speech-tools/intonation/tilt/tilt_analysis.cc
2015-09-19 10:52:26 +02:00

1010 lines
27 KiB
C++

/*************************************************************************/
/* */
/* Centre for Speech Technology Research */
/* University of Edinburgh, UK */
/* Copyright (c) 1996 */
/* All Rights Reserved. */
/* */
/* Permission is hereby granted, free of charge, to use and distribute */
/* this software and its documentation without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of this work, and to */
/* permit persons to whom this work is furnished to do so, subject to */
/* the following conditions: */
/* 1. The code must retain the above copyright notice, this list of */
/* conditions and the following disclaimer. */
/* 2. Any modifications must be clearly marked as such. */
/* 3. Original authors' names are not deleted. */
/* 4. The authors' names are not used to endorse or promote products */
/* derived from this software without specific prior written */
/* permission. */
/* */
/* THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK */
/* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */
/* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */
/* SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE */
/* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */
/* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */
/* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */
/* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */
/* THIS SOFTWARE. */
/* */
/*************************************************************************/
/* Author : Paul Taylor */
/* Date : March 1998 */
/*-----------------------------------------------------------------------*/
/* Tilt Analysis */
/* */
/*=======================================================================*/
#include <cstdlib>
#include "EST_math.h"
#include "EST_tilt.h"
#include "tilt.h"
#include "EST_Track.h"
#include "EST_track_aux.h"
#include "EST_Features.h"
#include "EST_error.h"
static int match_rf_point(EST_Track &fz, int b_start, int b_stop,
int e_start, int e_stop,
int &mi, int &mj);
static void make_int_item(EST_Item &e, const EST_String name, float end,
float start_pos,
float start_f0,
float peak_pos,
float peak_f0);
//void rfc_segment_features_only(EST_Relation &ev);
//void convert_to_event(EST_Relation &ev);
static int rf_match(EST_Track &fz, EST_Item &ev, float range);
static int zero_cross(EST_Track &fz);
static int comp_extract(EST_Track &fz, EST_Track &part, float &start, float
&end, float min);
//void segment_to_event(EST_Relation &ev);
//void event_to_segment(EST_Relation &ev, float min_length = 0.01);
void int_segment_to_unit(EST_Relation &a, EST_Relation &ev);
static void convert_to_local(EST_Relation &ev);
static void silence_f0(EST_Relation &ev, EST_Track &fz);
static void add_phrases(EST_Relation &ev);
// find event portions of fz in contour, cut out, and send one by one
// to individual labeller.
// This routine takes an Fz contour and a list of potential events,
// and peforms RFC matching on them. It returns a list of events with RFC
// parameters marked.
//
// The algorithm works as follows:
//
// make a list of events, with start and stop times.
//
// for every event
// {
// find start and stop times.
// call comp_extract() to get best section of contour that
// falls between these times. If no suitable contour is found the
// event is deleted and not labelled.
// call rf_match to determine the optimal start and end times for
// that section
// }
//
// Now add connections between non-overlapping events. Overlapping events
// get readjusted to make them simply adjacent
void default_rfc_params(EST_Features &op)
{
op.set("start_limit", 0.1);
op.set("stop_limit", 0.1);
op.set("range", 0.3);
op.set("min_event_duration", 0.03);
}
void print_event(EST_Item &ev);
void rfc_analysis(EST_Track &fz, EST_Relation &ev, EST_Features &op)
{
EST_Item *e, *tmp, *n;
float start_search, end_search;
EST_Track part;
EST_Relation eva;
if (op.present("debug"))
{
cout << "rfc_recognise\n";
cout << ev;
}
int_segment_to_unit(ev, eva);
if (op.present("debug"))
{
cout << "rfc_recognise\n";
cout << ev;
}
// fill values in event labels using matching algorithms
for (e = ev.head(); e != 0; e = n)
{
n = e->next();
// cout << endl << endl;
if (!event_item(*e))
continue;
end_search = e->F("end") + op.F("stop_limit");
start_search = e->F("start") - op.F("start_limit");
if (op.present("debug"))
{
cout << "start = " << e->F("start") << " End "
<< e->F("end")<< endl;
cout << "s start = " << start_search << " sEnd "
<< end_search << endl;
cout << *e << endl;;
}
if (comp_extract(fz, part, start_search, end_search,
op.F("min_event_duration")))
rf_match(part, *e, op.F("range"));
else
ev.remove_item(e);
}
// hack to deal with cases where no events exist
if (ev.head() == 0)
{
tmp = ev.append();
make_int_item(*tmp, "sil", fz.t(0), fz.t(fz.num_frames() - 1),
0.0, 0.0, 0.0);
}
silence_f0(ev, fz);
add_phrases(ev);
// cout << endl << endl << ev;
convert_to_local(ev);
// make sure events don't overlap
// adjust_overlaps(ev);
ev.f.set("intonation_style", "rfc");
if (op.present("debug"))
{
cout << "After RFC analysis\n";
cout << ev;
}
}
// convert intonation stream from segment type to event type description.
