ssh2/src/openssl.c
Lars Nordin 1d83b520b4 openssl: make use of the EVP interface
Make use of the EVP interface for the AES-funktion. Using this method
supports the use of different ENGINES in OpenSSL for the AES function
(and the direct call to the AES_encrypt should not be used according to
openssl.org)
2010-06-27 22:23:50 +02:00

518 lines
13 KiB
C

/* Copyright (C) 2009, 2010 Simon Josefsson
* Copyright (C) 2006, 2007 The Written Word, Inc. All rights reserved.
* Copyright (c) 2004-2006, Sara Golemon <sarag@libssh2.org>
*
* Author: Simon Josefsson
*
* Redistribution and use in source and binary forms,
* with or without modification, are permitted provided
* that the following conditions are met:
*
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* Neither the name of the copyright holder nor the names
* of any other contributors may be used to endorse or
* promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
#include "libssh2_priv.h"
#ifndef LIBSSH2_LIBGCRYPT /* compile only if we build with OpenSSL */
#include <string.h>
#ifndef EVP_MAX_BLOCK_LENGTH
#define EVP_MAX_BLOCK_LENGTH 32
#endif
int
_libssh2_rsa_new(libssh2_rsa_ctx ** rsa,
const unsigned char *edata,
unsigned long elen,
const unsigned char *ndata,
unsigned long nlen,
const unsigned char *ddata,
unsigned long dlen,
const unsigned char *pdata,
unsigned long plen,
const unsigned char *qdata,
unsigned long qlen,
const unsigned char *e1data,
unsigned long e1len,
const unsigned char *e2data,
unsigned long e2len,
const unsigned char *coeffdata, unsigned long coefflen)
{
*rsa = RSA_new();
(*rsa)->e = BN_new();
BN_bin2bn(edata, elen, (*rsa)->e);
(*rsa)->n = BN_new();
BN_bin2bn(ndata, nlen, (*rsa)->n);
if (ddata) {
(*rsa)->d = BN_new();
BN_bin2bn(ddata, dlen, (*rsa)->d);
(*rsa)->p = BN_new();
BN_bin2bn(pdata, plen, (*rsa)->p);
(*rsa)->q = BN_new();
BN_bin2bn(qdata, qlen, (*rsa)->q);
(*rsa)->dmp1 = BN_new();
BN_bin2bn(e1data, e1len, (*rsa)->dmp1);
(*rsa)->dmq1 = BN_new();
BN_bin2bn(e2data, e2len, (*rsa)->dmq1);
(*rsa)->iqmp = BN_new();
BN_bin2bn(coeffdata, coefflen, (*rsa)->iqmp);
}
return 0;
}
int
_libssh2_rsa_sha1_verify(libssh2_rsa_ctx * rsactx,
const unsigned char *sig,
unsigned long sig_len,
const unsigned char *m, unsigned long m_len)
{
unsigned char hash[SHA_DIGEST_LENGTH];
int ret;
libssh2_sha1(m, m_len, hash);
ret = RSA_verify(NID_sha1, hash, SHA_DIGEST_LENGTH,
(unsigned char *) sig, sig_len, rsactx);
return (ret == 1) ? 0 : -1;
}
#if LIBSSH2_DSA
int
_libssh2_dsa_new(libssh2_dsa_ctx ** dsactx,
const unsigned char *p,
unsigned long p_len,
const unsigned char *q,
unsigned long q_len,
const unsigned char *g,
unsigned long g_len,
const unsigned char *y,
unsigned long y_len,
const unsigned char *x, unsigned long x_len)
{
*dsactx = DSA_new();
(*dsactx)->p = BN_new();
BN_bin2bn(p, p_len, (*dsactx)->p);
(*dsactx)->q = BN_new();
BN_bin2bn(q, q_len, (*dsactx)->q);
(*dsactx)->g = BN_new();
BN_bin2bn(g, g_len, (*dsactx)->g);
(*dsactx)->pub_key = BN_new();
BN_bin2bn(y, y_len, (*dsactx)->pub_key);
if (x_len) {
(*dsactx)->priv_key = BN_new();
BN_bin2bn(x, x_len, (*dsactx)->priv_key);
}
return 0;
}
int
_libssh2_dsa_sha1_verify(libssh2_dsa_ctx * dsactx,
const unsigned char *sig,
const unsigned char *m, unsigned long m_len)
{
unsigned char hash[SHA_DIGEST_LENGTH];
DSA_SIG dsasig;
int ret;
dsasig.r = BN_new();
