printable characters?
return std::none_of(str.begin(), str.end(), [=](char ch) {
return (escapeNonAscii && (0x80 <= static_cast<unsigned char>(ch)));
});
}
std::pair<uint16_t, uint16_t> EncodeUTF16SurrogatePair(int codePoint) {
const uint32_t leadOffset = 0xD800 - (0x10000 >> 10);
return {
leadOffset | (codePoint >> 10),
0xDC00 | (codePoint & 0x3FF),
};
}
void WriteDoubleQuoteEscapeSequence(ostream_wrapper& out, int codePoint, StringEscaping::value stringEscapingStyle) {
static const char hexDigits[] = "0123456789abcdef";
out << "\\";
int digits = 8;
if (codePoint < 0xFF && stringEscapingStyle != StringEscaping::JSON) {
out << "x";
digits = 2;
} else if (codePoint < 0xFFFF) {
out << "u";
digits = 4;
} else if (stringEscapingStyle != StringEscaping::JSON) {
out << "U";
digits = 8;
} else {
auto surrogatePair = EncodeUTF16SurrogatePair(codePoint);
WriteDoubleQuoteEscapeSequence(out, surrogatePair.first, stringEscapingStyle);
WriteDoubleQuoteEscapeSequence(out, surrogatePair.second, stringEscapingStyle);
return;
}
// Write digits into the escape sequence
for (; digits > 0; --digits)
out << hexDigits[(codePoint >> (4 * (digits - 1))) & 0xF];
}
bool WriteAliasName(ostream_wrapper& out, const std::string& str) {
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (!IsAnchorChar(codePoint)) {
return false;
}
WriteCodePoint(out, codePoint);
}
return true;
}
} // namespace
StringFormat::value ComputeStringFormat(const std::string& str,
EMITTER_MANIP strFormat,
FlowType::value flowType,
bool escapeNonAscii) {
switch (strFormat) {
case Auto:
if (IsValidPlainScalar(str, flowType, escapeNonAscii)) {
return StringFormat::Plain;
}
return StringFormat::DoubleQuoted;
case SingleQuoted:
if (IsValidSingleQuotedScalar(str, escapeNonAscii)) {
return StringFormat::SingleQuoted;
}
return StringFormat::DoubleQuoted;
case DoubleQuoted:
return StringFormat::DoubleQuoted;
case Literal:
if (IsValidLiteralScalar(str, flowType, escapeNonAscii)) {
return StringFormat::Literal;
}
return StringFormat::DoubleQuoted;
default:
break;
}
return StringFormat::DoubleQuoted;
}
bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str) {
out << "'";
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
return false; // We can't handle a new line and the attendant indentation
// yet
}
if (codePoint == '\'') {
out << "''";
} else {
WriteCodePoint(out, codePoint);
}
}
out << "'";
return true;
}
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str,
StringEscaping::value stringEscaping) {
out << "\"";
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
switch (codePoint) {
case '\"':
out << "\\\"";
break;
case '\\':
out << "\\\\";
break;
case '\n':
out << "\\n";
break;
case '\t':
out << "\\t";
break;
case '\r':
out << "\\r";
break;
case '\b':
out << "\\b";
break;
case '\f':
out << "\\f";
break;
default:
if (codePoint < 0x20 ||
(codePoint >= 0x80 &&
codePoint <= 0xA0)) { // Control characters and non-breaking space
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else if (codePoint == 0xFEFF) { // Byte order marks (ZWNS) should be
// escaped (YAML 1.2, sec. 5.2)
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else if (stringEscaping == StringEscaping::NonAscii && codePoint > 0x7E) {
WriteDoubleQuoteEscapeSequence(out, codePoint, stringEscaping);
} else {
WriteCodePoint(out, codePoint);
}
}
}
out << "\"";
return true;
}
bool WriteLiteralString(ostream_wrapper& out, const std::string& str,
std::size_t indent) {
out << "|\n";
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
out << "\n";
} else {
out<< IndentTo(indent);
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteChar(ostream_wrapper& out, char ch, StringEscaping::value stringEscapingStyle) {
if (('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z')) {
out << ch;
} else if (ch == '\"') {
out << R"("\"")";
} else if (ch == '\t') {
out << R"("\t")";
} else if (ch == '\n') {
out << R"("\n")";
} else if (ch == '\b') {
out << R"("\b")";
} else if (ch == '\r') {
out << R"("\r")";
} else if (ch == '\f') {
out << R"("\f")";
} else if (ch == '\\') {
out << R"("\\")";
} else if (0x20 <= ch && ch <= 0x7e) {
out << "\"" << ch << "\"";
} else {
out << "\"";
WriteDoubleQuoteEscapeSequence(out, ch, stringEscapingStyle);
out << "\"";
}
return true;
}
bool WriteComment(ostream_wrapper& out, const std::string& str,
std::size_t postCommentIndent) {
const std::size_t curIndent = out.col();
out << "#" << Indentation(postCommentIndent);
out.set_comment();
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
out << "\n"
<< IndentTo(curIndent) << "#" << Indentation(postCommentIndent);
out.set_comment();
} else {
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteAlias(ostream_wrapper& out, const std::string& str) {
out << "*";
return WriteAliasName(out, str);
}
bool WriteAnchor(ostream_wrapper& out, const std::string& str) {
out << "&";
return WriteAliasName(out, str);
}
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim) {
out << (verbatim ? "!<" : "!");
StringCharSource buffer(str.c_str(), str.size());
const RegEx& reValid = verbatim ? Exp::URI() : Exp::Tag();
while (buffer) {
int n = reValid.Match(buffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << buffer[0];
++buffer;
}
}
if (verbatim) {
out << ">";
}
return true;
}
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag) {
out << "!";
StringCharSource prefixBuffer(prefix.c_str(), prefix.size());
while (prefixBuffer) {
int n = Exp::URI().Match(prefixBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << prefixBuffer[0];
++prefixBuffer;
}
}
out << "!";
StringCharSource tagBuffer(tag.c_str(), tag.size());
while (tagBuffer) {
int n = Exp::Tag().Match(tagBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << tagBuffer[0];
++tagBuffer;
}
}
return true;
}
bool WriteBinary(ostream_wrapper& out, const Binary& binary) {
WriteDoubleQuotedString(out, EncodeBase64(binary.data(), binary.size()),
StringEscaping::None);
return true;
}
} // namespace Utils
} // namespace YAML

View File

@ -1,55 +0,0 @@
#ifndef EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include "emitterstate.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/ostream_wrapper.h"
namespace YAML {
class ostream_wrapper;
} // namespace YAML
namespace YAML {
class Binary;
struct StringFormat {
enum value { Plain, SingleQuoted, DoubleQuoted, Literal };
};
struct StringEscaping {
enum value { None, NonAscii, JSON };
};
namespace Utils {
StringFormat::value ComputeStringFormat(const std::string& str,
EMITTER_MANIP strFormat,
FlowType::value flowType,
bool escapeNonAscii);
bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str);
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str,
StringEscaping::value stringEscaping);
bool WriteLiteralString(ostream_wrapper& out, const std::string& str,
std::size_t indent);
bool WriteChar(ostream_wrapper& out, char ch,
StringEscaping::value stringEscapingStyle);
bool WriteComment(ostream_wrapper& out, const std::string& str,
std::size_t postCommentIndent);
bool WriteAlias(ostream_wrapper& out, const std::string& str);
bool WriteAnchor(ostream_wrapper& out, const std::string& str);
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim);
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag);
bool WriteBinary(ostream_wrapper& out, const Binary& binary);
}
}
#endif // EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,20 +0,0 @@
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/noexcept.h"
namespace YAML {
// These destructors are defined out-of-line so the vtable is only emitted once.
Exception::~Exception() YAML_CPP_NOEXCEPT = default;
ParserException::~ParserException() YAML_CPP_NOEXCEPT = default;
RepresentationException::~RepresentationException() YAML_CPP_NOEXCEPT = default;
InvalidScalar::~InvalidScalar() YAML_CPP_NOEXCEPT = default;
KeyNotFound::~KeyNotFound() YAML_CPP_NOEXCEPT = default;
InvalidNode::~InvalidNode() YAML_CPP_NOEXCEPT = default;
BadConversion::~BadConversion() YAML_CPP_NOEXCEPT = default;
BadDereference::~BadDereference() YAML_CPP_NOEXCEPT = default;
BadSubscript::~BadSubscript() YAML_CPP_NOEXCEPT = default;
BadPushback::~BadPushback() YAML_CPP_NOEXCEPT = default;
BadInsert::~BadInsert() YAML_CPP_NOEXCEPT = default;
EmitterException::~EmitterException() YAML_CPP_NOEXCEPT = default;
BadFile::~BadFile() YAML_CPP_NOEXCEPT = default;
} // namespace YAML

View File

@ -1,137 +0,0 @@
#include <sstream>
#include "exp.h"
#include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML {
struct Mark;
} // namespace YAML
namespace YAML {
namespace Exp {
unsigned ParseHex(const std::string& str, const Mark& mark) {
unsigned value = 0;
for (char ch : str) {
int digit = 0;
if ('a' <= ch && ch <= 'f')
digit = ch - 'a' + 10;
else if ('A' <= ch && ch <= 'F')
digit = ch - 'A' + 10;
else if ('0' <= ch && ch <= '9')
digit = ch - '0';
else
throw ParserException(mark, ErrorMsg::INVALID_HEX);
value = (value << 4) + digit;
}
return value;
}
std::string Str(unsigned ch) { return std::string(1, static_cast<char>(ch)); }
// Escape
// . Translates the next 'codeLength' characters into a hex number and returns
// the result.
// . Throws if it's not actually hex.
std::string Escape(Stream& in, int codeLength) {
// grab string
std::string str;
for (int i = 0; i < codeLength; i++)
str += in.get();
// get the value
unsigned value = ParseHex(str, in.mark());
// legal unicode?
if ((value >= 0xD800 && value <= 0xDFFF) || value > 0x10FFFF) {
std::stringstream msg;
msg << ErrorMsg::INVALID_UNICODE << value;
throw ParserException(in.mark(), msg.str());
}
// now break it up into chars
if (value <= 0x7F)
return Str(value);
if (value <= 0x7FF)
return Str(0xC0 + (value >> 6)) + Str(0x80 + (value & 0x3F));
if (value <= 0xFFFF)
return Str(0xE0 + (value >> 12)) + Str(0x80 + ((value >> 6) & 0x3F)) +
Str(0x80 + (value & 0x3F));
return Str(0xF0 + (value >> 18)) + Str(0x80 + ((value >> 12) & 0x3F)) +
Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F));
}
// Escape
// . Escapes the sequence starting 'in' (it must begin with a '\' or single
// quote)
// and returns the result.
// . Throws if it's an unknown escape character.
std::string Escape(Stream& in) {
// eat slash
char escape = in.get();
// switch on escape character
char ch = in.get();
// first do single quote, since it's easier
if (escape == '\'' && ch == '\'')
return "\'";
// now do the slash (we're not gonna check if it's a slash - you better pass
// one!)
switch (ch) {
case '0':
return std::string(1, '\x00');
case 'a':
return "\x07";
case 'b':
return "\x08";
case 't':
case '\t':
return "\x09";
case 'n':
return "\x0A";
case 'v':
return "\x0B";
case 'f':
return "\x0C";
case 'r':
return "\x0D";
case 'e':
return "\x1B";
case ' ':
return R"( )";
case '\"':
return "\"";
case '\'':
return "\'";
case '\\':
return "\\";
case '/':
return "/";
case 'N':
return "\x85";
case '_':
return "\xA0";
case 'L':
return "\xE2\x80\xA8"; // LS (#x2028)
case 'P':
return "\xE2\x80\xA9"; // PS (#x2029)
case 'x':
return Escape(in, 2);
case 'u':
return Escape(in, 4);
case 'U':
return Escape(in, 8);
}
std::stringstream msg;
throw ParserException(in.mark(), std::string(ErrorMsg::INVALID_ESCAPE) + ch);
}
} // namespace Exp
} // namespace YAML