// Note this has to be done in 2 loops.
// Create a section of fz contour, bounded by times "start" and "end".
// The created contour is defined to be the largest single continuous
// section of contour bounded by the two times. If no fz contour exits within
// the limits an error is returned.
static void convert_to_local(EST_Item *e)
{
if (e->S("rfc.type", "0") == "RISEFALL")
{
e->set("rfc.rise_amp", (e->F("rfc.peak_f0") - e->F("ev.start_f0")));
e->set("rfc.rise_dur", (e->F("rfc.peak_pos") - e->F("start")));
e->set("rfc.fall_amp", (e->F("rfc.end_f0") - e->F("rfc.peak_f0")));
e->set("rfc.fall_dur", (e->F("end") - e->F("rfc.peak_pos")));
e->set("ev.f0", e->F("rfc.peak_f0"));
// e->set("ev.f0", e->F("rfc.peak_f0") - e->F("rfc.rise_amp"));
e->A("rfc").remove("peak_f0");
e->A("rfc").remove("peak_pos");
e->A("rfc").remove("end_f0");
e->A("rfc").remove("type");
e->A("ev").remove("start_f0");
}
else if (e->S("rfc.type", "0") == "RISE")
{
e->set("rfc.rise_amp", (e->F("rfc.end_f0") - e->F("ev.start_f0")));
e->set("rfc.rise_dur", (e->F("end") - e->F("start")));
e->set("rfc.fall_amp", 0.0);
e->set("rfc.fall_dur", 0.0);
e->set("ev.f0", e->F("rfc.end_f0"));
// e->set("ev.f0", e->F("rfc.end_f0") - e->F("rfc.rise_amp"));
e->A("rfc").remove("peak_f0");
e->A("rfc").remove("peak_pos");
e->A("rfc").remove("end_f0");
e->A("rfc").remove("type");
e->A("ev").remove("start_f0");
}
else if (e->S("rfc.type", "0") == "FALL")
{
e->set("rfc.rise_amp", 0.0);
e->set("rfc.rise_dur", 0.0);
e->set("rfc.fall_amp", (e->F("rfc.end_f0") - e->F("ev.start_f0")));
e->set("rfc.fall_dur", (e->F("end") - e->F("start")));
e->set("ev.f0", e->F("ev.start_f0"));
e->A("rfc").remove("peak_f0");
e->A("rfc").remove("peak_pos");
e->A("rfc").remove("end_f0");
e->A("rfc").remove("type");
e->A("ev").remove("start_f0");
}
if (!e->f_present("time"))
e->set("time", (e->F("end") - e->F("rfc.fall_dur")));
}
void convert_to_local(EST_Relation &ev)
{
EST_Item *e;
for (e = ev.head(); e; e = e->next())
convert_to_local(e);
// cout << "c to l \n\n\n" << ev << endl << endl;
// ev.remove_item_feature("rfc.peak_f0");
// ev.remove_item_feature("rfc.peak_pos");
ev.remove_item_feature("ev.start_f0");
ev.remove_item_feature("start");
// ev.remove_item_feature("rfc.end_f0");
ev.remove_item_feature("end");
// remove_item_feature(ev, "int_event");
ev.f.set("timing_style", "event");
}
void extract2(EST_Track &orig, float start, float end, EST_Track &ret);