BN_bin2bn(sig, 20, dsasig.r);
dsasig.s = BN_new();
BN_bin2bn(sig + 20, 20, dsasig.s);
libssh2_sha1(m, m_len, hash);
ret = DSA_do_verify(hash, SHA_DIGEST_LENGTH, &dsasig, dsactx);
BN_clear_free(dsasig.s);
BN_clear_free(dsasig.r);
return (ret == 1) ? 0 : -1;
}
#endif /* LIBSSH_DSA */
int
_libssh2_cipher_init(_libssh2_cipher_ctx * h,
_libssh2_cipher_type(algo),
unsigned char *iv, unsigned char *secret, int encrypt)
{
EVP_CIPHER_CTX_init(h);
EVP_CipherInit(h, algo(), secret, iv, encrypt);
return 0;
}
int
_libssh2_cipher_crypt(_libssh2_cipher_ctx * ctx,
_libssh2_cipher_type(algo),
int encrypt, unsigned char *block)
{
int blocksize = ctx->cipher->block_size;
unsigned char buf[EVP_MAX_BLOCK_LENGTH];
int ret;
(void) algo;
(void) encrypt;
if (blocksize == 1) {
/* Hack for arcfour. */
blocksize = 8;
}
ret = EVP_Cipher(ctx, buf, block, blocksize);
if (ret == 1) {
memcpy(block, buf, blocksize);
}
return ret == 1 ? 0 : 1;
}
#if LIBSSH2_AES_CTR && !defined(HAVE_EVP_AES_128_CTR)
#include <openssl/aes.h>
#include <openssl/evp.h>
typedef struct
{
AES_KEY key;
EVP_CIPHER_CTX *aes_ctx;
unsigned char ctr[AES_BLOCK_SIZE];
} aes_ctr_ctx;
static int
aes_ctr_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) /* init key */
{
aes_ctr_ctx *c = malloc(sizeof(*c));
const EVP_CIPHER *aes_cipher;
(void) enc;
if (c == NULL)
return 0;
switch (ctx->key_len) {
case 16:
aes_cipher = EVP_aes_128_ecb();
break;
case 24:
aes_cipher = EVP_aes_192_ecb();
break;
case 32:
aes_cipher = EVP_aes_256_ecb();
break;
default:
return 0;
}
c->aes_ctx = malloc(sizeof(EVP_CIPHER_CTX));
if (c->aes_ctx == NULL)
return 0;
if (EVP_EncryptInit(c->aes_ctx, aes_cipher, key, NULL) != 1) {
return 0;
}
EVP_CIPHER_CTX_set_padding(c->aes_ctx, 0);
memcpy(c->ctr, iv, AES_BLOCK_SIZE);
EVP_CIPHER_CTX_set_app_data(ctx, c);
return 1;
}
static int
aes_ctr_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in,
unsigned int inl) /* encrypt/decrypt data */
{
aes_ctr_ctx *c = EVP_CIPHER_CTX_get_app_data(ctx);
unsigned char b1[AES_BLOCK_SIZE];
size_t i = 0;
int outlen = 0;
if (inl != 16) /* libssh2 only ever encrypt one block */
return 0;
if (c == NULL) {
return 0;
}
/*
To encrypt a packet P=P1||P2||...||Pn (where P1, P2, ..., Pn are each
blocks of length L), the encryptor first encrypts <X> with <cipher>
to obtain a block B1. The block B1 is then XORed with P1 to generate
the ciphertext block C1. The counter X is then incremented
*/
if (EVP_EncryptUpdate(c->aes_ctx, b1, &outlen, c->ctr, AES_BLOCK_SIZE) != 1) {
return 0;
}
for (i = 0; i < 16; i++)
*out++ = *in++ ^ b1[i];
i = 15;
while (c->ctr[i]++ == 0xFF) {
if (i == 0)
break;
i--;
}
return 1;
}
static int
aes_ctr_cleanup(EVP_CIPHER_CTX *ctx) /* cleanup ctx */
{
aes_ctr_ctx *c = EVP_CIPHER_CTX_get_app_data(ctx);
if (c == NULL) {
return 1;
}
if (c->aes_ctx != NULL) {
free(c->aes_ctx);
}
free(c);
return 1;
}
static const EVP_CIPHER *
make_ctr_evp (size_t keylen)
{
static EVP_CIPHER aes_ctr_cipher;
memset(&aes_ctr_cipher, 0, sizeof(aes_ctr_cipher));
aes_ctr_cipher.block_size = 16;
aes_ctr_cipher.key_len = keylen;
aes_ctr_cipher.iv_len = 16;
aes_ctr_cipher.init = aes_ctr_init;
aes_ctr_cipher.do_cipher = aes_ctr_do_cipher;
aes_ctr_cipher.cleanup = aes_ctr_cleanup;
return &aes_ctr_cipher;
}
const EVP_CIPHER *
_libssh2_EVP_aes_128_ctr(void)
{
return make_ctr_evp (16);
}
const EVP_CIPHER *
_libssh2_EVP_aes_192_ctr(void)