View File

@ -1,222 +0,0 @@
#ifndef EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <ios>
#include <string>
#include "regex_yaml.h"
#include "stream.h"
namespace YAML {
////////////////////////////////////////////////////////////////////////////////
// Here we store a bunch of expressions for matching different parts of the
// file.
namespace Exp {
// misc
inline const RegEx& Empty() {
static const RegEx e;
return e;
}
inline const RegEx& Space() {
static const RegEx e = RegEx(' ');
return e;
}
inline const RegEx& Tab() {
static const RegEx e = RegEx('\t');
return e;
}
inline const RegEx& Blank() {
static const RegEx e = Space() | Tab();
return e;
}
inline const RegEx& Break() {
static const RegEx e = RegEx('\n') | RegEx("\r\n");
return e;
}
inline const RegEx& BlankOrBreak() {
static const RegEx e = Blank() | Break();
return e;
}
inline const RegEx& Digit() {
static const RegEx e = RegEx('0', '9');
return e;
}
inline const RegEx& Alpha() {
static const RegEx e = RegEx('a', 'z') | RegEx('A', 'Z');
return e;
}
inline const RegEx& AlphaNumeric() {
static const RegEx e = Alpha() | Digit();
return e;
}
inline const RegEx& Word() {
static const RegEx e = AlphaNumeric() | RegEx('-');
return e;
}
inline const RegEx& Hex() {
static const RegEx e = Digit() | RegEx('A', 'F') | RegEx('a', 'f');
return e;
}
// Valid Unicode code points that are not part of c-printable (YAML 1.2, sec.
// 5.1)
inline const RegEx& NotPrintable() {
static const RegEx e =
RegEx(0) |
RegEx("\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x7F", REGEX_OR) |
RegEx(0x0E, 0x1F) |
(RegEx('\xC2') + (RegEx('\x80', '\x84') | RegEx('\x86', '\x9F')));
return e;
}
inline const RegEx& Utf8_ByteOrderMark() {
static const RegEx e = RegEx("\xEF\xBB\xBF");
return e;
}
// actual tags
inline const RegEx& DocStart() {
static const RegEx e = RegEx("---") + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& DocEnd() {
static const RegEx e = RegEx("...") + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& DocIndicator() {
static const RegEx e = DocStart() | DocEnd();
return e;
}
inline const RegEx& BlockEntry() {
static const RegEx e = RegEx('-') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& Key() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& KeyInFlow() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& Value() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& ValueInFlow() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx(",]}", REGEX_OR));
return e;
}
inline const RegEx& ValueInJSONFlow() {
static const RegEx e = RegEx(':');
return e;
}
inline const RegEx Comment() {
static const RegEx e = RegEx('#');
return e;
}
inline const RegEx& Anchor() {
static const RegEx e = !(RegEx("[]{},", REGEX_OR) | BlankOrBreak());
return e;
}
inline const RegEx& AnchorEnd() {
static const RegEx e = RegEx("?:,]}%@`", REGEX_OR) | BlankOrBreak();
return e;
}
inline const RegEx& URI() {
static const RegEx e = Word() | RegEx("#;/?:@&=+$,_.!~*'()[]", REGEX_OR) |
(RegEx('%') + Hex() + Hex());
return e;
}
inline const RegEx& Tag() {
static const RegEx e = Word() | RegEx("#;/?:@&=+$_.~*'()", REGEX_OR) |
(RegEx('%') + Hex() + Hex());
return e;
}
// Plain scalar rules:
// . Cannot start with a blank.
// . Can never start with any of , [ ] { } # & * ! | > \' \" % @ `
// . In the block context - ? : must be not be followed with a space.
// . In the flow context ? is illegal and : and - must not be followed with a
// space.
inline const RegEx& PlainScalar() {
static const RegEx e =
!(BlankOrBreak() | RegEx(",[]{}#&*!|>\'\"%@`", REGEX_OR) |
(RegEx("-?:", REGEX_OR) + (BlankOrBreak() | RegEx())));
return e;
}
inline const RegEx& PlainScalarInFlow() {
static const RegEx e =
!(BlankOrBreak() | RegEx("?,[]{}#&*!|>\'\"%@`", REGEX_OR) |
(RegEx("-:", REGEX_OR) + (Blank() | RegEx())));
return e;
}
inline const RegEx& EndScalar() {
static const RegEx e = RegEx(':') + (BlankOrBreak() | RegEx());
return e;
}
inline const RegEx& EndScalarInFlow() {
static const RegEx e =
(RegEx(':') + (BlankOrBreak() | RegEx() | RegEx(",]}", REGEX_OR))) |
RegEx(",?[]{}", REGEX_OR);
return e;
}
inline const RegEx& ScanScalarEndInFlow() {
static const RegEx e = (EndScalarInFlow() | (BlankOrBreak() + Comment()));
return e;
}
inline const RegEx& ScanScalarEnd() {
static const RegEx e = EndScalar() | (BlankOrBreak() + Comment());
return e;
}
inline const RegEx& EscSingleQuote() {
static const RegEx e = RegEx("\'\'");
return e;
}
inline const RegEx& EscBreak() {
static const RegEx e = RegEx('\\') + Break();
return e;
}
inline const RegEx& ChompIndicator() {
static const RegEx e = RegEx("+-", REGEX_OR);
return e;
}
inline const RegEx& Chomp() {
static const RegEx e = (ChompIndicator() + Digit()) |
(Digit() + ChompIndicator()) | ChompIndicator() |
Digit();
return e;
}
// and some functions
std::string Escape(Stream& in);
} // namespace Exp
namespace Keys {
const char Directive = '%';
const char FlowSeqStart = '[';
const char FlowSeqEnd = ']';
const char FlowMapStart = '{';
const char FlowMapEnd = '}';
const char FlowEntry = ',';
const char Alias = '*';
const char Anchor = '&';
const char Tag = '!';
const char LiteralScalar = '|';
const char FoldedScalar = '>';
const char VerbatimTagStart = '<';
const char VerbatimTagEnd = '>';
} // namespace Keys
} // namespace YAML
#endif // EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,41 +0,0 @@
#ifndef INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <iostream>
#include <cstddef>
#include "yaml-cpp/ostream_wrapper.h"
namespace YAML {
struct Indentation {
Indentation(std::size_t n_) : n(n_) {}
std::size_t n;
};
inline ostream_wrapper& operator<<(ostream_wrapper& out,
const Indentation& indent) {
for (std::size_t i = 0; i < indent.n; i++)
out << ' ';
return out;
}
struct IndentTo {
IndentTo(std::size_t n_) : n(n_) {}
std::size_t n;
};
inline ostream_wrapper& operator<<(ostream_wrapper& out,
const IndentTo& indent) {
while (out.col() < indent.n)
out << ' ';
return out;
}
}
#endif // INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,26 +0,0 @@
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
#include "yaml-cpp/node/ptr.h"
namespace YAML {
namespace detail {
void memory_holder::merge(memory_holder& rhs) {
if (m_pMemory == rhs.m_pMemory)
return;
m_pMemory->merge(*rhs.m_pMemory);
rhs.m_pMemory = m_pMemory;
}
node& memory::create_node() {
shared_node pNode(new node);
m_nodes.insert(pNode);
return *pNode;
}
void memory::merge(const memory& rhs) {
m_nodes.insert(rhs.m_nodes.begin(), rhs.m_nodes.end());
}
} // namespace detail
} // namespace YAML

View File

@ -1,12 +0,0 @@
#include "yaml-cpp/node/node.h"
#include "nodebuilder.h"
#include "nodeevents.h"
namespace YAML {
Node Clone(const Node& node) {
NodeEvents events(node);
NodeBuilder builder;
events.Emit(builder);
return builder.Root();
}
} // namespace YAML

View File

@ -1,324 +0,0 @@
#include <algorithm>
#include <cassert>
#include <iterator>
#include <sstream>
#include "yaml-cpp/exceptions.h"
#include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
#include "yaml-cpp/node/detail/node_data.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
namespace detail {
std::atomic<size_t> node::m_amount{0};
const std::string& node_data::empty_scalar() {
static const std::string svalue;
return svalue;
}
node_data::node_data()
: m_isDefined(false),
m_mark(Mark::null_mark()),
m_type(NodeType::Null),
m_tag{},
m_style(EmitterStyle::Default),
m_scalar{},
m_sequence{},
m_seqSize(0),
m_map{},
m_undefinedPairs{} {}
void node_data::mark_defined() {
if (m_type == NodeType::Undefined)
m_type = NodeType::Null;
m_isDefined = true;
}
void node_data::set_mark(const Mark& mark) { m_mark = mark; }
void node_data::set_type(NodeType::value type) {
if (type == NodeType::Undefined) {
m_type = type;
m_isDefined = false;
return;
}
m_isDefined = true;
if (type == m_type)
return;
m_type = type;
switch (m_type) {
case NodeType::Null:
break;
case NodeType::Scalar:
m_scalar.clear();
break;
case NodeType::Sequence:
reset_sequence();
break;
case NodeType::Map:
reset_map();
break;
case NodeType::Undefined:
assert(false);
break;
}
}
void node_data::set_tag(const std::string& tag) { m_tag = tag; }
void node_data::set_style(EmitterStyle::value style) { m_style = style; }
void node_data::set_null() {
m_isDefined = true;
m_type = NodeType::Null;
}
void node_data::set_scalar(const std::string& scalar) {
m_isDefined = true;
m_type = NodeType::Scalar;
m_scalar = scalar;
}
// size/iterator
std::size_t node_data::size() const {
if (!m_isDefined)
return 0;
switch (m_type) {
case NodeType::Sequence:
compute_seq_size();
return m_seqSize;
case NodeType::Map:
compute_map_size();
return m_map.size() - m_undefinedPairs.size();
default:
return 0;
}
return 0;
}
void node_data::compute_seq_size() const {
while (m_seqSize < m_sequence.size() && m_sequence[m_seqSize]->is_defined())
m_seqSize++;
}
void node_data::compute_map_size() const {
auto it = m_undefinedPairs.begin();
while (it != m_undefinedPairs.end()) {
auto jt = std::next(it);
if (it->first->is_defined() && it->second->is_defined())
m_undefinedPairs.erase(it);
it = jt;
}
}
const_node_iterator node_data::begin() const {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return const_node_iterator(m_sequence.begin());
case NodeType::Map:
return const_node_iterator(m_map.begin(), m_map.end());
default:
return {};
}
}
node_iterator node_data::begin() {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return node_iterator(m_sequence.begin());
case NodeType::Map:
return node_iterator(m_map.begin(), m_map.end());
default:
return {};
}
}
const_node_iterator node_data::end() const {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return const_node_iterator(m_sequence.end());
case NodeType::Map:
return const_node_iterator(m_map.end(), m_map.end());
default:
return {};
}
}
node_iterator node_data::end() {
if (!m_isDefined)
return {};
switch (m_type) {
case NodeType::Sequence:
return node_iterator(m_sequence.end());
case NodeType::Map:
return node_iterator(m_map.end(), m_map.end());
default:
return {};
}
}
// sequence
void node_data::push_back(node& node,
const shared_memory_holder& /* pMemory */) {
if (m_type == NodeType::Undefined || m_type == NodeType::Null) {
m_type = NodeType::Sequence;
reset_sequence();
}
if (m_type != NodeType::Sequence)
throw BadPushback();
m_sequence.push_back(&node);
}
void node_data::insert(node& key, node& value,
const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
insert_map_pair(key, value);
}
// indexing
node* node_data::get(node& key,
const shared_memory_holder& /* pMemory */) const {
if (m_type != NodeType::Map) {
return nullptr;
}
for (const auto& it : m_map) {
if (it.first->is(key))
return it.second;
}
return nullptr;
}
node& node_data::get(node& key, const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript(m_mark, key);
}
for (const auto& it : m_map) {
if (it.first->is(key))
return *it.second;
}
node& value = pMemory->create_node();
insert_map_pair(key, value);
return value;
}
bool node_data::remove(node& key, const shared_memory_holder& /* pMemory */) {
if (m_type != NodeType::Map)
return false;
for (auto it = m_undefinedPairs.begin(); it != m_undefinedPairs.end();) {
auto jt = std::next(it);
if (it->first->is(key))
m_undefinedPairs.erase(it);
it = jt;
}
auto it =
std::find_if(m_map.begin(), m_map.end(),
[&](std::pair<YAML::detail::node*, YAML::detail::node*> j) {
return (j.first->is(key));
});
if (it != m_map.end()) {
m_map.erase(it);
return true;
}
return false;
}
void node_data::reset_sequence() {
m_sequence.clear();
m_seqSize = 0;
}
void node_data::reset_map() {
m_map.clear();
m_undefinedPairs.clear();
}
void node_data::insert_map_pair(node& key, node& value) {
m_map.emplace_back(&key, &value);
if (!key.is_defined() || !value.is_defined())
m_undefinedPairs.emplace_back(&key, &value);
}
void node_data::convert_to_map(const shared_memory_holder& pMemory) {
switch (m_type) {
case NodeType::Undefined:
case NodeType::Null:
reset_map();
m_type = NodeType::Map;
break;
case NodeType::Sequence:
convert_sequence_to_map(pMemory);
break;
case NodeType::Map:
break;
case NodeType::Scalar:
assert(false);
break;
}
}
void node_data::convert_sequence_to_map(const shared_memory_holder& pMemory) {
assert(m_type == NodeType::Sequence);
reset_map();
for (std::size_t i = 0; i < m_sequence.size(); i++) {
std::stringstream stream;
stream << i;
node& key = pMemory->create_node();
key.set_scalar(stream.str());
insert_map_pair(key, *m_sequence[i]);
}
reset_sequence();
m_type = NodeType::Map;
}
} // namespace detail
} // namespace YAML

View File

@ -1,134 +0,0 @@
#include <cassert>
#include "nodebuilder.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
struct Mark;
NodeBuilder::NodeBuilder()
: m_pMemory(new detail::memory_holder),
m_pRoot(nullptr),
m_stack{},
m_anchors{},
m_keys{},
m_mapDepth(0) {
m_anchors.push_back(nullptr); // since the anchors start at 1
}
NodeBuilder::~NodeBuilder() = default;
Node NodeBuilder::Root() {
if (!m_pRoot)
return Node();
return Node(*m_pRoot, m_pMemory);
}
void NodeBuilder::OnDocumentStart(const Mark&) {}
void NodeBuilder::OnDocumentEnd() {}
void NodeBuilder::OnNull(const Mark& mark, anchor_t anchor) {
detail::node& node = Push(mark, anchor);
node.set_null();
Pop();
}
void NodeBuilder::OnAlias(const Mark& /* mark */, anchor_t anchor) {
detail::node& node = *m_anchors[anchor];
Push(node);
Pop();
}
void NodeBuilder::OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) {
detail::node& node = Push(mark, anchor);
node.set_scalar(value);
node.set_tag(tag);
Pop();
}
void NodeBuilder::OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
detail::node& node = Push(mark, anchor);
node.set_tag(tag);
node.set_type(NodeType::Sequence);
node.set_style(style);
}
void NodeBuilder::OnSequenceEnd() { Pop(); }
void NodeBuilder::OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) {
detail::node& node = Push(mark, anchor);
node.set_type(NodeType::Map);
node.set_tag(tag);
node.set_style(style);
m_mapDepth++;
}
void NodeBuilder::OnMapEnd() {
assert(m_mapDepth > 0);
m_mapDepth--;
Pop();
}
detail::node& NodeBuilder::Push(const Mark& mark, anchor_t anchor) {
detail::node& node = m_pMemory->create_node();
node.set_mark(mark);
RegisterAnchor(anchor, node);
Push(node);
return node;
}
void NodeBuilder::Push(detail::node& node) {
const bool needsKey =
(!m_stack.empty() && m_stack.back()->type() == NodeType::Map &&
m_keys.size() < m_mapDepth);
m_stack.push_back(&node);
if (needsKey)
m_keys.emplace_back(&node, false);
}
void NodeBuilder::Pop() {
assert(!m_stack.empty());
if (m_stack.size() == 1) {
m_pRoot = m_stack[0];
m_stack.pop_back();
return;
}
detail::node& node = *m_stack.back();
m_stack.pop_back();
detail::node& collection = *m_stack.back();
if (collection.type() == NodeType::Sequence) {
collection.push_back(node, m_pMemory);
} else if (collection.type() == NodeType::Map) {
assert(!m_keys.empty());
PushedKey& key = m_keys.back();
if (key.second) {
collection.insert(*key.first, node, m_pMemory);
m_keys.pop_back();
} else {
key.second = true;
}
} else {
assert(false);
m_stack.clear();
}
}
void NodeBuilder::RegisterAnchor(anchor_t anchor, detail::node& node) {
if (anchor) {
assert(anchor == m_anchors.size());
m_anchors.push_back(&node);
}
}
} // namespace YAML