static int comp_extract(EST_Track &fz, EST_Track &part, float &start, float
&end, float min_length)
{
int i;
int continuous = 1;
cout.precision(6);
EST_Track tr_tmp, tmp2;
if (start > end)
EST_error("Illegal start and end times: %f %f\n", start, end);
// int from = fz.index(start);
// int to = fz.index_below(end);
// cout << "full f0 = " << fz.num_frames() << endl;
// fz.copy_sub_track(tr_tmp, from, to, 0, EST_ALL);
// cout << "sub_track: " << tr_tmp;
extract2(fz, start, end, tr_tmp);
// cout << "tr_tmp 1\n" << tr_tmp;
tr_tmp.rm_trailing_breaks();
// cout << "tr_tmp 2\n" << tr_tmp;
// cout << "end " << tr_tmp.end() << " start "<< tr_tmp.start() << endl;
// i = tr_tmp.num_frames();
// cout << "starting i = " << tr_tmp.num_frames() << endl;
// cout << "starting i = " << tr_tmp.num_channels() << endl;
// cout << "found end at " << i << tr_tmp.t(i) << endl;
// cout << "tr_tmp 1\n" << tr_tmp;
if ((tr_tmp.end() - tr_tmp.start()) < min_length)
{
cout << "Contour too small for analysis\n";
return 0;
}
for (i = 0; i < tr_tmp.num_frames(); ++i)
if (tr_tmp.track_break(i))
continuous = 0;
// if no breaks are found in this section return.
if (continuous)
{
part = tr_tmp;
return 1;
}
// tracks can legitimately have breaks in them due to the
// search region overlapping a silence. In this case we find
// the longest single section
// cout << "tilt_analysis: This contour has a break in it\n";
int longest, s_c, s_l;
longest = s_c = s_l = 0;
for (i = 0; i < tr_tmp.num_frames(); ++i)
if (tr_tmp.track_break(i))
{
if ((i - s_c) > longest)
{
longest = i - s_c - 1;
s_l = s_c;
}
// skip to next real values
for (;(i < tr_tmp.num_frames()) && (tr_tmp.track_break(i)); ++i)
s_c = i;
}
if ((i - s_c) > longest)
{
longest = i - s_c - 1;
s_l = s_c;
}
// cout << "Longest fragment is " << longest << " starting at " << s_l <<endl;
// cout << "Times: " << tr_tmp.t(s_l) << " : " <<tr_tmp.t(s_l + longest) << endl;
extract2(tr_tmp, tr_tmp.t(s_l), tr_tmp.t(s_l + longest), part);
// cout << "Part\n" << part;
part.rm_trailing_breaks();
start = part.t(0);
end = part.t(part.num_frames()-1);
return 1;
}
static int zero_cross(EST_Track &fz)
{
for (int i = 0; i < fz.num_frames() - 1; ++i)
if ((fz.a(i) >= 0.0) && (fz.a(i + 1) < 0.0))
return i;
return -1;
}
// 1. There should be a more sophisticated decision about whether there
// should be a risefall analysis, and if so, where the peak (zero cross)
// region should be.
// 2. There should be minimum endforced distances for rises and falls.