{
return make_ctr_evp (24);
}
const EVP_CIPHER *
_libssh2_EVP_aes_256_ctr(void)
{
return make_ctr_evp (32);
}
#endif /* LIBSSH2_AES_CTR */
/* TODO: Optionally call a passphrase callback specified by the
* calling program
*/
static int
passphrase_cb(char *buf, int size, int rwflag, char *passphrase)
{
int passphrase_len = strlen(passphrase);
(void) rwflag;
if (passphrase_len > (size - 1)) {
passphrase_len = size - 1;
}
memcpy(buf, passphrase, passphrase_len);
buf[passphrase_len] = '\0';
return passphrase_len;
}
typedef void * (*pem_read_bio_func)(BIO *, void **, pem_password_cb *,
void * u);
static int
read_private_key_from_file(void ** key_ctx,
pem_read_bio_func read_private_key,
const char * filename,
unsigned const char *passphrase)
{
BIO * bp;
*key_ctx = NULL;
bp = BIO_new_file(filename, "r");
if (!bp) {
return -1;
}
*key_ctx = read_private_key(bp, NULL, (pem_password_cb *) passphrase_cb,
(void *) passphrase);
BIO_free(bp);
return (*key_ctx) ? 0 : -1;
}
int
_libssh2_rsa_new_private(libssh2_rsa_ctx ** rsa,
LIBSSH2_SESSION * session,
const char *filename, unsigned const char *passphrase)
{
pem_read_bio_func read_rsa =
(pem_read_bio_func) &PEM_read_bio_RSAPrivateKey;
(void) session;
_libssh2_init_if_needed ();
return read_private_key_from_file((void **) rsa, read_rsa,
filename, passphrase);
}
#if LIBSSH2_DSA
int
_libssh2_dsa_new_private(libssh2_dsa_ctx ** dsa,
LIBSSH2_SESSION * session,
const char *filename, unsigned const char *passphrase)
{
pem_read_bio_func read_dsa =
(pem_read_bio_func) &PEM_read_bio_DSAPrivateKey;
(void) session;
_libssh2_init_if_needed ();
return read_private_key_from_file((void **) dsa, read_dsa,
filename, passphrase);
}
#endif /* LIBSSH_DSA */
int
_libssh2_rsa_sha1_sign(LIBSSH2_SESSION * session,
libssh2_rsa_ctx * rsactx,
const unsigned char *hash,
size_t hash_len,
unsigned char **signature, size_t *signature_len)
{
int ret;
unsigned char *sig;
unsigned int sig_len;
sig_len = RSA_size(rsactx);
sig = LIBSSH2_ALLOC(session, sig_len);
if (!sig) {
return -1;
}
ret = RSA_sign(NID_sha1, hash, hash_len, sig, &sig_len, rsactx);
if (!ret) {
LIBSSH2_FREE(session, sig);
return -1;
}
*signature = sig;
*signature_len = sig_len;
return 0;
}
#if LIBSSH2_DSA
int
_libssh2_dsa_sha1_sign(libssh2_dsa_ctx * dsactx,
const unsigned char *hash,
unsigned long hash_len, unsigned char *signature)
{
DSA_SIG *sig;
int r_len, s_len;
(void) hash_len;
sig = DSA_do_sign(hash, SHA_DIGEST_LENGTH, dsactx);
if (!sig) {
return -1;
}
r_len = BN_num_bytes(sig->r);
if (r_len < 1 || r_len > 20) {
DSA_SIG_free(sig);
return -1;
}
s_len = BN_num_bytes(sig->s);
if (s_len < 1 || s_len > 20) {
DSA_SIG_free(sig);
return -1;
}
memset(signature, 0, 40);
BN_bn2bin(sig->r, signature + (20 - r_len));
BN_bn2bin(sig->s, signature + 20 + (20 - s_len));
DSA_SIG_free(sig);
return 0;
}
#endif /* LIBSSH_DSA */
void
libssh2_sha1(const unsigned char *message, unsigned long len,
unsigned char *out)
{
EVP_MD_CTX ctx;
EVP_DigestInit(&ctx, EVP_get_digestbyname("sha1"));
EVP_DigestUpdate(&ctx, message, len);
EVP_DigestFinal(&ctx, out, NULL);
}
void
libssh2_md5(const unsigned char *message, unsigned long len,
unsigned char *out)
{
EVP_MD_CTX ctx;
EVP_DigestInit(&ctx, EVP_get_digestbyname("md5"));
EVP_DigestUpdate(&ctx, message, len);
EVP_DigestFinal(&ctx, out, NULL);
}
#endif /* !LIBSSH2_LIBGCRYPT */