View File

@ -1,74 +0,0 @@
#ifndef NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/node/ptr.h"
namespace YAML {
namespace detail {
class node;
} // namespace detail
struct Mark;
} // namespace YAML
namespace YAML {
class Node;
class NodeBuilder : public EventHandler {
public:
NodeBuilder();
NodeBuilder(const NodeBuilder&) = delete;
NodeBuilder(NodeBuilder&&) = delete;
NodeBuilder& operator=(const NodeBuilder&) = delete;
NodeBuilder& operator=(NodeBuilder&&) = delete;
~NodeBuilder() override;
Node Root();
void OnDocumentStart(const Mark& mark) override;
void OnDocumentEnd() override;
void OnNull(const Mark& mark, anchor_t anchor) override;
void OnAlias(const Mark& mark, anchor_t anchor) override;
void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) override;
void OnSequenceStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnSequenceEnd() override;
void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) override;
void OnMapEnd() override;
private:
detail::node& Push(const Mark& mark, anchor_t anchor);
void Push(detail::node& node);
void Pop();
void RegisterAnchor(anchor_t anchor, detail::node& node);
private:
detail::shared_memory_holder m_pMemory;
detail::node* m_pRoot;
using Nodes = std::vector<detail::node *>;
Nodes m_stack;
Nodes m_anchors;
using PushedKey = std::pair<detail::node*, bool>;
std::vector<PushedKey> m_keys;
std::size_t m_mapDepth;
};
} // namespace YAML
#endif // NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,98 +0,0 @@
#include "nodeevents.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
namespace YAML {
void NodeEvents::AliasManager::RegisterReference(const detail::node& node) {
m_anchorByIdentity.insert(std::make_pair(node.ref(), _CreateNewAnchor()));
}
anchor_t NodeEvents::AliasManager::LookupAnchor(
const detail::node& node) const {
auto it = m_anchorByIdentity.find(node.ref());
if (it == m_anchorByIdentity.end())
return 0;
return it->second;
}
NodeEvents::NodeEvents(const Node& node)
: m_pMemory(node.m_pMemory), m_root(node.m_pNode), m_refCount{} {
if (m_root)
Setup(*m_root);
}
void NodeEvents::Setup(const detail::node& node) {
int& refCount = m_refCount[node.ref()];
refCount++;
if (refCount > 1)
return;
if (node.type() == NodeType::Sequence) {
for (auto element : node)
Setup(*element);
} else if (node.type() == NodeType::Map) {
for (auto element : node) {
Setup(*element.first);
Setup(*element.second);
}
}
}
void NodeEvents::Emit(EventHandler& handler) {
AliasManager am;
handler.OnDocumentStart(Mark());
if (m_root)
Emit(*m_root, handler, am);
handler.OnDocumentEnd();
}
void NodeEvents::Emit(const detail::node& node, EventHandler& handler,
AliasManager& am) const {
anchor_t anchor = NullAnchor;
if (IsAliased(node)) {
anchor = am.LookupAnchor(node);
if (anchor) {
handler.OnAlias(Mark(), anchor);
return;
}
am.RegisterReference(node);
anchor = am.LookupAnchor(node);
}
switch (node.type()) {
case NodeType::Undefined:
break;
case NodeType::Null:
handler.OnNull(Mark(), anchor);
break;
case NodeType::Scalar:
handler.OnScalar(Mark(), node.tag(), anchor, node.scalar());
break;
case NodeType::Sequence:
handler.OnSequenceStart(Mark(), node.tag(), anchor, node.style());
for (auto element : node)
Emit(*element, handler, am);
handler.OnSequenceEnd();
break;
case NodeType::Map:
handler.OnMapStart(Mark(), node.tag(), anchor, node.style());
for (auto element : node) {
Emit(*element.first, handler, am);
Emit(*element.second, handler, am);
}
handler.OnMapEnd();
break;
}
}
bool NodeEvents::IsAliased(const detail::node& node) const {
auto it = m_refCount.find(node.ref());
return it != m_refCount.end() && it->second > 1;
}
} // namespace YAML

View File

@ -1,68 +0,0 @@
#ifndef NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <map>
#include <vector>
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/node/ptr.h"
namespace YAML {
namespace detail {
class node;
} // namespace detail
} // namespace YAML
namespace YAML {
class EventHandler;
class Node;
class NodeEvents {
public:
explicit NodeEvents(const Node& node);
NodeEvents(const NodeEvents&) = delete;
NodeEvents(NodeEvents&&) = delete;
NodeEvents& operator=(const NodeEvents&) = delete;
NodeEvents& operator=(NodeEvents&&) = delete;
void Emit(EventHandler& handler);
private:
class AliasManager {
public:
AliasManager() : m_anchorByIdentity{}, m_curAnchor(0) {}
void RegisterReference(const detail::node& node);
anchor_t LookupAnchor(const detail::node& node) const;
private:
anchor_t _CreateNewAnchor() { return ++m_curAnchor; }
private:
using AnchorByIdentity = std::map<const detail::node_ref*, anchor_t>;
AnchorByIdentity m_anchorByIdentity;
anchor_t m_curAnchor;
};
void Setup(const detail::node& node);
void Emit(const detail::node& node, EventHandler& handler,
AliasManager& am) const;
bool IsAliased(const detail::node& node) const;
private:
detail::shared_memory_holder m_pMemory;
detail::node* m_root;
using RefCount = std::map<const detail::node_ref*, int>;
RefCount m_refCount;
};
} // namespace YAML
#endif // NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,10 +0,0 @@
#include "yaml-cpp/null.h"
namespace YAML {
_Null Null;
bool IsNullString(const std::string& str) {
return str.empty() || str == "~" || str == "null" || str == "Null" ||
str == "NULL";
}
} // namespace YAML

View File

@ -1,62 +0,0 @@
#include "yaml-cpp/ostream_wrapper.h"
#include <algorithm>
#include <cstring>
#include <iostream>
namespace YAML {
ostream_wrapper::ostream_wrapper()
: m_buffer(1, '\0'),
m_pStream(nullptr),
m_pos(0),
m_row(0),
m_col(0),
m_comment(false) {}
ostream_wrapper::ostream_wrapper(std::ostream& stream)
: m_buffer{},
m_pStream(&stream),
m_pos(0),
m_row(0),
m_col(0),
m_comment(false) {}
ostream_wrapper::~ostream_wrapper() = default;
void ostream_wrapper::write(const std::string& str) {
if (m_pStream) {
m_pStream->write(str.c_str(), str.size());
} else {
m_buffer.resize(std::max(m_buffer.size(), m_pos + str.size() + 1));
std::copy(str.begin(), str.end(), m_buffer.begin() + m_pos);
}
for (char ch : str) {
update_pos(ch);
}
}
void ostream_wrapper::write(const char* str, std::size_t size) {
if (m_pStream) {
m_pStream->write(str, size);
} else {
m_buffer.resize(std::max(m_buffer.size(), m_pos + size + 1));
std::copy(str, str + size, m_buffer.begin() + m_pos);
}
for (std::size_t i = 0; i < size; i++) {
update_pos(str[i]);
}
}
void ostream_wrapper::update_pos(char ch) {
m_pos++;
m_col++;
if (ch == '\n') {
m_row++;
m_col = 0;
m_comment = false;
}
}
} // namespace YAML

View File

@ -1,72 +0,0 @@
#include "yaml-cpp/node/parse.h"
#include <fstream>
#include <sstream>
#include "nodebuilder.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/parser.h"
namespace YAML {
Node Load(const std::string& input) {
std::stringstream stream(input);
return Load(stream);
}
Node Load(const char* input) {
std::stringstream stream(input);
return Load(stream);
}
Node Load(std::istream& input) {
Parser parser(input);
NodeBuilder builder;
if (!parser.HandleNextDocument(builder)) {
return Node();
}
return builder.Root();
}
Node LoadFile(const std::string& filename) {
std::ifstream fin(filename);
if (!fin) {
throw BadFile(filename);
}
return Load(fin);
}
std::vector<Node> LoadAll(const std::string& input) {
std::stringstream stream(input);
return LoadAll(stream);
}
std::vector<Node> LoadAll(const char* input) {
std::stringstream stream(input);
return LoadAll(stream);
}
std::vector<Node> LoadAll(std::istream& input) {
std::vector<Node> docs;
Parser parser(input);
while (true) {
NodeBuilder builder;
if (!parser.HandleNextDocument(builder)) {
break;
}
docs.push_back(builder.Root());
}
return docs;
}
std::vector<Node> LoadAllFromFile(const std::string& filename) {
std::ifstream fin(filename);
if (!fin) {
throw BadFile(filename);
}
return LoadAll(fin);
}
} // namespace YAML

View File

@ -1,119 +0,0 @@
#include <cstdio>
#include <sstream>
#include "directives.h" // IWYU pragma: keep
#include "scanner.h" // IWYU pragma: keep
#include "singledocparser.h"
#include "token.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/parser.h"
namespace YAML {
class EventHandler;
Parser::Parser() : m_pScanner{}, m_pDirectives{} {}
Parser::Parser(std::istream& in) : Parser() { Load(in); }
Parser::~Parser() = default;
Parser::operator bool() const { return m_pScanner && !m_pScanner->empty(); }
void Parser::Load(std::istream& in) {
m_pScanner.reset(new Scanner(in));
m_pDirectives.reset(new Directives);
}
bool Parser::HandleNextDocument(EventHandler& eventHandler) {
if (!m_pScanner)
return false;
ParseDirectives();
if (m_pScanner->empty()) {
return false;
}
SingleDocParser sdp(*m_pScanner, *m_pDirectives);
sdp.HandleDocument(eventHandler);
return true;
}
void Parser::ParseDirectives() {
bool readDirective = false;
while (!m_pScanner->empty()) {
Token& token = m_pScanner->peek();
if (token.type != Token::DIRECTIVE) {
break;
}
// we keep the directives from the last document if none are specified;
// but if any directives are specific, then we reset them
if (!readDirective) {
m_pDirectives.reset(new Directives);
}
readDirective = true;
HandleDirective(token);
m_pScanner->pop();
}
}
void Parser::HandleDirective(const Token& token) {
if (token.value == "YAML") {
HandleYamlDirective(token);
} else if (token.value == "TAG") {
HandleTagDirective(token);
}
}
void Parser::HandleYamlDirective(const Token& token) {
if (token.params.size() != 1) {
throw ParserException(token.mark, ErrorMsg::YAML_DIRECTIVE_ARGS);
}
if (!m_pDirectives->version.isDefault) {
throw ParserException(token.mark, ErrorMsg::REPEATED_YAML_DIRECTIVE);
}
std::stringstream str(token.params[0]);
str >> m_pDirectives->version.major;
str.get();
str >> m_pDirectives->version.minor;
if (!str || str.peek() != EOF) {
throw ParserException(
token.mark, std::string(ErrorMsg::YAML_VERSION) + token.params[0]);
}
if (m_pDirectives->version.major > 1) {
throw ParserException(token.mark, ErrorMsg::YAML_MAJOR_VERSION);
}
m_pDirectives->version.isDefault = false;
// TODO: warning on major == 1, minor > 2?
}
void Parser::HandleTagDirective(const Token& token) {
if (token.params.size() != 2)
throw ParserException(token.mark, ErrorMsg::TAG_DIRECTIVE_ARGS);
const std::string& handle = token.params[0];
const std::string& prefix = token.params[1];
if (m_pDirectives->tags.find(handle) != m_pDirectives->tags.end()) {
throw ParserException(token.mark, ErrorMsg::REPEATED_TAG_DIRECTIVE);
}
m_pDirectives->tags[handle] = prefix;
}
void Parser::PrintTokens(std::ostream& out) {
if (!m_pScanner) {
return;
}
while (!m_pScanner->empty()) {
out << m_pScanner->peek() << "\n";
m_pScanner->pop();
}
}
} // namespace YAML

View File

@ -1,45 +0,0 @@
#ifndef PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
#include <cstdlib>
#include <memory>
#include <vector>
namespace YAML {
// TODO: This class is no longer needed
template <typename T>
class ptr_vector {
public:
ptr_vector() : m_data{} {}
ptr_vector(const ptr_vector&) = delete;
ptr_vector(ptr_vector&&) = default;
ptr_vector& operator=(const ptr_vector&) = delete;
ptr_vector& operator=(ptr_vector&&) = default;
void clear() { m_data.clear(); }
std::size_t size() const { return m_data.size(); }
bool empty() const { return m_data.empty(); }
void push_back(std::unique_ptr<T>&& t) { m_data.push_back(std::move(t)); }
T& operator[](std::size_t i) { return *m_data[i]; }
const T& operator[](std::size_t i) const { return *m_data[i]; }
T& back() { return *(m_data.back().get()); }
const T& back() const { return *(m_data.back().get()); }
private:
std::vector<std::unique_ptr<T>> m_data;
};
} // namespace YAML
#endif // PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,43 +0,0 @@
#include "regex_yaml.h"
namespace YAML {
// constructors
RegEx::RegEx(REGEX_OP op) : m_op(op), m_a(0), m_z(0), m_params{} {}
RegEx::RegEx() : RegEx(REGEX_EMPTY) {}
RegEx::RegEx(char ch) : m_op(REGEX_MATCH), m_a(ch), m_z(0), m_params{} {}
RegEx::RegEx(char a, char z) : m_op(REGEX_RANGE), m_a(a), m_z(z), m_params{} {}
RegEx::RegEx(const std::string& str, REGEX_OP op)
: m_op(op), m_a(0), m_z(0), m_params(str.begin(), str.end()) {}
// combination constructors
RegEx operator!(const RegEx& ex) {
RegEx ret(REGEX_NOT);
ret.m_params.push_back(ex);
return ret;
}
RegEx operator|(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_OR);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator&(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_AND);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator+(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_SEQ);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
} // namespace YAML