static int rf_match(EST_Track &fz, EST_Item &ev, float range)
{
int n;
EST_Track diff;
int start, stop;
int b_start, b_stop, e_start, e_stop, region;
EST_Features empty;
if (fz.num_frames() <= 0)
{
ev.set("start", 0.0);
ev.set("ev", empty);
ev.set("rfc", empty);
ev.set("ev.start_f0", 0.0);
ev.set("rfc.peak_f0", 0.0);
ev.set("rfc.peak_pos", 0.0);
}
diff = differentiate(fz);
// cout << "Extracted Contour:\n";
// cout << fz;
n = zero_cross(diff);
if (n >= 0) // rise + fall combination
{
// cout << "zero crossing at point " << n << " time " << fz.t(n) << endl;
b_start = 0;
stop = n;
// find rise part
region = (int)(range * float(stop - b_start));
// ensure region is bigger than 0
region = region > 0 ? region : 1;
b_stop = b_start + region;
e_start = stop - region;
e_stop = stop + region;
// ensure regions are separate
e_start = (e_start < b_stop)? b_stop : e_start;
//printf("rise: b_start %d, b_stop %d, end %d, end stop%d\n", b_start,
// b_stop, e_start, e_stop);
match_rf_point(fz, b_start, b_stop, e_start, e_stop, start, stop);
// cout << "Rise is at start: " << start << " Stop = " << stop << endl;
ev.set("ev.start_f0", fz.a(start));
ev.set("start", fz.t(start));
// find fall part. The start of the search is FIXED by the position
// of where the rise stopped
b_start = n;
b_stop = n + 1;
e_stop = fz.num_frames() - 1;
region = (int)(range * float(e_stop - b_start));
region = region > 0 ? region : 1;
e_start = e_stop - region;
// printf("fall: b_start %d, b_stop %d, end %d, end stop%d\n", b_start,
// b_stop, e_start, e_stop);
match_rf_point(fz, b_start, b_stop, e_start, e_stop, start, stop);
// cout << "Fall is at start: " << start << " Stop = " << stop << endl;
// cout << "region: " << region << endl;
// cout << "stop could be " << e_stop << " value " << fz.t(e_stop) << endl;
// cout << "start could be " << e_start << " value " << fz.t(e_start) << endl;
ev.set("rfc.peak_f0", fz.a(start));
ev.set("rfc.peak_pos", fz.t(start));
ev.set("rfc.end_f0", fz.a(stop));
ev.set("end", fz.t(stop));
ev.set("rfc.type", "RISEFALL");
/* ev.set("rfc.setpeak_f0", fz.a(start));
ev.fA("rfc").set("peak_pos", fz.t(start));
ev.fA("rfc",1).set("end_f0", fz.a(stop));
ev.set("end", fz.t(stop));
ev.fA("rfc").set("type", "RISEFALL");
*/
// cout << "peak pos: " << ev.F("rfc.peak_pos") << endl;
// cout << "peak pos: " << ev.A("rfc").F("peak_pos") << endl;
// cout << "rfc:\n" << ev.A("rfc") << endl;
// cout << "labelled event: " << ev << endl;
}
else // separate rise or fall
{
b_start = 0;
e_stop = fz.num_frames() - 1;
region = (int)(range * float(e_stop - b_start));
region = region > 0 ? region : 1;
b_stop = b_start + region;
e_start = e_stop - region;
// printf("b_start %d, b_stop %d, end start %d, end stop%d\n", b_start,
// b_stop, e_start, e_stop);
match_rf_point(fz, b_start, b_stop, e_start, e_stop, start, stop);
ev.set("start", fz.t(start));
ev.set("ev.start_f0", fz.a(start));
ev.set("rfc.peak_f0", 0.0);
ev.set("rfc.peak_pos", 0.0);
ev.set("rfc.end_f0", fz.a(stop));
ev.set("end", fz.t(stop));
// cout << "start " << fz.t(start) << " end " << fz.t(stop) << endl;
if (fz.a(fz.index(fz.start())) < fz.a(fz.index(fz.end())))
