speech-tools/include/EST_TVector.h
2015-09-19 10:52:26 +02:00

335 lines
12 KiB
C++

/*************************************************************************/
/* */
/* Centre for Speech Technology Research */
/* University of Edinburgh, UK */
/* Copyright (c) 1996 */
/* All Rights Reserved. */
/* */
/* Permission is hereby granted, free of charge, to use and distribute */
/* this software and its documentation without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of this work, and to */
/* permit persons to whom this work is furnished to do so, subject to */
/* the following conditions: */
/* 1. The code must retain the above copyright notice, this list of */
/* conditions and the following disclaimer. */
/* 2. Any modifications must be clearly marked as such. */
/* 3. Original authors' names are not deleted. */
/* 4. The authors' names are not used to endorse or promote products */
/* derived from this software without specific prior written */
/* permission. */
/* */
/* THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK */
/* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */
/* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */
/* SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE */
/* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */
/* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */
/* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */
/* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */
/* THIS SOFTWARE. */
/* */
/*************************************************************************/
/* Author : Paul Taylor */
/* Date : April 1996 */
/*-----------------------------------------------------------------------*/
/* Vector class */
/* */
/*=======================================================================*/
#ifndef __EST_TVector_H__
#define __EST_TVector_H__
#include <iostream>
using namespace std;
#include "EST_bool.h"
#include "EST_rw_status.h"
#include "instantiate/EST_TVectorI.h"
template<class T> class EST_TMatrix;
template<class T> class EST_TList;
class EST_String;
/* A constants to make it clearer what is going on when we pass `-1'
* meaning `current size' or `all the rest'
*/
extern const int EST_CURRENT;
extern const int EST_ALL;
/* When set bounds checks (safe but slow) are done on vector access */
#ifndef TVECTOR_BOUNDS_CHECKING
# define TVECTOR_BOUNDS_CHECKING 0
#endif
#if TVECTOR_BOUNDS_CHECKING
#define A_CHECK a_check
#else
#define A_CHECK a_no_check
#endif
#define INLINE inline
/* This doesn't work as I thought so I have disabled it for now.
*/
#if defined(__GNUC__) && 0
# define fast_a_v_gcc(C) \
( *((T *)\
(((char (*) [sizeof(T)*p_column_step])p_memory) + (C))\
))
# define fast_a_v_x(C) (fast_a_v_gcc(C))
#else
# define fast_a_v_x(C) (fast_a_v(C))
#endif
/**@name Template vector
This serves as a base class for a vector
of type <type>T</type>. This acts as a higher level
version of a normal C array as defined as <type>float *x</type> etc.
The vector can be resized after declaration, access can be
with or without bounds checking. Round brackets denote read-only
access (for consts) while square brackets are for read-write access.
In both cases references are returned.
The standard operators () and [] should be thought of as
having no bounds checking, though they may do so optionally
as a compile time option. The methods <method>a_check</method> and
<method>a_nocheck</method> provide explicit boundary checking/nonchecking,
both const and non-const versions are provided.
Access through () and [] are guaranteed to be as fast as standard
C arrays (assuming a reasonable optimizing compiler).
<programlisting>
EST_FVector x(10);
int i;
for (i=0; i < x.length(); ++i)
x[i] = sqrt((float)i);
x.resize(20);
for (i=10; i < x.length(); ++i)
x[i] = sqrt((float)i);
</programlisting>
To instantiate a template for a a vector of type {FooBar}
<programlisting>
#include "../base_class/EST_TVector.cc"
// If you want List to vector conversion (and defined a TList)
#include "../base_class/EST_Tvectlist.cc"
template class EST_TVector<FooBar>;
template ostream& operator <<
(ostream &st, const EST_TVector<FooBar> &v);
</programlisting>
The EST library already has template vector instantiations for
<type>int</type>, <type>float</type>, <type>double</type> and
<docppRef linkend='EST_String'>. Also types are defined for them
in <docppRef linkend='EST_types.h'> as <docppRef
linkend='EST_IVector'>, <docppRef linkend='EST_FVector'>,
<docppRef linkend='EST_DVector'> and <docppRef
linkend='EST_StrVector'> for <type>int</type>s,
<type>float</type>s, <type>doubles</type>s and <docppRef
linkend='EST_String'>s respectively.
* @see matrix_example */
//@{
template <class T>
class EST_TVector
{
// protected:
public:
/** Pointer to the start of the vector.
* The start of allocated memory is p_memory-p_offset.