View File

@ -1,88 +0,0 @@
#ifndef REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
#include "yaml-cpp/dll.h"
namespace YAML {
class Stream;
enum REGEX_OP {
REGEX_EMPTY,
REGEX_MATCH,
REGEX_RANGE,
REGEX_OR,
REGEX_AND,
REGEX_NOT,
REGEX_SEQ
};
// simplified regular expressions
// . Only straightforward matches (no repeated characters)
// . Only matches from start of string
class YAML_CPP_API RegEx {
public:
RegEx();
explicit RegEx(char ch);
RegEx(char a, char z);
RegEx(const std::string& str, REGEX_OP op = REGEX_SEQ);
~RegEx() = default;
friend YAML_CPP_API RegEx operator!(const RegEx& ex);
friend YAML_CPP_API RegEx operator|(const RegEx& ex1, const RegEx& ex2);
friend YAML_CPP_API RegEx operator&(const RegEx& ex1, const RegEx& ex2);
friend YAML_CPP_API RegEx operator+(const RegEx& ex1, const RegEx& ex2);
bool Matches(char ch) const;
bool Matches(const std::string& str) const;
bool Matches(const Stream& in) const;
template <typename Source>
bool Matches(const Source& source) const;
int Match(const std::string& str) const;
int Match(const Stream& in) const;
template <typename Source>
int Match(const Source& source) const;
private:
explicit RegEx(REGEX_OP op);
template <typename Source>
bool IsValidSource(const Source& source) const;
template <typename Source>
int MatchUnchecked(const Source& source) const;
template <typename Source>
int MatchOpEmpty(const Source& source) const;
template <typename Source>
int MatchOpMatch(const Source& source) const;
template <typename Source>
int MatchOpRange(const Source& source) const;
template <typename Source>
int MatchOpOr(const Source& source) const;
template <typename Source>
int MatchOpAnd(const Source& source) const;
template <typename Source>
int MatchOpNot(const Source& source) const;
template <typename Source>
int MatchOpSeq(const Source& source) const;
private:
REGEX_OP m_op;
char m_a{};
char m_z{};
std::vector<RegEx> m_params;
};
} // namespace YAML
#include "regeximpl.h"
#endif // REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,185 +0,0 @@
#ifndef REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "stream.h"
#include "streamcharsource.h"
#include "stringsource.h"
namespace YAML {
// query matches
inline bool RegEx::Matches(char ch) const {
std::string str;
str += ch;
return Matches(str);
}
inline bool RegEx::Matches(const std::string& str) const {
return Match(str) >= 0;
}
inline bool RegEx::Matches(const Stream& in) const { return Match(in) >= 0; }
template <typename Source>
inline bool RegEx::Matches(const Source& source) const {
return Match(source) >= 0;
}
// Match
// . Matches the given string against this regular expression.
// . Returns the number of characters matched.
// . Returns -1 if no characters were matched (the reason for
// not returning zero is that we may have an empty regex
// which is ALWAYS successful at matching zero characters).
// . REMEMBER that we only match from the start of the buffer!
inline int RegEx::Match(const std::string& str) const {
StringCharSource source(str.c_str(), str.size());
return Match(source);
}
inline int RegEx::Match(const Stream& in) const {
StreamCharSource source(in);
return Match(source);
}
template <typename Source>
inline bool RegEx::IsValidSource(const Source& source) const {
return source;
}
template <>
inline bool RegEx::IsValidSource<StringCharSource>(
const StringCharSource& source) const {
switch (m_op) {
case REGEX_MATCH:
case REGEX_RANGE:
return source;
default:
return true;
}
}
template <typename Source>
inline int RegEx::Match(const Source& source) const {
return IsValidSource(source) ? MatchUnchecked(source) : -1;
}
template <typename Source>
inline int RegEx::MatchUnchecked(const Source& source) const {
switch (m_op) {
case REGEX_EMPTY:
return MatchOpEmpty(source);
case REGEX_MATCH:
return MatchOpMatch(source);
case REGEX_RANGE:
return MatchOpRange(source);
case REGEX_OR:
return MatchOpOr(source);
case REGEX_AND:
return MatchOpAnd(source);
case REGEX_NOT:
return MatchOpNot(source);
case REGEX_SEQ:
return MatchOpSeq(source);
}
return -1;
}
//////////////////////////////////////////////////////////////////////////////
// Operators
// Note: the convention MatchOp*<Source> is that we can assume
// IsSourceValid(source).
// So we do all our checks *before* we call these functions
// EmptyOperator
template <typename Source>
inline int RegEx::MatchOpEmpty(const Source& source) const {
return source[0] == Stream::eof() ? 0 : -1;
}
template <>
inline int RegEx::MatchOpEmpty<StringCharSource>(
const StringCharSource& source) const {
return !source ? 0 : -1; // the empty regex only is successful on the empty
// string
}
// MatchOperator
template <typename Source>
inline int RegEx::MatchOpMatch(const Source& source) const {
if (source[0] != m_a)
return -1;
return 1;
}
// RangeOperator
template <typename Source>
inline int RegEx::MatchOpRange(const Source& source) const {
if (m_a > source[0] || m_z < source[0])
return -1;
return 1;
}
// OrOperator
template <typename Source>
inline int RegEx::MatchOpOr(const Source& source) const {
for (const RegEx& param : m_params) {
int n = param.MatchUnchecked(source);
if (n >= 0)
return n;
}
return -1;
}
// AndOperator
// Note: 'AND' is a little funny, since we may be required to match things
// of different lengths. If we find a match, we return the length of
// the FIRST entry on the list.
template <typename Source>
inline int RegEx::MatchOpAnd(const Source& source) const {
int first = -1;
for (std::size_t i = 0; i < m_params.size(); i++) {
int n = m_params[i].MatchUnchecked(source);
if (n == -1)
return -1;
if (i == 0)
first = n;
}
return first;
}
// NotOperator
template <typename Source>
inline int RegEx::MatchOpNot(const Source& source) const {
if (m_params.empty())
return -1;
if (m_params[0].MatchUnchecked(source) >= 0)
return -1;
return 1;
}
// SeqOperator
template <typename Source>
inline int RegEx::MatchOpSeq(const Source& source) const {
int offset = 0;
for (const RegEx& param : m_params) {
int n = param.Match(source + offset); // note Match, not
// MatchUnchecked because we
// need to check validity after
// the offset
if (n == -1)
return -1;
offset += n;
}
return offset;
}
} // namespace YAML
#endif // REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,391 +0,0 @@
#include <cassert>
#include <memory>
#include "exp.h"
#include "scanner.h"
#include "token.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML {
Scanner::Scanner(std::istream& in)
: INPUT(in),
m_tokens{},
m_startedStream(false),
m_endedStream(false),
m_simpleKeyAllowed(false),
m_canBeJSONFlow(false),
m_simpleKeys{},
m_indents{},
m_indentRefs{},
m_flows{} {}
Scanner::~Scanner() = default;
bool Scanner::empty() {
EnsureTokensInQueue();
return m_tokens.empty();
}
void Scanner::pop() {
EnsureTokensInQueue();
if (!m_tokens.empty())
m_tokens.pop();
}
Token& Scanner::peek() {
EnsureTokensInQueue();
assert(!m_tokens.empty()); // should we be asserting here? I mean, we really
// just be checking
// if it's empty before peeking.
#if 0
static Token *pLast = 0;
if(pLast != &m_tokens.front())
std::cerr << "peek: " << m_tokens.front() << "\n";
pLast = &m_tokens.front();
#endif
return m_tokens.front();
}
Mark Scanner::mark() const { return INPUT.mark(); }
void Scanner::EnsureTokensInQueue() {
while (true) {
if (!m_tokens.empty()) {
Token& token = m_tokens.front();
// if this guy's valid, then we're done
if (token.status == Token::VALID) {
return;
}
// here's where we clean up the impossible tokens
if (token.status == Token::INVALID) {
m_tokens.pop();
continue;
}
// note: what's left are the unverified tokens
}
// no token? maybe we've actually finished
if (m_endedStream) {
return;
}
// no? then scan...
ScanNextToken();
}
}
void Scanner::ScanNextToken() {
if (m_endedStream) {
return;
}
if (!m_startedStream) {
return StartStream();
}
// get rid of whitespace, etc. (in between tokens it should be irrelevant)
ScanToNextToken();
// maybe need to end some blocks
PopIndentToHere();
// *****
// And now branch based on the next few characters!
// *****
// end of stream
if (!INPUT) {
return EndStream();
}
if (INPUT.column() == 0 && INPUT.peek() == Keys::Directive) {
return ScanDirective();
}
// document token
if (INPUT.column() == 0 && Exp::DocStart().Matches(INPUT)) {
return ScanDocStart();
}
if (INPUT.column() == 0 && Exp::DocEnd().Matches(INPUT)) {
return ScanDocEnd();
}
// flow start/end/entry
if (INPUT.peek() == Keys::FlowSeqStart ||
INPUT.peek() == Keys::FlowMapStart) {
return ScanFlowStart();
}
if (INPUT.peek() == Keys::FlowSeqEnd || INPUT.peek() == Keys::FlowMapEnd) {
return ScanFlowEnd();
}
if (INPUT.peek() == Keys::FlowEntry) {
return ScanFlowEntry();
}
// block/map stuff
if (Exp::BlockEntry().Matches(INPUT)) {
return ScanBlockEntry();
}
if ((InBlockContext() ? Exp::Key() : Exp::KeyInFlow()).Matches(INPUT)) {
return ScanKey();
}
if (GetValueRegex().Matches(INPUT)) {
return ScanValue();
}
// alias/anchor
if (INPUT.peek() == Keys::Alias || INPUT.peek() == Keys::Anchor) {
return ScanAnchorOrAlias();
}
// tag
if (INPUT.peek() == Keys::Tag) {
return ScanTag();
}
// special scalars
if (InBlockContext() && (INPUT.peek() == Keys::LiteralScalar ||
INPUT.peek() == Keys::FoldedScalar)) {
return ScanBlockScalar();
}
if (INPUT.peek() == '\'' || INPUT.peek() == '\"') {
return ScanQuotedScalar();
}
// plain scalars
if ((InBlockContext() ? Exp::PlainScalar() : Exp::PlainScalarInFlow())
.Matches(INPUT)) {
return ScanPlainScalar();
}
// don't know what it is!
throw ParserException(INPUT.mark(), ErrorMsg::UNKNOWN_TOKEN);
}
void Scanner::ScanToNextToken() {
while (true) {
// first eat whitespace
while (INPUT && IsWhitespaceToBeEaten(INPUT.peek())) {
if (InBlockContext() && Exp::Tab().Matches(INPUT)) {
m_simpleKeyAllowed = false;
}
INPUT.eat(1);
}
// then eat a comment
if (Exp::Comment().Matches(INPUT)) {
// eat until line break
while (INPUT && !Exp::Break().Matches(INPUT)) {
INPUT.eat(1);
}
}
// if it's NOT a line break, then we're done!
if (!Exp::Break().Matches(INPUT)) {
break;
}
// otherwise, let's eat the line break and keep going
int n = Exp::Break().Match(INPUT);
INPUT.eat(n);
// oh yeah, and let's get rid of that simple key
InvalidateSimpleKey();
// new line - we may be able to accept a simple key now
if (InBlockContext()) {
m_simpleKeyAllowed = true;
}
}
}
///////////////////////////////////////////////////////////////////////
// Misc. helpers
// IsWhitespaceToBeEaten
// . We can eat whitespace if it's a space or tab
// . Note: originally tabs in block context couldn't be eaten
// "where a simple key could be allowed
// (i.e., not at the beginning of a line, or following '-', '?', or
// ':')"
// I think this is wrong, since tabs can be non-content whitespace; it's just
// that they can't contribute to indentation, so once you've seen a tab in a
// line, you can't start a simple key
bool Scanner::IsWhitespaceToBeEaten(char ch) {
if (ch == ' ') {
return true;
}
if (ch == '\t') {
return true;
}
return false;
}
const RegEx& Scanner::GetValueRegex() const {
if (InBlockContext()) {
return Exp::Value();
}
return m_canBeJSONFlow ? Exp::ValueInJSONFlow() : Exp::ValueInFlow();
}
void Scanner::StartStream() {
m_startedStream = true;
m_simpleKeyAllowed = true;
std::unique_ptr<IndentMarker> pIndent(
new IndentMarker(-1, IndentMarker::NONE));
m_indentRefs.push_back(std::move(pIndent));
m_indents.push(&m_indentRefs.back());
}
void Scanner::EndStream() {
// force newline
if (INPUT.column() > 0) {
INPUT.ResetColumn();
}
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_endedStream = true;
}
Token* Scanner::PushToken(Token::TYPE type) {
m_tokens.push(Token(type, INPUT.mark()));
return &m_tokens.back();
}
Token::TYPE Scanner::GetStartTokenFor(IndentMarker::INDENT_TYPE type) const {
switch (type) {
case IndentMarker::SEQ:
return Token::BLOCK_SEQ_START;
case IndentMarker::MAP:
return Token::BLOCK_MAP_START;
case IndentMarker::NONE:
assert(false);
break;
}
assert(false);
throw std::runtime_error("yaml-cpp: internal error, invalid indent type");
}
Scanner::IndentMarker* Scanner::PushIndentTo(int column,
IndentMarker::INDENT_TYPE type) {
// are we in flow?
if (InFlowContext()) {
return nullptr;
}
std::unique_ptr<IndentMarker> pIndent(new IndentMarker(column, type));
IndentMarker& indent = *pIndent;
const IndentMarker& lastIndent = *m_indents.top();
// is this actually an indentation?
if (indent.column < lastIndent.column) {
return nullptr;
}
if (indent.column == lastIndent.column &&
!(indent.type == IndentMarker::SEQ &&
lastIndent.type == IndentMarker::MAP)) {
return nullptr;
}
// push a start token
indent.pStartToken = PushToken(GetStartTokenFor(type));
// and then the indent
m_indents.push(&indent);
m_indentRefs.push_back(std::move(pIndent));
return &m_indentRefs.back();
}
void Scanner::PopIndentToHere() {
// are we in flow?
if (InFlowContext()) {
return;
}
// now pop away
while (!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if (indent.column < INPUT.column()) {
break;
}
if (indent.column == INPUT.column() &&
!(indent.type == IndentMarker::SEQ &&
!Exp::BlockEntry().Matches(INPUT))) {
break;
}
PopIndent();
}
while (!m_indents.empty() &&
m_indents.top()->status == IndentMarker::INVALID) {
PopIndent();
}
}
void Scanner::PopAllIndents() {
// are we in flow?
if (InFlowContext()) {
return;
}
// now pop away
while (!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if (indent.type == IndentMarker::NONE) {
break;
}
PopIndent();
}
}
void Scanner::PopIndent() {
const IndentMarker& indent = *m_indents.top();
m_indents.pop();
if (indent.status != IndentMarker::VALID) {
InvalidateSimpleKey();
return;
}
if (indent.type == IndentMarker::SEQ) {
m_tokens.push(Token(Token::BLOCK_SEQ_END, INPUT.mark()));
} else if (indent.type == IndentMarker::MAP) {
m_tokens.push(Token(Token::BLOCK_MAP_END, INPUT.mark()));
}
}
int Scanner::GetTopIndent() const {
if (m_indents.empty()) {
return 0;
}
return m_indents.top()->column;
}
void Scanner::ThrowParserException(const std::string& msg) const {
Mark mark = Mark::null_mark();
if (!m_tokens.empty()) {
const Token& token = m_tokens.front();
mark = token.mark;
}
throw ParserException(mark, msg);
}
} // namespace YAML