ev.set("rfc.type", "RISE");
else
ev.set("rfc.type", "FALL");
// cout << "labelled event: " << ev << endl;
}
return 0;
}
static void silence_f0(EST_Relation &ev, EST_Track &fz)
{
EST_Item * e;
int i;
for (e = ev.head(); e; e = e->next())
if (sil_item(*e))
{
i = fz.prev_non_break(fz.index(e->F("start")));
e->set("ev.start_f0", fz.a(i));
i = fz.next_non_break(fz.index(e->F("end")));
e->set("ev.end_f0", fz.a(i));
}
}
static void add_phrases(EST_Relation &ev)
{
EST_Item *e, *n, *s;
// cout << "phrase edges: " << endl;
// cout << ev;
for (e = ev.head(); e; e = n)
{
n = e->next();
if (sil_item(*e))
{
if (e != ev.head())
{
s = e->insert_before();
s->set("name", "phrase_end");
s->set("ev.f0", e->F("ev.start_f0"));
s->set("time", e->F("start"));
}
if (e != ev.tail())
{
s = e->insert_after();
s->set("name", "phrase_start");
s->set("ev.f0", e->F("ev.end_f0"));
s->set("time", e->F("end"));
}
}
}
for (e = ev.head(); e; e = n)
{
n = e->next();
if (sil_item(*e))
ev.remove_item(e);
}
}
/*
static void add_phrases(EST_Relation &ev, bool phrase_edges)
{
EST_Item *e, *n, *s, *p;
float min_duration = 0.02;
cout << "phrase edges: " << phrase_edges << endl;
cout << ev;
for (e = ev.head(); next(e); e = n)
{
n = e->next();
p = e->prev();
if (!sil_item(*e))
continue;
s = 0;
if ((e != ev.head()) && (phrase_edges
|| (p &&(e->F("start") - p->F("end"))
> min_duration)))
{
s = e->insert_before();
s->set("name", "phrase_end");
s->set("ev.f0", e->F("ev.start_f0", 1));
s->set("position", e->F("start"));
}
if (phrase_edges || (n &&((n->F("start")- e->F("end")) >min_duration)))
{
s = e->insert_after();
s->set("name", "phrase_start");
s->set("ev.f0", e->F("ev.end_f0",1));
s->set("position", e->F("end"));
}
if (s == 0)
{
s = e->insert_before();
s->set("name", "pause");
s->set("position", e->F("start"));
}
}
s = e->insert_after();
s->set("name", "phrase_end");
s->set("ev.f0", e->F("ev.start_f0", 1));
s->set("position", e->F("end"));
for (e = ev.head(); e; e = n)
{
n = e->next();
if (sil_item(*e))
ev.remove_item(e);
}
cout << "end phrase edges\n";
}
*/
static void make_int_item(EST_Item &tmp,
const EST_String name, float end, float start,
float start_f0, float peak_pos,
float peak_f0)
{
tmp.set_name(name);
EST_Features dummy;
tmp.set("start", start);
tmp.set("end", end);
tmp.set("ev", dummy);
tmp.set("ev.start_f0", start_f0);
if ((name != "sil") && (name != "c"))
{
tmp.set("rfc", dummy);
tmp.set("rfc.peak_pos", peak_pos);
tmp.set("rfc.peak_f0", peak_f0);
tmp.set("rfc.pos", 1);
}
}
static float distance(EST_Track &fz, int pos, EST_Track &new_fz, int
num_points)
{
int i;
float distance = 0.0;
float diff;
for (i = 0; i < num_points; ++i)
{
diff = fz.a(i + pos) - new_fz.a(i);
/* dprintf("o = %f, n = %f\n", old_contour[i + pos],
new_contour[i]); */
distance += (diff * diff);
}
return (distance);
}
static float weight(float duration)
{
(void)duration;
/* return ((MAX_DUR + 0.7) - duration); */
return(1.0);
}
// Return indexs in fz to best fitting region of monomial curve to
// fz contour. The search is bounded by the b/e_start an b/e_stop
// values. The contour fz, should have no breaks in it.