*/
T *p_memory;
/// Visible shape
unsigned int p_num_columns;
/// How to access the memory
unsigned int p_offset;
unsigned int p_column_step;
bool p_sub_matrix;
/// The memory access rule, in one place for easy reference
INLINE unsigned int vcell_pos(unsigned int c,
unsigned int cs) const
{return cs==1?c:c*cs;}
INLINE unsigned int vcell_pos(unsigned int c) const
{
return vcell_pos(c,
p_column_step);
}
INLINE unsigned int vcell_pos_1(unsigned int c) const
{
return c;
}
/// quick method for returning \(x[n]\)
INLINE const T &fast_a_v(int c) const { return p_memory[vcell_pos(c)]; }
INLINE T &fast_a_v(int c) { return p_memory[vcell_pos(c)]; }
INLINE const T &fast_a_1(int c) const { return p_memory[vcell_pos_1(c)]; }
INLINE T &fast_a_1(int c) { return p_memory[vcell_pos_1(c)]; }
/// Get and set values from array
void set_values(const T *data, int step, int start_c, int num_c);
void get_values(T *data, int step, int start_c, int num_c) const;
/// private copy function, called from all other copying functions.
void copy(const EST_TVector<T> &a);
/// just copy data, no resizing, no size check.
void copy_data(const EST_TVector<T> &a);
/// resize the memory and reset the bounds, but don't set values.
void just_resize(int new_cols, T** old_vals);
/// sets data and length to default values (0 in both cases).
void default_vals();
public:
///default constructor
EST_TVector();
/// copy constructor
EST_TVector(const EST_TVector<T> &v);
/// "size" constructor - make vector of size n.
EST_TVector(int n);
/// construct from memory supplied by caller
EST_TVector(int,
T *memory, int offset=0, int free_when_destroyed=0);
/// destructor.
~EST_TVector();
/// default value, used for filling matrix after resizing
static const T *def_val;
/** A reference to this variable is returned if you try and access
* beyond the bounds of the matrix. The value is undefined, but you
* can check for the reference you get having the same address as
* this variable to test for an error.
*/
static T *error_return;
/** resize vector. If <expr>set=1</expr>, then the current values in
the vector are preserved up to the new length <parameter>n</parameter>. If the
new length exceeds the old length, the rest of the vector is
filled with the <variable>def_val</variable>
*/
void resize(int n, int set=1);
/** For when you absolutely have to have access to the memory.
*/
const T * memory() const { return p_memory; }
T * memory(){ return p_memory; }
/**@name access
* Basic access methods for vectors.
*/
//@{
/// number of items in vector.
INLINE int num_columns() const {return p_num_columns;}
/// number of items in vector.
INLINE int length() const {return num_columns();}
/// number of items in vector.
INLINE int n() const {return num_columns();}
/// read-only const access operator: without bounds checking
INLINE const T &a_no_check(int n) const { return fast_a_v_x(n); }
/// read/write non-const access operator: without bounds checking
INLINE T &a_no_check(int n) { return fast_a_v_x(n); }
/// read-only const access operator: without bounds checking
INLINE const T &a_no_check_1(int n) const { return fast_a_1(n); }
/// read/write non-const access operator: without bounds checking
INLINE T &a_no_check_1(int n) { return fast_a_1(n); }
// #define pp_a_no_check(V,N) (pp_fast_a(V,N))
/// read-only const access operator: with bounds checking
const T &a_check(int n) const;
/// read/write non-const access operator: with bounds checking
T &a_check(int n);
const T &a(int n) const { return A_CHECK(n); }
T &a(int n) { return A_CHECK(n); }
/// read-only const access operator: return reference to nth member
const T &operator () (int n) const {return A_CHECK(n);}
// PT
// /// non const access operator: return reference to nth member
// T &operator () (int n) const {return a(n);}
/// read/write non const access operator: return reference to nth member
T &operator [] (int n) { return A_CHECK(n); }
//@}
void set_memory(T *buffer, int offset, int columns,
int free_when_destroyed=0);
/// assignment operator
EST_TVector &operator=(const EST_TVector &s);
/// Fill entire array will value <parameter>v</parameter>.
void fill(const T &v);
/// Fill vector with default value
void empty() { fill(*def_val); }
/// is true if vectors are equal size and all elements are equal.
int operator == (const EST_TVector &v) const;
/// is true if vectors are not equal size or a single elements isn't equal.
int operator != (const EST_TVector &v) const
{ return ! ((*this) == v); }
/// Copy data in and out. Subclassed by SimpleVector for speed.
void copy_section(T* dest, int offset=0, int num=-1) const;
void set_section(const T* src, int offset=0, int num=-1);
/// Create a sub vector.
void sub_vector(EST_TVector<T> &sv, int start_c=0, int len=-1);
/// print out vector.
friend ostream& operator << (ostream &st, const EST_TVector<T> &m)
{
int i;
for (i = 0; i < m.n(); ++i)
st << m(i) << " "; st << endl;
return st;
}
/// Matrix must be friend to set up subvectors
friend class EST_TMatrix<T>;
void integrity() const;
};
//@}
/// assignment operator: fill track with values in list <parameter>s</parameter>.
template<class T>
extern EST_TVector<T> &set(EST_TVector<T> &v, const EST_TList<T> &s);
#undef A_CHECK
#endif