View File

@ -1,190 +0,0 @@
#ifndef SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
#include <ios>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include "ptr_vector.h"
#include "stream.h"
#include "token.h"
#include "yaml-cpp/mark.h"
namespace YAML {
class Node;
class RegEx;
/**
* A scanner transforms a stream of characters into a stream of tokens.
*/
class Scanner {
public:
explicit Scanner(std::istream &in);
~Scanner();
/** Returns true if there are no more tokens to be read. */
bool empty();
/** Removes the next token in the queue. */
void pop();
/** Returns, but does not remove, the next token in the queue. */
Token &peek();
/** Returns the current mark in the input stream. */
Mark mark() const;
private:
struct IndentMarker {
enum INDENT_TYPE { MAP, SEQ, NONE };
enum STATUS { VALID, INVALID, UNKNOWN };
IndentMarker(int column_, INDENT_TYPE type_)
: column(column_), type(type_), status(VALID), pStartToken(nullptr) {}
int column;
INDENT_TYPE type;
STATUS status;
Token *pStartToken;
};
enum FLOW_MARKER { FLOW_MAP, FLOW_SEQ };
private:
// scanning
/**
* Scans until there's a valid token at the front of the queue, or the queue
* is empty. The state can be checked by {@link #empty}, and the next token
* retrieved by {@link #peek}.
*/
void EnsureTokensInQueue();
/**
* The main scanning function; this method branches out to scan whatever the
* next token should be.
*/
void ScanNextToken();
/** Eats the input stream until it reaches the next token-like thing. */
void ScanToNextToken();
/** Sets the initial conditions for starting a stream. */
void StartStream();
/** Closes out the stream, finish up, etc. */
void EndStream();
Token *PushToken(Token::TYPE type);
bool InFlowContext() const { return !m_flows.empty(); }
bool InBlockContext() const { return m_flows.empty(); }
std::size_t GetFlowLevel() const { return m_flows.size(); }
Token::TYPE GetStartTokenFor(IndentMarker::INDENT_TYPE type) const;
/**
* Pushes an indentation onto the stack, and enqueues the proper token
* (sequence start or mapping start).
*
* @return the indent marker it generates (if any).
*/
IndentMarker *PushIndentTo(int column, IndentMarker::INDENT_TYPE type);
/**
* Pops indentations off the stack until it reaches the current indentation
* level, and enqueues the proper token each time. Then pops all invalid
* indentations off.
*/
void PopIndentToHere();
/**
* Pops all indentations (except for the base empty one) off the stack, and
* enqueues the proper token each time.
*/
void PopAllIndents();
/** Pops a single indent, pushing the proper token. */
void PopIndent();
int GetTopIndent() const;
// checking input
bool CanInsertPotentialSimpleKey() const;
bool ExistsActiveSimpleKey() const;
void InsertPotentialSimpleKey();
void InvalidateSimpleKey();
bool VerifySimpleKey();
void PopAllSimpleKeys();
/**
* Throws a ParserException with the current token location (if available),
* and does not parse any more tokens.
*/
void ThrowParserException(const std::string &msg) const;
bool IsWhitespaceToBeEaten(char ch);
/**
* Returns the appropriate regex to check if the next token is a value token.
*/
const RegEx &GetValueRegex() const;
struct SimpleKey {
SimpleKey(const Mark &mark_, std::size_t flowLevel_);
void Validate();
void Invalidate();
Mark mark;
std::size_t flowLevel;
IndentMarker *pIndent;
Token *pMapStart, *pKey;
};
// and the tokens
void ScanDirective();
void ScanDocStart();
void ScanDocEnd();
void ScanBlockSeqStart();
void ScanBlockMapSTart();
void ScanBlockEnd();
void ScanBlockEntry();
void ScanFlowStart();
void ScanFlowEnd();
void ScanFlowEntry();
void ScanKey();
void ScanValue();
void ScanAnchorOrAlias();
void ScanTag();
void ScanPlainScalar();
void ScanQuotedScalar();
void ScanBlockScalar();
private:
// the stream
Stream INPUT;
// the output (tokens)
std::queue<Token> m_tokens;
// state info
bool m_startedStream, m_endedStream;
bool m_simpleKeyAllowed;
bool m_canBeJSONFlow;
std::stack<SimpleKey> m_simpleKeys;
std::stack<IndentMarker *> m_indents;
ptr_vector<IndentMarker> m_indentRefs; // for "garbage collection"
std::stack<FLOW_MARKER> m_flows;
};
}
#endif // SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,251 +0,0 @@
#include "scanscalar.h"
#include <algorithm>
#include "exp.h"
#include "regeximpl.h"
#include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML {
// ScanScalar
// . This is where the scalar magic happens.
//
// . We do the scanning in three phases:
// 1. Scan until newline
// 2. Eat newline
// 3. Scan leading blanks.
//
// . Depending on the parameters given, we store or stop
// and different places in the above flow.
std::string ScanScalar(Stream& INPUT, ScanScalarParams& params) {
bool foundNonEmptyLine = false;
bool pastOpeningBreak = (params.fold == FOLD_FLOW);
bool emptyLine = false, moreIndented = false;
int foldedNewlineCount = 0;
bool foldedNewlineStartedMoreIndented = false;
std::size_t lastEscapedChar = std::string::npos;
std::string scalar;
params.leadingSpaces = false;
if (!params.end) {
params.end = &Exp::Empty();
}
while (INPUT) {
// ********************************
// Phase #1: scan until line ending
std::size_t lastNonWhitespaceChar = scalar.size();
bool escapedNewline = false;
while (!params.end->Matches(INPUT) && !Exp::Break().Matches(INPUT)) {
if (!INPUT) {
break;
}
// document indicator?
if (INPUT.column() == 0 && Exp::DocIndicator().Matches(INPUT)) {
if (params.onDocIndicator == BREAK) {
break;
}
if (params.onDocIndicator == THROW) {
throw ParserException(INPUT.mark(), ErrorMsg::DOC_IN_SCALAR);
}
}
foundNonEmptyLine = true;
pastOpeningBreak = true;
// escaped newline? (only if we're escaping on slash)
if (params.escape == '\\' && Exp::EscBreak().Matches(INPUT)) {
// eat escape character and get out (but preserve trailing whitespace!)
INPUT.get();
lastNonWhitespaceChar = scalar.size();
lastEscapedChar = scalar.size();
escapedNewline = true;
break;
}
// escape this?
if (INPUT.peek() == params.escape) {
scalar += Exp::Escape(INPUT);
lastNonWhitespaceChar = scalar.size();
lastEscapedChar = scalar.size();
continue;
}
// otherwise, just add the damn character
char ch = INPUT.get();
scalar += ch;
if (ch != ' ' && ch != '\t') {
lastNonWhitespaceChar = scalar.size();
}
}
// eof? if we're looking to eat something, then we throw
if (!INPUT) {
if (params.eatEnd) {
throw ParserException(INPUT.mark(), ErrorMsg::EOF_IN_SCALAR);
}
break;
}
// doc indicator?
if (params.onDocIndicator == BREAK && INPUT.column() == 0 &&
Exp::DocIndicator().Matches(INPUT)) {
break;
}
// are we done via character match?
int n = params.end->Match(INPUT);
if (n >= 0) {
if (params.eatEnd) {
INPUT.eat(n);
}
break;
}
// do we remove trailing whitespace?
if (params.fold == FOLD_FLOW)
scalar.erase(lastNonWhitespaceChar);
// ********************************
// Phase #2: eat line ending
n = Exp::Break().Match(INPUT);
INPUT.eat(n);
// ********************************
// Phase #3: scan initial spaces
// first the required indentation
while (INPUT.peek() == ' ' &&
(INPUT.column() < params.indent ||
(params.detectIndent && !foundNonEmptyLine)) &&
!params.end->Matches(INPUT)) {
INPUT.eat(1);
}
// update indent if we're auto-detecting
if (params.detectIndent && !foundNonEmptyLine) {
params.indent = std::max(params.indent, INPUT.column());
}
// and then the rest of the whitespace
while (Exp::Blank().Matches(INPUT)) {
// we check for tabs that masquerade as indentation
if (INPUT.peek() == '\t' && INPUT.column() < params.indent &&
params.onTabInIndentation == THROW) {
throw ParserException(INPUT.mark(), ErrorMsg::TAB_IN_INDENTATION);
}
if (!params.eatLeadingWhitespace) {
break;
}
if (params.end->Matches(INPUT)) {
break;
}
INPUT.eat(1);
}
// was this an empty line?
bool nextEmptyLine = Exp::Break().Matches(INPUT);
bool nextMoreIndented = Exp::Blank().Matches(INPUT);
if (params.fold == FOLD_BLOCK && foldedNewlineCount == 0 && nextEmptyLine)
foldedNewlineStartedMoreIndented = moreIndented;
// for block scalars, we always start with a newline, so we should ignore it
// (not fold or keep)
if (pastOpeningBreak) {
switch (params.fold) {
case DONT_FOLD:
scalar += "\n";
break;
case FOLD_BLOCK:
if (!emptyLine && !nextEmptyLine && !moreIndented &&
!nextMoreIndented && INPUT.column() >= params.indent) {
scalar += " ";
} else if (nextEmptyLine) {
foldedNewlineCount++;
} else {
scalar += "\n";
}
if (!nextEmptyLine && foldedNewlineCount > 0) {
scalar += std::string(foldedNewlineCount - 1, '\n');
if (foldedNewlineStartedMoreIndented ||
nextMoreIndented | !foundNonEmptyLine) {
scalar += "\n";
}
foldedNewlineCount = 0;
}
break;
case FOLD_FLOW:
if (nextEmptyLine) {
scalar += "\n";
} else if (!emptyLine && !escapedNewline) {
scalar += " ";
}
break;
}
}
emptyLine = nextEmptyLine;
moreIndented = nextMoreIndented;
pastOpeningBreak = true;
// are we done via indentation?
if (!emptyLine && INPUT.column() < params.indent) {
params.leadingSpaces = true;
break;
}
}
// post-processing
if (params.trimTrailingSpaces) {
std::size_t pos = scalar.find_last_not_of(" \t");
if (lastEscapedChar != std::string::npos) {
if (pos < lastEscapedChar || pos == std::string::npos) {
pos = lastEscapedChar;
}
}
if (pos < scalar.size()) {
scalar.erase(pos + 1);
}
}
switch (params.chomp) {
case CLIP: {
std::size_t pos = scalar.find_last_not_of('\n');
if (lastEscapedChar != std::string::npos) {
if (pos < lastEscapedChar || pos == std::string::npos) {
pos = lastEscapedChar;
}
}
if (pos == std::string::npos) {
scalar.erase();
} else if (pos + 1 < scalar.size()) {
scalar.erase(pos + 2);
}
} break;
case STRIP: {
std::size_t pos = scalar.find_last_not_of('\n');
if (lastEscapedChar != std::string::npos) {
if (pos < lastEscapedChar || pos == std::string::npos) {
pos = lastEscapedChar;
}
}
if (pos == std::string::npos) {
scalar.erase();
} else if (pos < scalar.size()) {
scalar.erase(pos + 1);
}
} break;
default:
break;
}
return scalar;
}
} // namespace YAML

View File

@ -1,63 +0,0 @@
#ifndef SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include "regex_yaml.h"
#include "stream.h"
namespace YAML {
enum CHOMP { STRIP = -1, CLIP, KEEP };
enum ACTION { NONE, BREAK, THROW };
enum FOLD { DONT_FOLD, FOLD_BLOCK, FOLD_FLOW };
struct ScanScalarParams {
ScanScalarParams()
: end(nullptr),
eatEnd(false),
indent(0),
detectIndent(false),
eatLeadingWhitespace(0),
escape(0),
fold(DONT_FOLD),
trimTrailingSpaces(0),
chomp(CLIP),
onDocIndicator(NONE),
onTabInIndentation(NONE),
leadingSpaces(false) {}
// input:
const RegEx* end; // what condition ends this scalar?
// unowned.
bool eatEnd; // should we eat that condition when we see it?
int indent; // what level of indentation should be eaten and ignored?
bool detectIndent; // should we try to autodetect the indent?
bool eatLeadingWhitespace; // should we continue eating this delicious
// indentation after 'indent' spaces?
char escape; // what character do we escape on (i.e., slash or single quote)
// (0 for none)
FOLD fold; // how do we fold line ends?
bool trimTrailingSpaces; // do we remove all trailing spaces (at the very
// end)
CHOMP chomp; // do we strip, clip, or keep trailing newlines (at the very
// end)
// Note: strip means kill all, clip means keep at most one, keep means keep
// all
ACTION onDocIndicator; // what do we do if we see a document indicator?
ACTION onTabInIndentation; // what do we do if we see a tab where we should
// be seeing indentation spaces
// output:
bool leadingSpaces;
};
std::string ScanScalar(Stream& INPUT, ScanScalarParams& params);
}
#endif // SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,81 +0,0 @@
#include "exp.h"
#include "regex_yaml.h"
#include "regeximpl.h"
#include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/mark.h"
namespace YAML {
const std::string ScanVerbatimTag(Stream& INPUT) {
std::string tag;
// eat the start character
INPUT.get();
while (INPUT) {
if (INPUT.peek() == Keys::VerbatimTagEnd) {
// eat the end character
INPUT.get();
return tag;
}
int n = Exp::URI().Match(INPUT);
if (n <= 0)
break;
tag += INPUT.get(n);
}
throw ParserException(INPUT.mark(), ErrorMsg::END_OF_VERBATIM_TAG);
}
const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle) {
std::string tag;
canBeHandle = true;
Mark firstNonWordChar;
while (INPUT) {
if (INPUT.peek() == Keys::Tag) {
if (!canBeHandle)
throw ParserException(firstNonWordChar, ErrorMsg::CHAR_IN_TAG_HANDLE);
break;
}
int n = 0;
if (canBeHandle) {
n = Exp::Word().Match(INPUT);
if (n <= 0) {
canBeHandle = false;
firstNonWordChar = INPUT.mark();
}
}
if (!canBeHandle)
n = Exp::Tag().Match(INPUT);
if (n <= 0)
break;
tag += INPUT.get(n);
}
return tag;
}
const std::string ScanTagSuffix(Stream& INPUT) {
std::string tag;
while (INPUT) {
int n = Exp::Tag().Match(INPUT);
if (n <= 0)
break;
tag += INPUT.get(n);
}
if (tag.empty())
throw ParserException(INPUT.mark(), ErrorMsg::TAG_WITH_NO_SUFFIX);
return tag;
}
} // namespace YAML