static int match_rf_point(EST_Track &fz, int b_start, int b_stop,
int e_start, int e_stop, int &mi, int &mj)
{
int i, j, k;
float s_pos, e_pos, s_freq, e_freq, t;
float amp, duration, dist, ndist;
float min_dist = MAXFLOAT;
int length;
EST_Track new_fz(fz.num_frames(), 1);
float f_shift;
mi = mj = 0; // set values to zero for safety
if ((b_start >= b_stop) || (b_start < 0))
{
cerr << "Illegal beginning search region in match_rf_point:" <<
b_start << "-" << b_stop << endl;
return -1;
}
if ((e_start >= e_stop) || (e_stop > fz.num_frames()))
{
cerr << "Illegal ending search region in match_rf_point:" <<
e_start << "-" << e_stop << endl;
return -1;
}
f_shift = fz.shift();
duration = 0.0;
for (i = b_start; i < b_stop; ++i)
for (j = e_start; j < e_stop; ++j)
{
s_pos = fz.t(i);
s_freq = fz.a(i);
e_pos = fz.t(j);
e_freq = fz.a(j);
duration = e_pos - s_pos;
amp = e_freq - s_freq;
length = j - i;
for (k = 0; k < length + 1; ++k)
{
t = ((float) k) * f_shift;
new_fz.a(k) = (amp * fncurve(duration, t, 2.0))
+ s_freq;
}
dist = distance(fz, i, new_fz, length);
ndist = dist / (duration * 100.0);
ndist *= weight(duration);
if (ndist < min_dist)
{
min_dist = ndist;
mi = i;
mj = j;
}
}
return 0;
}
/*
#if 0
static void fill_f0_values(EST_Track &fz, EST_Relation &ev)
{
EST_Item *e;
float start_a;
int pos;
float prev = 0.0;
for (e = ev.head(); e != 0; e = e->next())
{
if (e->name() == "sil")
{
pos = fz.index(prev);
pos = fz.prev_non_break(pos);
start_a = pos > 0 ? fz.a(pos) : 0.0;
}
else if (e->name() == "c")
{
pos = fz.index(prev);;
pos = fz.next_non_break(pos);
start_a = fz.a(pos);
}
else
start_a = fz.a(prev);
e->set("ev:start_f0", start_a);
e->set("start", prev);
// cout << "setting start to be " << start_a << " at pos " << pos << endl;
// cout << *e << " " << *RFCS(*e) << endl;
if (e->f("rfc:type") == "RISEFALL")
{
start_a = fz.a(e->F("rfc:peak_pos"));
e->set("rfc:peak_f0", start_a);
}
prev = e->f("end");
}
}
static void insert_silence(EST_Item *n, EST_Track &fz, int i, int j)
{
EST_Item *prev_item, *new_sil;
float min_length = 0.015;
float sil_start, sil_end, start_f0;
sil_start = i > 0 ? fz.t(i - 1) : 0.0;
sil_end = fz.t(j);
if ((sil_end - sil_start) < min_length)
return;
// add silence
start_f0 = (i > 0) ? fz.a(i -1) : fz.a(i);
new_sil = n->insert_after();
make_int_item(*new_sil, "sil", sil_end, sil_start, start_f0, 0.0, 0.0);
new_sil->set("rfc:type", "SIL");
// if silence leaves a gap, make a new element before it
if ((sil_start - n->F("start")) < min_length)
return;
// make new element, setting end time to silence start time.
prev_item = n->prev()->insert_before();
make_int_item(*prev_item, n->name(), sil_start, 0.0, n->f("ev:start_f0"),
0.0,0.0);
// now tidy up values of existing element
n->set("ev:start_f0", fz.a(j));
n->set("start", sil_end);
}
static void add_phrases_old(EST_Relation &ev, EST_Track &fz)
{
int i;
EST_Item *e, *n, *s;
bool sil = false;
float start, end;
for (e = ev.head(); next(e); e = n)
{
n = e->next();
start = e->F("end");
end = n->F("start");
sil = false;
cout << endl << endl;
cout << *e << endl;
cout << *n << endl;
cout << "start = " << start << endl;
cout << "end = " << end << endl;
for (i = fz.index(start); i < fz.index(end); ++i)
{
cout << i << endl;
cout << fz.val(i) << endl;
if ((!sil) &&(!fz.val(i)))
{
cout << "phrase_end\n";
sil = true;
s = e->insert_after();
s->set("name", "phrase_end");
s->set("position", fz.t(i - 1));
if (i > (fz.index(start) + 1))
s->set("ev:f0", fz.a(i - 1));
e = s;
}
if (sil && fz.val(i)) // just come out of silence
{
cout << "phrase_start\n";
sil = false;
s = e->insert_after();
s->set("name", "phrase_start");
s->set("position", fz.t(i));
s->set("ev:f0", fz.a(i));