View File

@ -1,19 +0,0 @@
#ifndef SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include "stream.h"
namespace YAML {
const std::string ScanVerbatimTag(Stream& INPUT);
const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle);
const std::string ScanTagSuffix(Stream& INPUT);
}
#endif // SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,437 +0,0 @@
#include <sstream>
#include "exp.h"
#include "regex_yaml.h"
#include "regeximpl.h"
#include "scanner.h"
#include "scanscalar.h"
#include "scantag.h" // IWYU pragma: keep
#include "tag.h" // IWYU pragma: keep
#include "token.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/mark.h"
namespace YAML {
///////////////////////////////////////////////////////////////////////
// Specialization for scanning specific tokens
// Directive
// . Note: no semantic checking is done here (that's for the parser to do)
void Scanner::ScanDirective() {
std::string name;
std::vector<std::string> params;
// pop indents and simple keys
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// store pos and eat indicator
Token token(Token::DIRECTIVE, INPUT.mark());
INPUT.eat(1);
// read name
while (INPUT && !Exp::BlankOrBreak().Matches(INPUT))
token.value += INPUT.get();
// read parameters
while (true) {
// first get rid of whitespace
while (Exp::Blank().Matches(INPUT))
INPUT.eat(1);
// break on newline or comment
if (!INPUT || Exp::Break().Matches(INPUT) || Exp::Comment().Matches(INPUT))
break;
// now read parameter
std::string param;
while (INPUT && !Exp::BlankOrBreak().Matches(INPUT))
param += INPUT.get();
token.params.push_back(param);
}
m_tokens.push(token);
}
// DocStart
void Scanner::ScanDocStart() {
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// eat
Mark mark = INPUT.mark();
INPUT.eat(3);
m_tokens.push(Token(Token::DOC_START, mark));
}
// DocEnd
void Scanner::ScanDocEnd() {
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// eat
Mark mark = INPUT.mark();
INPUT.eat(3);
m_tokens.push(Token(Token::DOC_END, mark));
}
// FlowStart
void Scanner::ScanFlowStart() {
// flows can be simple keys
InsertPotentialSimpleKey();
m_simpleKeyAllowed = true;
m_canBeJSONFlow = false;
// eat
Mark mark = INPUT.mark();
char ch = INPUT.get();
FLOW_MARKER flowType = (ch == Keys::FlowSeqStart ? FLOW_SEQ : FLOW_MAP);
m_flows.push(flowType);
Token::TYPE type =
(flowType == FLOW_SEQ ? Token::FLOW_SEQ_START : Token::FLOW_MAP_START);
m_tokens.push(Token(type, mark));
}
// FlowEnd
void Scanner::ScanFlowEnd() {
if (InBlockContext())
throw ParserException(INPUT.mark(), ErrorMsg::FLOW_END);
// we might have a solo entry in the flow context
if (InFlowContext()) {
if (m_flows.top() == FLOW_MAP && VerifySimpleKey())
m_tokens.push(Token(Token::VALUE, INPUT.mark()));
else if (m_flows.top() == FLOW_SEQ)
InvalidateSimpleKey();
}
m_simpleKeyAllowed = false;
m_canBeJSONFlow = true;
// eat
Mark mark = INPUT.mark();
char ch = INPUT.get();
// check that it matches the start
FLOW_MARKER flowType = (ch == Keys::FlowSeqEnd ? FLOW_SEQ : FLOW_MAP);
if (m_flows.top() != flowType)
throw ParserException(mark, ErrorMsg::FLOW_END);
m_flows.pop();
Token::TYPE type = (flowType ? Token::FLOW_SEQ_END : Token::FLOW_MAP_END);
m_tokens.push(Token(type, mark));
}
// FlowEntry
void Scanner::ScanFlowEntry() {
// we might have a solo entry in the flow context
if (InFlowContext()) {
if (m_flows.top() == FLOW_MAP && VerifySimpleKey())
m_tokens.push(Token(Token::VALUE, INPUT.mark()));
else if (m_flows.top() == FLOW_SEQ)
InvalidateSimpleKey();
}
m_simpleKeyAllowed = true;
m_canBeJSONFlow = false;
// eat
Mark mark = INPUT.mark();
INPUT.eat(1);
m_tokens.push(Token(Token::FLOW_ENTRY, mark));
}
// BlockEntry
void Scanner::ScanBlockEntry() {
// we better be in the block context!
if (InFlowContext())
throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY);
// can we put it here?
if (!m_simpleKeyAllowed)
throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY);
PushIndentTo(INPUT.column(), IndentMarker::SEQ);
m_simpleKeyAllowed = true;
m_canBeJSONFlow = false;
// eat
Mark mark = INPUT.mark();
INPUT.eat(1);
m_tokens.push(Token(Token::BLOCK_ENTRY, mark));
}
// Key
void Scanner::ScanKey() {
// handle keys differently in the block context (and manage indents)
if (InBlockContext()) {
if (!m_simpleKeyAllowed)
throw ParserException(INPUT.mark(), ErrorMsg::MAP_KEY);
PushIndentTo(INPUT.column(), IndentMarker::MAP);
}
// can only put a simple key here if we're in block context
m_simpleKeyAllowed = InBlockContext();
// eat
Mark mark = INPUT.mark();
INPUT.eat(1);
m_tokens.push(Token(Token::KEY, mark));
}
// Value
void Scanner::ScanValue() {
// and check that simple key
bool isSimpleKey = VerifySimpleKey();
m_canBeJSONFlow = false;
if (isSimpleKey) {
// can't follow a simple key with another simple key (dunno why, though - it
// seems fine)
m_simpleKeyAllowed = false;
} else {
// handle values differently in the block context (and manage indents)
if (InBlockContext()) {
if (!m_simpleKeyAllowed)
throw ParserException(INPUT.mark(), ErrorMsg::MAP_VALUE);
PushIndentTo(INPUT.column(), IndentMarker::MAP);
}
// can only put a simple key here if we're in block context
m_simpleKeyAllowed = InBlockContext();
}
// eat
Mark mark = INPUT.mark();
INPUT.eat(1);
m_tokens.push(Token(Token::VALUE, mark));
}
// AnchorOrAlias
void Scanner::ScanAnchorOrAlias() {
bool alias;
std::string name;
// insert a potential simple key
InsertPotentialSimpleKey();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// eat the indicator
Mark mark = INPUT.mark();
char indicator = INPUT.get();
alias = (indicator == Keys::Alias);
// now eat the content
while (INPUT && Exp::Anchor().Matches(INPUT))
name += INPUT.get();
// we need to have read SOMETHING!
if (name.empty())
throw ParserException(INPUT.mark(), alias ? ErrorMsg::ALIAS_NOT_FOUND
: ErrorMsg::ANCHOR_NOT_FOUND);
// and needs to end correctly
if (INPUT && !Exp::AnchorEnd().Matches(INPUT))
throw ParserException(INPUT.mark(), alias ? ErrorMsg::CHAR_IN_ALIAS
: ErrorMsg::CHAR_IN_ANCHOR);
// and we're done
Token token(alias ? Token::ALIAS : Token::ANCHOR, mark);
token.value = name;
m_tokens.push(token);
}
// Tag
void Scanner::ScanTag() {
// insert a potential simple key
InsertPotentialSimpleKey();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
Token token(Token::TAG, INPUT.mark());
// eat the indicator
INPUT.get();
if (INPUT && INPUT.peek() == Keys::VerbatimTagStart) {
std::string tag = ScanVerbatimTag(INPUT);
token.value = tag;
token.data = Tag::VERBATIM;
} else {
bool canBeHandle;
token.value = ScanTagHandle(INPUT, canBeHandle);
if (!canBeHandle && token.value.empty())
token.data = Tag::NON_SPECIFIC;
else if (token.value.empty())
token.data = Tag::SECONDARY_HANDLE;
else
token.data = Tag::PRIMARY_HANDLE;
// is there a suffix?
if (canBeHandle && INPUT.peek() == Keys::Tag) {
// eat the indicator
INPUT.get();
token.params.push_back(ScanTagSuffix(INPUT));
token.data = Tag::NAMED_HANDLE;
}
}
m_tokens.push(token);
}
// PlainScalar
void Scanner::ScanPlainScalar() {
std::string scalar;
// set up the scanning parameters
ScanScalarParams params;
params.end =
(InFlowContext() ? &Exp::ScanScalarEndInFlow() : &Exp::ScanScalarEnd());
params.eatEnd = false;
params.indent = (InFlowContext() ? 0 : GetTopIndent() + 1);
params.fold = FOLD_FLOW;
params.eatLeadingWhitespace = true;
params.trimTrailingSpaces = true;
params.chomp = STRIP;
params.onDocIndicator = BREAK;
params.onTabInIndentation = THROW;
// insert a potential simple key
InsertPotentialSimpleKey();
Mark mark = INPUT.mark();
scalar = ScanScalar(INPUT, params);
// can have a simple key only if we ended the scalar by starting a new line
m_simpleKeyAllowed = params.leadingSpaces;
m_canBeJSONFlow = false;
// finally, check and see if we ended on an illegal character
// if(Exp::IllegalCharInScalar.Matches(INPUT))
// throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_SCALAR);
Token token(Token::PLAIN_SCALAR, mark);
token.value = scalar;
m_tokens.push(token);
}
// QuotedScalar
void Scanner::ScanQuotedScalar() {
std::string scalar;
// peek at single or double quote (don't eat because we need to preserve (for
// the time being) the input position)
char quote = INPUT.peek();
bool single = (quote == '\'');
// setup the scanning parameters
ScanScalarParams params;
RegEx end = (single ? RegEx(quote) & !Exp::EscSingleQuote() : RegEx(quote));
params.end = &end;
params.eatEnd = true;
params.escape = (single ? '\'' : '\\');
params.indent = 0;
params.fold = FOLD_FLOW;
params.eatLeadingWhitespace = true;
params.trimTrailingSpaces = false;
params.chomp = CLIP;
params.onDocIndicator = THROW;
// insert a potential simple key
InsertPotentialSimpleKey();
Mark mark = INPUT.mark();
// now eat that opening quote
INPUT.get();
// and scan
scalar = ScanScalar(INPUT, params);
m_simpleKeyAllowed = false;
m_canBeJSONFlow = true;
Token token(Token::NON_PLAIN_SCALAR, mark);
token.value = scalar;
m_tokens.push(token);
}
// BlockScalarToken
// . These need a little extra processing beforehand.
// . We need to scan the line where the indicator is (this doesn't count as part
// of the scalar),
// and then we need to figure out what level of indentation we'll be using.
void Scanner::ScanBlockScalar() {
std::string scalar;
ScanScalarParams params;
params.indent = 1;
params.detectIndent = true;
// eat block indicator ('|' or '>')
Mark mark = INPUT.mark();
char indicator = INPUT.get();
params.fold = (indicator == Keys::FoldedScalar ? FOLD_BLOCK : DONT_FOLD);
// eat chomping/indentation indicators
params.chomp = CLIP;
int n = Exp::Chomp().Match(INPUT);
for (int i = 0; i < n; i++) {
char ch = INPUT.get();
if (ch == '+')
params.chomp = KEEP;
else if (ch == '-')
params.chomp = STRIP;
else if (Exp::Digit().Matches(ch)) {
if (ch == '0')
throw ParserException(INPUT.mark(), ErrorMsg::ZERO_INDENT_IN_BLOCK);
params.indent = ch - '0';
params.detectIndent = false;
}
}
// now eat whitespace
while (Exp::Blank().Matches(INPUT))
INPUT.eat(1);
// and comments to the end of the line
if (Exp::Comment().Matches(INPUT))
while (INPUT && !Exp::Break().Matches(INPUT))
INPUT.eat(1);
// if it's not a line break, then we ran into a bad character inline
if (INPUT && !Exp::Break().Matches(INPUT))
throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_BLOCK);
// set the initial indentation
if (GetTopIndent() >= 0)
params.indent += GetTopIndent();
params.eatLeadingWhitespace = false;
params.trimTrailingSpaces = false;
params.onTabInIndentation = THROW;
scalar = ScanScalar(INPUT, params);
// simple keys always ok after block scalars (since we're gonna start a new
// line anyways)
m_simpleKeyAllowed = true;
m_canBeJSONFlow = false;
Token token(Token::NON_PLAIN_SCALAR, mark);
token.value = scalar;
m_tokens.push(token);
}
} // namespace YAML

View File

@ -1,100 +0,0 @@
#ifndef SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/noexcept.h"
#include <memory>
#include <utility>
#include <vector>
namespace YAML {
class SettingChangeBase {
public:
virtual ~SettingChangeBase() = default;
virtual void pop() = 0;
};
template <typename T>
class Setting {
public:
Setting() : m_value() {}
Setting(const T& value) : m_value() { set(value); }
const T get() const { return m_value; }
std::unique_ptr<SettingChangeBase> set(const T& value);
void restore(const Setting<T>& oldSetting) { m_value = oldSetting.get(); }
private:
T m_value;
};
template <typename T>
class SettingChange : public SettingChangeBase {
public:
SettingChange(Setting<T>* pSetting)
: m_pCurSetting(pSetting),
m_oldSetting(*pSetting) // copy old setting to save its state
{}
SettingChange(const SettingChange&) = delete;
SettingChange(SettingChange&&) = delete;
SettingChange& operator=(const SettingChange&) = delete;
SettingChange& operator=(SettingChange&&) = delete;
void pop() override { m_pCurSetting->restore(m_oldSetting); }
private:
Setting<T>* m_pCurSetting;
Setting<T> m_oldSetting;
};
template <typename T>
inline std::unique_ptr<SettingChangeBase> Setting<T>::set(const T& value) {
std::unique_ptr<SettingChangeBase> pChange(new SettingChange<T>(this));
m_value = value;
return pChange;
}
class SettingChanges {
public:
SettingChanges() : m_settingChanges{} {}
SettingChanges(const SettingChanges&) = delete;
SettingChanges(SettingChanges&&) YAML_CPP_NOEXCEPT = default;
SettingChanges& operator=(const SettingChanges&) = delete;
SettingChanges& operator=(SettingChanges&& rhs) YAML_CPP_NOEXCEPT {
if (this == &rhs)
return *this;
clear();
std::swap(m_settingChanges, rhs.m_settingChanges);
return *this;
}
~SettingChanges() { clear(); }
void clear() YAML_CPP_NOEXCEPT {
restore();
m_settingChanges.clear();
}
void restore() YAML_CPP_NOEXCEPT {
for (const auto& setting : m_settingChanges)
setting->pop();
}
void push(std::unique_ptr<SettingChangeBase> pSettingChange) {
m_settingChanges.push_back(std::move(pSettingChange));
}
private:
using setting_changes = std::vector<std::unique_ptr<SettingChangeBase>>;
setting_changes m_settingChanges;
};
} // namespace YAML
#endif // SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,132 +0,0 @@
#include "scanner.h"
#include "token.h"
namespace YAML {
struct Mark;
Scanner::SimpleKey::SimpleKey(const Mark& mark_, std::size_t flowLevel_)
: mark(mark_),
flowLevel(flowLevel_),
pIndent(nullptr),
pMapStart(nullptr),
pKey(nullptr) {}
void Scanner::SimpleKey::Validate() {
// Note: pIndent will *not* be garbage here;
// we "garbage collect" them so we can
// always refer to them
if (pIndent)
pIndent->status = IndentMarker::VALID;
if (pMapStart)
pMapStart->status = Token::VALID;
if (pKey)
pKey->status = Token::VALID;
}
void Scanner::SimpleKey::Invalidate() {
if (pIndent)
pIndent->status = IndentMarker::INVALID;
if (pMapStart)
pMapStart->status = Token::INVALID;
if (pKey)
pKey->status = Token::INVALID;
}
// CanInsertPotentialSimpleKey
bool Scanner::CanInsertPotentialSimpleKey() const {
if (!m_simpleKeyAllowed)
return false;
return !ExistsActiveSimpleKey();
}
// ExistsActiveSimpleKey
// . Returns true if there's a potential simple key at our flow level
// (there's allowed at most one per flow level, i.e., at the start of the flow
// start token)
bool Scanner::ExistsActiveSimpleKey() const {
if (m_simpleKeys.empty())
return false;
const SimpleKey& key = m_simpleKeys.top();
return key.flowLevel == GetFlowLevel();
}
// InsertPotentialSimpleKey
// . If we can, add a potential simple key to the queue,
// and save it on a stack.
void Scanner::InsertPotentialSimpleKey() {
if (!CanInsertPotentialSimpleKey())
return;
SimpleKey key(INPUT.mark(), GetFlowLevel());
// first add a map start, if necessary
if (InBlockContext()) {
key.pIndent = PushIndentTo(INPUT.column(), IndentMarker::MAP);
if (key.pIndent) {
key.pIndent->status = IndentMarker::UNKNOWN;
key.pMapStart = key.pIndent->pStartToken;
key.pMapStart->status = Token::UNVERIFIED;
}
}
// then add the (now unverified) key
m_tokens.push(Token(Token::KEY, INPUT.mark()));
key.pKey = &m_tokens.back();
key.pKey->status = Token::UNVERIFIED;
m_simpleKeys.push(key);
}
// InvalidateSimpleKey
// . Automatically invalidate the simple key in our flow level
void Scanner::InvalidateSimpleKey() {
if (m_simpleKeys.empty())
return;
// grab top key
SimpleKey& key = m_simpleKeys.top();
if (key.flowLevel != GetFlowLevel())
return;
key.Invalidate();
m_simpleKeys.pop();
}
// VerifySimpleKey
// . Determines whether the latest simple key to be added is valid,
// and if so, makes it valid.
bool Scanner::VerifySimpleKey() {
if (m_simpleKeys.empty())
return false;
// grab top key
SimpleKey key = m_simpleKeys.top();
// only validate if we're in the correct flow level
if (key.flowLevel != GetFlowLevel())
return false;
m_simpleKeys.pop();
bool isValid = true;
// needs to be less than 1024 characters and inline
if (INPUT.line() != key.mark.line || INPUT.pos() - key.mark.pos > 1024)
isValid = false;
// invalidate key
if (isValid)
key.Validate();
else
key.Invalidate();
return isValid;
}
void Scanner::PopAllSimpleKeys() {
while (!m_simpleKeys.empty())
m_simpleKeys.pop();
}
} // namespace YAML

View File

@ -1,432 +0,0 @@
#include <algorithm>
#include <cstdio>
#include <sstream>
#include "collectionstack.h" // IWYU pragma: keep
#include "scanner.h"
#include "singledocparser.h"
#include "tag.h"
#include "token.h"
#include "yaml-cpp/depthguard.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/mark.h"
#include "yaml-cpp/null.h"
namespace YAML {
SingleDocParser::SingleDocParser(Scanner& scanner, const Directives& directives)
: m_scanner(scanner),
m_directives(directives),
m_pCollectionStack(new CollectionStack),
m_anchors{},
m_curAnchor(0) {}
SingleDocParser::~SingleDocParser() = default;
// HandleDocument
// . Handles the next document
// . Throws a ParserException on error.
void SingleDocParser::HandleDocument(EventHandler& eventHandler) {
assert(!m_scanner.empty()); // guaranteed that there are tokens
assert(!m_curAnchor);
eventHandler.OnDocumentStart(m_scanner.peek().mark);
// eat doc start
if (m_scanner.peek().type == Token::DOC_START)
m_scanner.pop();
// recurse!
HandleNode(eventHandler);
eventHandler.OnDocumentEnd();
// and finally eat any doc ends we see
while (!m_scanner.empty() && m_scanner.peek().type == Token::DOC_END)
m_scanner.pop();
}
void SingleDocParser::HandleNode(EventHandler& eventHandler) {
DepthGuard<500> depthguard(depth, m_scanner.mark(), ErrorMsg::BAD_FILE);
// an empty node *is* a possibility
if (m_scanner.empty()) {
eventHandler.OnNull(m_scanner.mark(), NullAnchor);
return;
}
// save location
Mark mark = m_scanner.peek().mark;
// special case: a value node by itself must be a map, with no header
if (m_scanner.peek().type == Token::VALUE) {
eventHandler.OnMapStart(mark, "?", NullAnchor, EmitterStyle::Default);
HandleMap(eventHandler);
eventHandler.OnMapEnd();
return;
}
// special case: an alias node
if (m_scanner.peek().type == Token::ALIAS) {
eventHandler.OnAlias(mark, LookupAnchor(mark, m_scanner.peek().value));
m_scanner.pop();
return;
}
std::string tag;
std::string anchor_name;
anchor_t anchor;
ParseProperties(tag, anchor, anchor_name);
if (!anchor_name.empty())
eventHandler.OnAnchor(mark, anchor_name);
// after parsing properties, an empty node is again a possibility
if (m_scanner.empty()) {
eventHandler.OnNull(mark, anchor);
return;
}
const Token& token = m_scanner.peek();
// add non-specific tags
if (tag.empty())
tag = (token.type == Token::NON_PLAIN_SCALAR ? "!" : "?");
if (token.type == Token::PLAIN_SCALAR
&& tag.compare("?") == 0 && IsNullString(token.value)) {
eventHandler.OnNull(mark, anchor);
m_scanner.pop();
return;
}
// now split based on what kind of node we should be
switch (token.type) {
case Token::PLAIN_SCALAR:
case Token::NON_PLAIN_SCALAR:
eventHandler.OnScalar(mark, tag, anchor, token.value);
m_scanner.pop();
return;
case Token::FLOW_SEQ_START:
eventHandler.OnSequenceStart(mark, tag, anchor, EmitterStyle::Flow);
HandleSequence(eventHandler);
eventHandler.OnSequenceEnd();
return;
case Token::BLOCK_SEQ_START:
eventHandler.OnSequenceStart(mark, tag, anchor, EmitterStyle::Block);
HandleSequence(eventHandler);
eventHandler.OnSequenceEnd();
return;
case Token::FLOW_MAP_START:
eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Flow);
HandleMap(eventHandler);
eventHandler.OnMapEnd();
return;
case Token::BLOCK_MAP_START:
eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Block);
HandleMap(eventHandler);
eventHandler.OnMapEnd();
return;
case Token::KEY:
// compact maps can only go in a flow sequence
if (m_pCollectionStack->GetCurCollectionType() ==
CollectionType::FlowSeq) {
eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Flow);
HandleMap(eventHandler);
eventHandler.OnMapEnd();
return;
}
break;
default:
break;
}
if (tag == "?")
eventHandler.OnNull(mark, anchor);
else
eventHandler.OnScalar(mark, tag, anchor, "");
}
void SingleDocParser::HandleSequence(EventHandler& eventHandler) {
// split based on start token
switch (m_scanner.peek().type) {
case Token::BLOCK_SEQ_START:
HandleBlockSequence(eventHandler);
break;
case Token::FLOW_SEQ_START:
HandleFlowSequence(eventHandler);
break;
default:
break;
}
}
void SingleDocParser::HandleBlockSequence(EventHandler& eventHandler) {
// eat start token
m_scanner.pop();
m_pCollectionStack->PushCollectionType(CollectionType::BlockSeq);
while (true) {
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ);
Token token = m_scanner.peek();
if (token.type != Token::BLOCK_ENTRY && token.type != Token::BLOCK_SEQ_END)
throw ParserException(token.mark, ErrorMsg::END_OF_SEQ);
m_scanner.pop();
if (token.type == Token::BLOCK_SEQ_END)
break;
// check for null
if (!m_scanner.empty()) {
const Token& nextToken = m_scanner.peek();
if (nextToken.type == Token::BLOCK_ENTRY ||
nextToken.type == Token::BLOCK_SEQ_END) {
eventHandler.OnNull(nextToken.mark, NullAnchor);
continue;
}
}
HandleNode(eventHandler);
}
m_pCollectionStack->PopCollectionType(CollectionType::BlockSeq);
}
void SingleDocParser::HandleFlowSequence(EventHandler& eventHandler) {
// eat start token
m_scanner.pop();
m_pCollectionStack->PushCollectionType(CollectionType::FlowSeq);
while (true) {
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
// first check for end
if (m_scanner.peek().type == Token::FLOW_SEQ_END) {
m_scanner.pop();
break;
}
// then read the node
HandleNode(eventHandler);
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
// now eat the separator (or could be a sequence end, which we ignore - but
// if it's neither, then it's a bad node)
Token& token = m_scanner.peek();
if (token.type == Token::FLOW_ENTRY)
m_scanner.pop();
else if (token.type != Token::FLOW_SEQ_END)
throw ParserException(token.mark, ErrorMsg::END_OF_SEQ_FLOW);
}
m_pCollectionStack->PopCollectionType(CollectionType::FlowSeq);
}
void SingleDocParser::HandleMap(EventHandler& eventHandler) {
// split based on start token
switch (m_scanner.peek().type) {
case Token::BLOCK_MAP_START:
HandleBlockMap(eventHandler);
break;
case Token::FLOW_MAP_START:
HandleFlowMap(eventHandler);
break;
case Token::KEY:
HandleCompactMap(eventHandler);
break;
case Token::VALUE:
HandleCompactMapWithNoKey(eventHandler);
break;
default:
break;
}
}
void SingleDocParser::HandleBlockMap(EventHandler& eventHandler) {
// eat start token
m_scanner.pop();
m_pCollectionStack->PushCollectionType(CollectionType::BlockMap);
while (true) {
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP);
Token token = m_scanner.peek();
if (token.type != Token::KEY && token.type != Token::VALUE &&
token.type != Token::BLOCK_MAP_END)
throw ParserException(token.mark, ErrorMsg::END_OF_MAP);
if (token.type == Token::BLOCK_MAP_END) {
m_scanner.pop();
break;
}
// grab key (if non-null)
if (token.type == Token::KEY) {
m_scanner.pop();
HandleNode(eventHandler);
} else {
eventHandler.OnNull(token.mark, NullAnchor);
}
// now grab value (optional)
if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
m_scanner.pop();
HandleNode(eventHandler);
} else {
eventHandler.OnNull(token.mark, NullAnchor);
}
}
m_pCollectionStack->PopCollectionType(CollectionType::BlockMap);
}
void SingleDocParser::HandleFlowMap(EventHandler& eventHandler) {
// eat start token
m_scanner.pop();
m_pCollectionStack->PushCollectionType(CollectionType::FlowMap);
while (true) {
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW);
Token& token = m_scanner.peek();
const Mark mark = token.mark;
// first check for end
if (token.type == Token::FLOW_MAP_END) {
m_scanner.pop();
break;
}
// grab key (if non-null)
if (token.type == Token::KEY) {
m_scanner.pop();
HandleNode(eventHandler);
} else {
eventHandler.OnNull(mark, NullAnchor);
}
// now grab value (optional)
if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
m_scanner.pop();
HandleNode(eventHandler);
} else {
eventHandler.OnNull(mark, NullAnchor);
}
if (m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW);
// now eat the separator (or could be a map end, which we ignore - but if
// it's neither, then it's a bad node)
Token& nextToken = m_scanner.peek();
if (nextToken.type == Token::FLOW_ENTRY)
m_scanner.pop();
else if (nextToken.type != Token::FLOW_MAP_END)
throw ParserException(nextToken.mark, ErrorMsg::END_OF_MAP_FLOW);
}
m_pCollectionStack->PopCollectionType(CollectionType::FlowMap);
}
// . Single "key: value" pair in a flow sequence
void SingleDocParser::HandleCompactMap(EventHandler& eventHandler) {
m_pCollectionStack->PushCollectionType(CollectionType::CompactMap);
// grab key
Mark mark = m_scanner.peek().mark;
m_scanner.pop();
HandleNode(eventHandler);
// now grab value (optional)
if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
m_scanner.pop();
HandleNode(eventHandler);
} else {
eventHandler.OnNull(mark, NullAnchor);
}
m_pCollectionStack->PopCollectionType(CollectionType::CompactMap);
}
// . Single ": value" pair in a flow sequence
void SingleDocParser::HandleCompactMapWithNoKey(EventHandler& eventHandler) {
m_pCollectionStack->PushCollectionType(CollectionType::CompactMap);
// null key
eventHandler.OnNull(m_scanner.peek().mark, NullAnchor);
// grab value
m_scanner.pop();
HandleNode(eventHandler);
m_pCollectionStack->PopCollectionType(CollectionType::CompactMap);
}
// ParseProperties
// . Grabs any tag or anchor tokens and deals with them.
void SingleDocParser::ParseProperties(std::string& tag, anchor_t& anchor,
std::string& anchor_name) {
tag.clear();
anchor_name.clear();
anchor = NullAnchor;
while (true) {
if (m_scanner.empty())
return;
switch (m_scanner.peek().type) {
case Token::TAG:
ParseTag(tag);
break;
case Token::ANCHOR:
ParseAnchor(anchor, anchor_name);
break;
default:
return;
}
}
}
void SingleDocParser::ParseTag(std::string& tag) {
Token& token = m_scanner.peek();
if (!tag.empty())
throw ParserException(token.mark, ErrorMsg::MULTIPLE_TAGS);
Tag tagInfo(token);
tag = tagInfo.Translate(m_directives);
m_scanner.pop();
}
void SingleDocParser::ParseAnchor(anchor_t& anchor, std::string& anchor_name) {
Token& token = m_scanner.peek();
if (anchor)
throw ParserException(token.mark, ErrorMsg::MULTIPLE_ANCHORS);
anchor_name = token.value;
anchor = RegisterAnchor(token.value);
m_scanner.pop();
}
anchor_t SingleDocParser::RegisterAnchor(const std::string& name) {
if (name.empty())
return NullAnchor;
return m_anchors[name] = ++m_curAnchor;
}
anchor_t SingleDocParser::LookupAnchor(const Mark& mark,
const std::string& name) const {
auto it = m_anchors.find(name);
if (it == m_anchors.end())
throw ParserException(mark, ErrorMsg::UNKNOWN_ANCHOR);
return it->second;
}
} // namespace YAML