}
}
}
}
static void add_silences(EST_Track &fz, EST_Relation &ev,
float end_sil_length)
{
int i, j;
EST_Item *e;
for (i = 0; i < fz.num_frames(); ++i)
if (fz.track_break(i))
{
for (j = i; j < fz.num_frames(); ++j)
if (fz.val(j))
break;
if (j == fz.num_frames()) // off end of array
break;
cout << "silence between " <<i << " and " << j << endl;
// cout << " " << fz.t(i) << " and " << fz.t(j) << endl;
for (e = ev.head(); e != 0; e = e->next())
if (e->F("end") >= fz.t(j))
break;
insert_silence(e, fz, i, j);
// for (e = ev.head(); e != 0; e = e->next())
// cout << *e << " : " << *RFCS(*e) << endl;
i = j;
}
if (sil_item(*ev.tail()))
return;
float start_f0 = fz.a(fz.end());
e = ev.append();
make_int_item(*e, "sil", fz.end() + end_sil_length, fz.end(),
start_f0, 0.0, 0.0);
e->set("rfc:type", "SIL");
}
*/
/*static void minimum_duration(EST_Relation &ev, float min_dur)
{
EST_Item *e, *n;
for (e = ev.head(); e != 0; e = n)
{
n = e->next();
if (dur(*e) < min_dur)
ev.remove_item(e);
}
}
static void adjust_overlaps(EST_Relation &ev)
{
EST_Item *e, *n;
float pos=0.0;
for (e = ev.head(); next(e) != 0; e = e->next())
{
n = e->next();
if (e->F("end") > n->F("start"))
{
*/
/* cout << "Overlapping events " << *e <<":" << *n << endl;
// case a: genuine overlap
if (n->F("end") > e->F("end"))
{
cout << "case A\n";
// pos = (e->F("end") + start(n)) / 2.0;
}
// case b: second element is enclosed by first
else if (n->F("end") <= e->F("end"))
{
cout << "case A\n";
// pos = start(n);
}
// case c: second element is before first
* else if ((n->F("end") < e->F("end")) &&
(start(n) < start(e)))
{
cout << "case A\n";
pos = (n->F("end") + start(e)) / 2.0;
}
else
cout << "No overlap conditions met\n";
// cout << "pos =" << pos << endl;
*/
/* e->set("end", pos);
n->set("start", pos);
cout << endl << endl;
}
}
// The overlap adjustments may cause the peak position to lie outside
// the start and end points. This checks for this and makes an
// arbitrary adjustment
for (e = ev.head(); next(e) != 0; e = e->next())
if ((e->f("rfc:type") == "RISEFALL") && (e->F("rfc:peak_pos") <
e->F("start")))
e->set("rfc:peak_pos",
(e->F("start") + e->F("end") / 2.0));
}
static void conn_ends(EST_Track &fz, EST_Relation &ev, float min_length)
{
EST_Item *e, *n, *tmp;
float t, f0;
const float ARB_DISTANCE = 0.1;
cout << min_length << endl;
for (e = ev.head(); next(e) != 0; e = e->next())
{
n = e->next();
cout << *e << ":";
cout << "n: " << n->F("start") << " e "<< e->F("end") << endl;
if ((n->F("start") - e->F("end")) > min_length)
{
cout << "making connection\n";
tmp = n->insert_before();
make_int_item(*tmp, "c", n->f("start"), e->f("start"),
e->f("rfc:end_f0"), 0.0, 0.0);
e = e->next(); // advance after new connection
}
else
{
t = (n->F("start") + e->F("end")) /2.0;
n->set("start", t);
e->set("end", t);
}
}
t = (ev.head())->f("start"); // store time of start of first event
// insert silence at beginning if contour doesn't start at near time 0
// if (fz.start() > fz.shift())
// {
// tmp = make_int_item("sil", fz.start(), 0.0, 0.0, 0.0, 0.0);
// ev.prepend(tmp);
// }
// add connection between silence and first event
tmp = ev.head()->insert_after();
make_int_item(*tmp, "c", t, 0.0, fz.a(fz.start()), 0.0, 0.0);
if ((ev.tail()->F("end") + min_length) < fz.end())
{
f0 = fz.a(ev.tail()->F("end"));
// add connection after last event.
//ev.insert_after(ev.tail(), tmp);
tmp = ev.append();
make_int_item(*tmp, "c", fz.end(), 0.0, f0, 0.0, 0.0);
}
// add silence, an arbitrary distance after end - what a hack!
// ev.insert_after(ev.tail(), tmp);
tmp = ev.append();
make_int_item(*tmp, "sil", fz.end() + ARB_DISTANCE,
0.0, fz.a(fz.end()), 0.0, 0.0);
}
*/