View File

@ -1,71 +0,0 @@
#ifndef SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <map>
#include <memory>
#include <string>
#include "yaml-cpp/anchor.h"
namespace YAML {
class CollectionStack;
template <int> class DepthGuard; // depthguard.h
class EventHandler;
class Node;
class Scanner;
struct Directives;
struct Mark;
struct Token;
class SingleDocParser {
public:
SingleDocParser(Scanner& scanner, const Directives& directives);
SingleDocParser(const SingleDocParser&) = delete;
SingleDocParser(SingleDocParser&&) = delete;
SingleDocParser& operator=(const SingleDocParser&) = delete;
SingleDocParser& operator=(SingleDocParser&&) = delete;
~SingleDocParser();
void HandleDocument(EventHandler& eventHandler);
private:
void HandleNode(EventHandler& eventHandler);
void HandleSequence(EventHandler& eventHandler);
void HandleBlockSequence(EventHandler& eventHandler);
void HandleFlowSequence(EventHandler& eventHandler);
void HandleMap(EventHandler& eventHandler);
void HandleBlockMap(EventHandler& eventHandler);
void HandleFlowMap(EventHandler& eventHandler);
void HandleCompactMap(EventHandler& eventHandler);
void HandleCompactMapWithNoKey(EventHandler& eventHandler);
void ParseProperties(std::string& tag, anchor_t& anchor,
std::string& anchor_name);
void ParseTag(std::string& tag);
void ParseAnchor(anchor_t& anchor, std::string& anchor_name);
anchor_t RegisterAnchor(const std::string& name);
anchor_t LookupAnchor(const Mark& mark, const std::string& name) const;
private:
int depth = 0;
Scanner& m_scanner;
const Directives& m_directives;
std::unique_ptr<CollectionStack> m_pCollectionStack;
using Anchors = std::map<std::string, anchor_t>;
Anchors m_anchors;
anchor_t m_curAnchor;
};
} // namespace YAML
#endif // SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,446 +0,0 @@
#include <iostream>
#include "stream.h"
#ifndef YAML_PREFETCH_SIZE
#define YAML_PREFETCH_SIZE 2048
#endif
#define S_ARRAY_SIZE(A) (sizeof(A) / sizeof(*(A)))
#define S_ARRAY_END(A) ((A) + S_ARRAY_SIZE(A))
#define CP_REPLACEMENT_CHARACTER (0xFFFD)
namespace YAML {
enum UtfIntroState {
uis_start,
uis_utfbe_b1,
uis_utf32be_b2,
uis_utf32be_bom3,
uis_utf32be,
uis_utf16be,
uis_utf16be_bom1,
uis_utfle_bom1,
uis_utf16le_bom2,
uis_utf32le_bom3,
uis_utf16le,
uis_utf32le,
uis_utf8_imp,
uis_utf16le_imp,
uis_utf32le_imp3,
uis_utf8_bom1,
uis_utf8_bom2,
uis_utf8,
uis_error
};
enum UtfIntroCharType {
uict00,
uictBB,
uictBF,
uictEF,
uictFE,
uictFF,
uictAscii,
uictOther,
uictMax
};
static bool s_introFinalState[] = {
false, // uis_start
false, // uis_utfbe_b1
false, // uis_utf32be_b2
false, // uis_utf32be_bom3
true, // uis_utf32be
true, // uis_utf16be
false, // uis_utf16be_bom1
false, // uis_utfle_bom1
false, // uis_utf16le_bom2
false, // uis_utf32le_bom3
true, // uis_utf16le
true, // uis_utf32le
false, // uis_utf8_imp
false, // uis_utf16le_imp
false, // uis_utf32le_imp3
false, // uis_utf8_bom1
false, // uis_utf8_bom2
true, // uis_utf8
true, // uis_error
};
static UtfIntroState s_introTransitions[][uictMax] = {
// uict00, uictBB, uictBF, uictEF,
// uictFE, uictFF, uictAscii, uictOther
{uis_utfbe_b1, uis_utf8, uis_utf8, uis_utf8_bom1, uis_utf16be_bom1,
uis_utfle_bom1, uis_utf8_imp, uis_utf8},
{uis_utf32be_b2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf16be, uis_utf8},
{uis_utf32be, uis_utf8, uis_utf8, uis_utf8, uis_utf32be_bom3, uis_utf8,
uis_utf8, uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf32be, uis_utf8,
uis_utf8},
{uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be,
uis_utf32be, uis_utf32be, uis_utf32be},
{uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be,
uis_utf16be, uis_utf16be, uis_utf16be},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16be, uis_utf8,
uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16le_bom2, uis_utf8,
uis_utf8, uis_utf8},
{uis_utf32le_bom3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le,
uis_utf32le, uis_utf32le, uis_utf32le},
{uis_utf16le_imp, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8, uis_utf8},
{uis_utf32le_imp3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf8, uis_utf8_bom2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
};
static char s_introUngetCount[][uictMax] = {
// uict00, uictBB, uictBF, uictEF, uictFE, uictFF, uictAscii, uictOther
{0, 1, 1, 0, 0, 0, 0, 1}, {0, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 0, 3, 3, 3}, {4, 4, 4, 4, 4, 0, 4, 4},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 0, 2, 2}, {2, 2, 2, 2, 0, 2, 2, 2},
{0, 1, 1, 1, 1, 1, 1, 1}, {0, 2, 2, 2, 2, 2, 2, 2},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{0, 2, 2, 2, 2, 2, 2, 2}, {0, 3, 3, 3, 3, 3, 3, 3},
{4, 4, 4, 4, 4, 4, 4, 4}, {2, 0, 2, 2, 2, 2, 2, 2},
{3, 3, 0, 3, 3, 3, 3, 3}, {1, 1, 1, 1, 1, 1, 1, 1},
};
inline UtfIntroCharType IntroCharTypeOf(std::istream::int_type ch) {
if (std::istream::traits_type::eof() == ch) {
return uictOther;
}
switch (ch) {
case 0:
return uict00;
case 0xBB:
return uictBB;
case 0xBF:
return uictBF;
case 0xEF:
return uictEF;
case 0xFE:
return uictFE;
case 0xFF:
return uictFF;
}
if ((ch > 0) && (ch < 0xFF)) {
return uictAscii;
}
return uictOther;
}
inline char Utf8Adjust(unsigned long ch, unsigned char lead_bits,
unsigned char rshift) {
const unsigned char header =
static_cast<unsigned char>(((1 << lead_bits) - 1) << (8 - lead_bits));
const unsigned char mask = (0xFF >> (lead_bits + 1));
return static_cast<char>(
static_cast<unsigned char>(header | ((ch >> rshift) & mask)));
}
inline void QueueUnicodeCodepoint(std::deque<char>& q, unsigned long ch) {
// We are not allowed to queue the Stream::eof() codepoint, so
// replace it with CP_REPLACEMENT_CHARACTER
if (static_cast<unsigned long>(Stream::eof()) == ch) {
ch = CP_REPLACEMENT_CHARACTER;
}
if (ch < 0x80) {
q.push_back(Utf8Adjust(ch, 0, 0));
} else if (ch < 0x800) {
q.push_back(Utf8Adjust(ch, 2, 6));
q.push_back(Utf8Adjust(ch, 1, 0));
} else if (ch < 0x10000) {
q.push_back(Utf8Adjust(ch, 3, 12));
q.push_back(Utf8Adjust(ch, 1, 6));
q.push_back(Utf8Adjust(ch, 1, 0));
} else {
q.push_back(Utf8Adjust(ch, 4, 18));
q.push_back(Utf8Adjust(ch, 1, 12));
q.push_back(Utf8Adjust(ch, 1, 6));
q.push_back(Utf8Adjust(ch, 1, 0));
}
}
Stream::Stream(std::istream& input)
: m_input(input),
m_mark{},
m_charSet{},
m_readahead{},
m_pPrefetched(new unsigned char[YAML_PREFETCH_SIZE]),
m_nPrefetchedAvailable(0),
m_nPrefetchedUsed(0) {
using char_traits = std::istream::traits_type;
if (!input)
return;
// Determine (or guess) the character-set by reading the BOM, if any. See
// the YAML specification for the determination algorithm.
char_traits::int_type intro[4]{};
int nIntroUsed = 0;
UtfIntroState state = uis_start;
for (; !s_introFinalState[state];) {
std::istream::int_type ch = input.get();
intro[nIntroUsed++] = ch;
UtfIntroCharType charType = IntroCharTypeOf(ch);
UtfIntroState newState = s_introTransitions[state][charType];
int nUngets = s_introUngetCount[state][charType];
if (nUngets > 0) {
input.clear();
for (; nUngets > 0; --nUngets) {
if (char_traits::eof() != intro[--nIntroUsed])
input.putback(char_traits::to_char_type(intro[nIntroUsed]));
}
}
state = newState;
}
switch (state) {
case uis_utf8:
m_charSet = utf8;
break;
case uis_utf16le:
m_charSet = utf16le;
break;
case uis_utf16be:
m_charSet = utf16be;
break;
case uis_utf32le:
m_charSet = utf32le;
break;
case uis_utf32be:
m_charSet = utf32be;
break;
default:
m_charSet = utf8;
break;
}
ReadAheadTo(0);
}
Stream::~Stream() { delete[] m_pPrefetched; }
char Stream::peek() const {
if (m_readahead.empty()) {
return Stream::eof();
}
return m_readahead[0];
}
Stream::operator bool() const {
return m_input.good() ||
(!m_readahead.empty() && m_readahead[0] != Stream::eof());
}
// get
// . Extracts a character from the stream and updates our position
char Stream::get() {
char ch = peek();
AdvanceCurrent();
m_mark.column++;
if (ch == '\n') {
m_mark.column = 0;
m_mark.line++;
}
return ch;
}
// get
// . Extracts 'n' characters from the stream and updates our position
std::string Stream::get(int n) {
std::string ret;
if (n > 0) {
ret.reserve(static_cast<std::string::size_type>(n));
for (int i = 0; i < n; i++)
ret += get();
}
return ret;
}
// eat
// . Eats 'n' characters and updates our position.
void Stream::eat(int n) {
for (int i = 0; i < n; i++)
get();
}
void Stream::AdvanceCurrent() {
if (!m_readahead.empty()) {
m_readahead.pop_front();
m_mark.pos++;
}
ReadAheadTo(0);
}
bool Stream::_ReadAheadTo(size_t i) const {
while (m_input.good() && (m_readahead.size() <= i)) {
switch (m_charSet) {
case utf8:
StreamInUtf8();
break;
case utf16le:
StreamInUtf16();
break;
case utf16be:
StreamInUtf16();
break;
case utf32le:
StreamInUtf32();
break;
case utf32be:
StreamInUtf32();
break;
}
}
// signal end of stream
if (!m_input.good())
m_readahead.push_back(Stream::eof());
return m_readahead.size() > i;
}
void Stream::StreamInUtf8() const {
unsigned char b = GetNextByte();
if (m_input.good()) {
m_readahead.push_back(static_cast<char>(b));
}
}
void Stream::StreamInUtf16() const {
unsigned long ch = 0;
unsigned char bytes[2];
int nBigEnd = (m_charSet == utf16be) ? 0 : 1;
bytes[0] = GetNextByte();
bytes[1] = GetNextByte();
if (!m_input.good()) {
return;
}
ch = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) |
static_cast<unsigned long>(bytes[1 ^ nBigEnd]);
if (ch >= 0xDC00 && ch < 0xE000) {
// Trailing (low) surrogate...ugh, wrong order
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
return;
}
if (ch >= 0xD800 && ch < 0xDC00) {
// ch is a leading (high) surrogate
// Four byte UTF-8 code point
// Read the trailing (low) surrogate
for (;;) {
bytes[0] = GetNextByte();
bytes[1] = GetNextByte();
if (!m_input.good()) {
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
return;
}
unsigned long chLow = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) |
static_cast<unsigned long>(bytes[1 ^ nBigEnd]);
if (chLow < 0xDC00 || chLow >= 0xE000) {
// Trouble...not a low surrogate. Dump a REPLACEMENT CHARACTER into the
// stream.
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
// Deal with the next UTF-16 unit
if (chLow < 0xD800 || chLow >= 0xE000) {
// Easiest case: queue the codepoint and return
QueueUnicodeCodepoint(m_readahead, ch);
return;
}
// Start the loop over with the new high surrogate
ch = chLow;
continue;
}
// Select the payload bits from the high surrogate
ch &= 0x3FF;
ch <<= 10;
// Include bits from low surrogate
ch |= (chLow & 0x3FF);
// Add the surrogacy offset
ch += 0x10000;
break;
}
}
QueueUnicodeCodepoint(m_readahead, ch);
}
inline char* ReadBuffer(unsigned char* pBuffer) {
return reinterpret_cast<char*>(pBuffer);
}
unsigned char Stream::GetNextByte() const {
if (m_nPrefetchedUsed >= m_nPrefetchedAvailable) {
std::streambuf* pBuf = m_input.rdbuf();
m_nPrefetchedAvailable = static_cast<std::size_t>(
pBuf->sgetn(ReadBuffer(m_pPrefetched), YAML_PREFETCH_SIZE));
m_nPrefetchedUsed = 0;
if (!m_nPrefetchedAvailable) {
m_input.setstate(std::ios_base::eofbit);
}
if (0 == m_nPrefetchedAvailable) {
return 0;
}
}
return m_pPrefetched[m_nPrefetchedUsed++];
}
void Stream::StreamInUtf32() const {
static int indexes[2][4] = {{3, 2, 1, 0}, {0, 1, 2, 3}};
unsigned long ch = 0;
unsigned char bytes[4];
int* pIndexes = (m_charSet == utf32be) ? indexes[1] : indexes[0];
bytes[0] = GetNextByte();
bytes[1] = GetNextByte();
bytes[2] = GetNextByte();
bytes[3] = GetNextByte();
if (!m_input.good()) {
return;
}
for (int i = 0; i < 4; ++i) {
ch <<= 8;
ch |= bytes[pIndexes[i]];
}
QueueUnicodeCodepoint(m_readahead, ch);
}
} // namespace YAML

View File

@ -1,82 +0,0 @@
#ifndef STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/mark.h"
#include <cstddef>
#include <deque>
#include <ios>
#include <iostream>
#include <set>
#include <string>
namespace YAML {
class StreamCharSource;
class Stream {
public:
friend class StreamCharSource;
Stream(std::istream& input);
Stream(const Stream&) = delete;
Stream(Stream&&) = delete;
Stream& operator=(const Stream&) = delete;
Stream& operator=(Stream&&) = delete;
~Stream();
operator bool() const;
bool operator!() const { return !static_cast<bool>(*this); }
char peek() const;
char get();
std::string get(int n);
void eat(int n = 1);
static char eof() { return 0x04; }
const Mark mark() const { return m_mark; }
int pos() const { return m_mark.pos; }
int line() const { return m_mark.line; }
int column() const { return m_mark.column; }
void ResetColumn() { m_mark.column = 0; }
private:
enum CharacterSet { utf8, utf16le, utf16be, utf32le, utf32be };
std::istream& m_input;
Mark m_mark;
CharacterSet m_charSet;
mutable std::deque<char> m_readahead;
unsigned char* const m_pPrefetched;
mutable size_t m_nPrefetchedAvailable;
mutable size_t m_nPrefetchedUsed;
void AdvanceCurrent();
char CharAt(size_t i) const;
bool ReadAheadTo(size_t i) const;
bool _ReadAheadTo(size_t i) const;
void StreamInUtf8() const;
void StreamInUtf16() const;
void StreamInUtf32() const;
unsigned char GetNextByte() const;
};
// CharAt
// . Unchecked access
inline char Stream::CharAt(size_t i) const { return m_readahead[i]; }
inline bool Stream::ReadAheadTo(size_t i) const {
if (m_readahead.size() > i)
return true;
return _ReadAheadTo(i);
}
} // namespace YAML
#endif // STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,50 +0,0 @@
#ifndef STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include "yaml-cpp/noexcept.h"
#include "stream.h"
#include <cstddef>
namespace YAML {
class StreamCharSource {
public:
StreamCharSource(const Stream& stream) : m_offset(0), m_stream(stream) {}
StreamCharSource(const StreamCharSource& source) = default;
StreamCharSource(StreamCharSource&&) YAML_CPP_NOEXCEPT = default;
StreamCharSource& operator=(const StreamCharSource&) = delete;
StreamCharSource& operator=(StreamCharSource&&) = delete;
~StreamCharSource() = default;
operator bool() const;
char operator[](std::size_t i) const { return m_stream.CharAt(m_offset + i); }
bool operator!() const { return !static_cast<bool>(*this); }
const StreamCharSource operator+(int i) const;
private:
std::size_t m_offset;
const Stream& m_stream;
};
inline StreamCharSource::operator bool() const {
return m_stream.ReadAheadTo(m_offset);
}
inline const StreamCharSource StreamCharSource::operator+(int i) const {
StreamCharSource source(*this);
if (static_cast<int>(source.m_offset) + i >= 0)
source.m_offset += static_cast<std::size_t>(i);
else
source.m_offset = 0;
return source;
}
} // namespace YAML
#endif // STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,48 +0,0 @@
#ifndef STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <cstddef>
namespace YAML {
class StringCharSource {
public:
StringCharSource(const char* str, std::size_t size)
: m_str(str), m_size(size), m_offset(0) {}
operator bool() const { return m_offset < m_size; }
char operator[](std::size_t i) const { return m_str[m_offset + i]; }
bool operator!() const { return !static_cast<bool>(*this); }
const StringCharSource operator+(int i) const {
StringCharSource source(*this);
if (static_cast<int>(source.m_offset) + i >= 0)
source.m_offset += i;
else
source.m_offset = 0;
return source;
}
StringCharSource& operator++() {
++m_offset;
return *this;
}
StringCharSource& operator+=(std::size_t offset) {
m_offset += offset;
return *this;
}
private:
const char* m_str;
std::size_t m_size;
std::size_t m_offset;
};
}
#endif // STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@ -1,50 +0,0 @@
#include <cassert>
#include <stdexcept>
#include "directives.h" // IWYU pragma: keep
#include "tag.h"
#include "token.h"
namespace YAML {
Tag::Tag(const Token& token)
: type(static_cast<TYPE>(token.data)), handle{}, value{} {
switch (type) {
case VERBATIM:
value = token.value;
break;
case PRIMARY_HANDLE:
value = token.value;
break;
case SECONDARY_HANDLE:
value = token.value;
break;
case NAMED_HANDLE:
handle = token.value;
value = token.params[0];
break;
case NON_SPECIFIC:
break;
default:
assert(false);
}
}
const std::string Tag::Translate(const Directives& directives) {
switch (type) {
case VERBATIM:
return value;
case PRIMARY_HANDLE:
return directives.TranslateTagHandle("!") + value;
case SECONDARY_HANDLE:
return directives.TranslateTagHandle("!!") + value;
case NAMED_HANDLE:
return directives.TranslateTagHandle("!" + handle + "!") + value;
case NON_SPECIFIC:
// TODO:
return "!";
default:
assert(false);
}
throw std::runtime_error("yaml-cpp: internal error, bad tag type");
}
} // namespace YAML

Some files were not shown because too many files have changed in this diff Show More